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ABSTRACT 

Myoelectric control schemes aim to utilize the surface electromyography (EMG) signals 

which are the electric potentials directly measured from skeletal muscles to control wearable robots 

such as exoskeletons and prostheses. The main challenge of myoelectric controls is to increase and 

preserve the signal quality by minimizing the effect of confounding factors such as muscle fatigue 

or electrode shift. Current research in myoelectric control schemes are developed to work in ideal 

laboratory conditions, but there is a persistent need to have these control schemes be more robust 

and work in real-world environments. Following the manifold hypothesis, complexity in the world 

can be broken down from a high-dimensional space to a lower-dimensional form or representation 

that can explain how the higher-dimensional real world operates. From this premise, the biological 

actions and their relevant multimodal signals can be compressed and optimally pertinent when 

performed in both laboratory and non-laboratory settings once the learned representation or 

manifold is discovered. This thesis outlines a method that incorporates the use of a contrastive 

variational autoencoder with an integrated classifier on multimodal sensor data to create a 

compressed latent space representation that can be used in future myoelectric control schemes. 
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INTRODUCTION 

Research on detecting movement intention from electromyographic (EMG) signals from 

activated muscles and muscle groups has been studied extensively since the mid-twentieth century. 

Over the last two decades, this field of study has become increasingly popular due to advancements 

in technology and computation, allowing for its applications in a wide variety of areas like upper 

limb prosthetics controls [1] and human-machine interfaces [2]. A significant challenge with 

modern myoelectric control schemes is preserving the signal quality generated by a single or group 

of muscles to detect a human's movement intention. This problem further extends to improving 

the reliability of these control schemes to new inputs so that they can be applied in a commercial 

or real-world setting to maximize their use rather than being operational only in the laboratory or 

ideal conditions. Therefore, research into increasing the robustness of myoelectric controls against 

an ever-increasing number of disturbances and noise will advance the development of more useful 

and applicable control schemes. Further, these real-time controls need to be accurate for different 

situations and environments, ideally while being reliable for longer periods. The myoelectric 

control systems need to be simple and easy to implement and use, noninvasive, and with reduced 

computational complexity so that there is no delay in reaction time for the user (<200ms) [3].   

Accordingly, this research aims to increase myoelectric control systems' robustness by 

applying a deep learning model that can be trained offline and reduces the data's computational 

complexity via dimensionality reduction (i.e., optimizing for important signal characteristics or 

features). Following the premise of the manifold hypothesis, it is possible to represent the high 

dimensionality of real-world characteristics onto a lower dimensional compressed representation 

or manifold, where the remaining characteristics are the most pronounced or definite 

characteristics that initially describe the higher dimensional representation. Ideally, once ample 

and varied data has been provided to the model, the model will parse through these inputs and find 

the features that most prominently impacted the generation of the function it discovered to fit the 

data. The dimensionality reduction methods, such as principal component analysis, use linear 

mappings of high dimension data onto low-dimensional spaces to describe the behavior of a 

system. Nonlinear mappings are needed to fully encompass and understand the low-dimensional 

representation of more complex data. Machine learning neural networks called autoencoders can 

discover the function that describes the imputed data. 
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This thesis seeks to develop a method of utilizing a probabilistic generative neural network 

model called a variational autoencoder on multimodal data to improve the robustness of future 

myoelectric control schemes. With this proposed method, the model can learn a generalized 

interpretation of specific actions between different hand gestures or positions. Passing data through 

the autoencoder structure as a dimensionality reduction and optimization method allows the 

features that most accurately describe the characteristics of the model to remain weighted highly, 

whereas the redundant features will be removed or lightly weighted appropriately. Applying 

dimensionality reduction via an autoencoder framework also allows for the feature space that 

defines specific actions to be visualized as it learns, allowing for the learned representation to be 

observable and used in later data inspections. The process of validating the model involves using 

the variational autoencoder on a recognized online public dataset Ninapro (DB5), which will act 

as the benchmark to verify the viability and accuracy of the model and latent space when 

processing multimodal sensor data [4,5].  
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LITERATURE REVIEW 

Electromyography 

Electromyography (EMG) measures the electrical action potentials of a muscle during a 

set duration that is generated via muscle activations from the body's nervous system. Any form of 

muscle contraction or relaxation generates new signals along a muscle body or group of muscles. 

Electrodes that measure the electrical potential along the muscle body allow for recording 

biological signal data and can be applied to the body in an invasive or noninvasive manner. 

Analyzing myographic signals allow for greater advancements in rehabilitation and biomedical 

research in diagnosing neuromuscular pathologies and disorders, and utilizing these signals in 

human-machine interactions as the generated signals precede the joint movements. Due to this 

inherent time delay (electromechanical delay), using EMG signals as a basis for control schemes 

becomes viable to precede or aid in body kinematics in the form of robotic enhancements [6]. In 

either case, the overall goal of EMG signals is to detect the user's actions, which requires the 

generated signal to be distinct and reliable, which revolves heavily around improving recording 

and detection methods and reducing the impact of noise or disturbances on the signal. EMG signals 

are both noisy from inherent and confounding factors and are stochastic in nature, so garnering an 

accurate depiction of the user's motion intent is challenging. Similarly, the noise impacting the 

signal can be due to many factors, such as skin impedance, electrical noise generated from the 

sensor, other equipment, or the surrounding environment, electrode shift, and signal artifacts 

caused by motion [7].  

EMG signals require levels of signal preprocessing involving amplification, rectification, 

filtering, segmentation, and other techniques to make specific signal characteristics or features 

apparent enough to recognize them and carry out a set response [8]. This response in prosthetic 

and exoskeleton control schemes evolved from simple binary choices to widely available 

proportional or threshold-based controls to more advanced modern pattern recognition-based 

control schemes as the methodologies and technologies advance [9]. The modern myoelectric 

control systems using pattern recognition generally use the same basic scheme where the EMG 

data is recorded during use, then preprocessed and segmented to get appropriate features for feature 

extraction so a classifier can determine or recognize the type of action being performed. These 
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types of classification-based control schemes include use in robotic hand gesture classification or 

use in upper and lower limb exosuit devices [1, 6, 17]. What differentiates pattern recognition-

based controllers from proportional controllers is the controller's ability to differentiate between 

many movement classes or degrees of freedom for the end user, which is necessary to expand and 

aid upon the types of motions one can perform using a prosthetic [10]. Throughout the 

development of these control schemes, however, primary challenges have emerged that cut at the 

root of garnering human intent from real-time biological signals. 

One of the primary challenges when implementing a myoelectric control scheme is to 

maximize the quality of the EMG signal to recognize and understand the user's intent which 

involves reducing any noise and disturbances. The method of manually reducing disturbances or 

noise in the signal to amplify the quality of specific features and their characteristics is called 

feature engineering. It is the typical method for EMG pattern recognition and classification of 

specific actions generated by the user [11]. Hand-selected features can be applied to the time 

domain, frequency domain, or time-frequency domain to select signal characteristics involving 

signal energy or complexity to increase the class separability and robustness of the recorded signal. 

However, these extracted features are susceptible to including unnecessary or redundant features 

within and between the domains. Phinyomark et al. have discussed the general redundancy overlap 

between some features in the time and frequency domain and have described time domain features 

as superior to frequency domain features due to their low complexity [12]. Similarly, due to similar 

features in their respective feature spaces, only a few features are needed to depict the feature space 

for classification methods accurately. In the same paper, a small number of features (mean absolute 

value, waveform length, and recording the number of slope sign changes) were expressed to be 

able to achieve similar performance to using all the thirty-seven features examined [12]. 

Another challenge is reducing response time while increasing the performance accuracy of 

myoelectric control schemes. From the onset detection of the EMG signal, the controller needs to 

be able to process and interpret the signal within a very small time window in order to reduce the 

delay caused by computations or classification. An ideal system would fall within the range of an 

acceptable response time (<200ms) while allowing for good classification accuracy; however, the 

computational cost of achieving good classification accuracy depends on 1) the complexity of the 

classification model, 2) the number (class) of movements it is trained to detect and classify, and, 
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3) other confounding factors induced by non-laboratory environments, which increases the 

response time [13]. A remedy to this problem is the other challenge facing myoelectric control 

schemes: increasing the device's intuitiveness or adaptability to model complexity, additional 

classes, and the influence of confounding factors.  

Increasing the intuitiveness of the myoelectric controller means that the controller needs to 

be able to process and understand stimuli more effectively and efficiently so that the controller 

outputs and human-device interaction are easy for any user to perceive and understand. Improving 

the robustness of myoelectric control schemes to new inputs or motions, and other confounding 

factors (noise and disturbances) is the primary aim to make such a control method more practical 

and available to a broader group of people [13]. Similarly, implementing methods to process 

stimuli more efficiently, like through dimensionality reduction techniques or modern approaches 

using machine learning, can aid in reducing the computational complexity of incoming data, 

allowing for the preservation and possible increase in performance accuracy. A constant tradeoff 

between response time and accuracy will always be a core challenge in myoelectric control 

schemes, but improving the intuitiveness of a control scheme to varying conditions and for the 

user can help remedy this challenge.  

Another critical factor limiting the real-world application of electromyographic research 

involves the discrepancy between the use of prosthesis control schemes or recognition methods in 

a laboratory setting versus during real-world use. Confounding factors that impact the fidelity of 

the EMG signal are increasingly variable and prominent during daily use versus laboratory 

experimentation, so the reliability of some prosthetic devices or recognition methods is 

diminished. Additionally, individual use of these models needs to take into account intra-subject 

variability as well as inter-subject variability for general use as a reliable and practical device 

[8,14]  
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Sensor Fusion 

Sensor fusion or using additional unimodal or multimodal sensor data inside a present 

control or classification scheme provides a promising remedy to many of the above-mentioned 

challenges. Additional sensors recording concurrently with user action allows for increased 

controller reliability as more of the action space is defined. Put in another way, adding additional 

sensors allows for a greater extent of the world model that the controller orients itself in to be 

discovered, allowing for a higher resolution or understanding of input data as it is passed through 

the controller [15]. This allows for greater accuracy when classifying using multimodal sensor data 

versus using unimodal data type [16]. Furthermore, if one sensor is experiencing high noise or 

disturbances, or is malfunctioning, additional sensors could take over for data collection to 

maintain the controller performance. Even though portions of the recorded data from the sensors 

or extracted features from the multimodal input would likely be redundant or unnecessary, 

maintaining the target performance is critical [17]. Providing fallbacks or fail-safes in case of faults 

or errors in the system allows for myoelectric control schemes to be more reliable and will apply 

less burden on the user [18]. 

EMG and inertial data recorded by inertial measurement units (IMU) provide different but 

complementary insights into the user's limb motion, like elbow flexion or walking. Taken in 

tandem, IMUs can measure the body segment or joint kinematics that can help supplement the 

biological features of movement from the muscle's electrical potentials from EMG signals 

[16,19,20]. Wu et al. highlight the versatility of analyzing both IMU and EMG signals involves 

analyzing real-time intent recognition for sign language [21]. During their experiment, the final 

feature space between the combined EMG and IMU sensors was a 268-feature vector with a 268-

dimensional space. The study then classified the best feature set that resulted in the highest 

classification accuracy with the lowest number of features. The results show that the most optimal 

amount of features to avoid overfitting the classifiers was 40 features using a support vector 

machine. This reducing feature finding aligns with the consensus of Phinyomark et al. discussed 

earlier [12]. In the same vein, this thesis will attempt to find optimal features and their influence. 

A more interesting finding was that of the features that classified the recognized signs, 31 of the 

40 features were reliant on the IMU data versus the EMG data, indicating that the reliability of 

multimodal sensors can vary widely between different sensors [21]. Similarly, this surprising 



7 

 

outcome indicates that combining multimodal sensor data and reducing its dimensionality could 

result in a similar outcome where hidden characteristics of the feature space hold more weight for 

some features, like certain IMU features, versus others, like specific EMG sensors. 

The limitations of sensor fusion involve the same challenges facing myoelectric controls 

and all other signal processing-based control schemes. Problems relating to noise and limiting 

confounding factors on the EMG signal quality are always a priority when creating a robust control 

scheme. This problem extends further as each sensor's uncertainty compounds when integrated 

[17]. Additionally, sensors might be measured at different rates from each other, creating 

disturbances and faulty data, meaning that time synchronization of all different sensor data is still 

a vital step when using sensor fusion [15]. Overall, the focus should not be on creating ideal 

conditions in the real world --- improving the accuracy and performance of the EMG or 

complementary multimodal signals themselves, as it would be impossible to account for that level 

of possible variation. In this respect, the focus is to provide a framework that is exceptionally 

robust to external (environmental) changes or user variability so that the control scheme can be 

operable and adaptive in the real world.  
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Machine Learning 

Machine learning involves using an automated computational process to solve a specific 

desired task or outcome. The goal of creating an automatic response to input data means that the 

system must be able to interpret, memorize and learn from the input data so that each time it is 

passed through the algorithm or model, it will be able to output a response like classifying images 

or hand gestures [22]. Machine learning systems learn in two primary ways: supervised, where 

training is led by the end-user, and unsupervised, where there is minimal to no direct user response 

during model training. In both scenarios, the system can extract relevant data and discover or learn 

representations from datasets that the end user could not easily discern. These types of models 

where the interpretability of how the model learns is low or nonexistent are described as a "black 

box," and letting these types of model run high stake tasks, like in a myoelectric control scheme, 

without knowing how the model operates can become unsafe [23].  

As opposed to feature engineering, where specific signal features are heightened to increase 

the signal quality in order for the classifier to perform more accurately and efficiently, machine 

learning allows for this process to be automated by computers. As described as "feature learning," 

rather than manual feature engineering, features are automatically created by the machine learning 

algorithm and learned by the neural network once the weights and biases that define the structure 

of the data are discovered [11]. The challenge of maintaining the quality of myoelectric signals 

and robustness to confounding factors or settings for the clinical use of these machine learning 

models is the same as before. Typical approaches like automated preprocessing or combining 

multimodal sensor data with the EMG data when inputted through the model can help improve 

these neural networks' overall robustness and performance [20]. These machine learning 

algorithms can also achieve improved adaptation through how they are built or created and through 

transfer learning which is the ability to train the network with one data set offline, and then once 

the network learns to interpret the data, it is transferred to take on new input data [24].  
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Autoencoders and Variational Autoencoders 

An autoencoder is a type of neural network in machine learning that can be split into three 

parts: the encoder, the bottleneck or latent space, and the decoder [25]. The beginning of the 

autoencoder is the encoder, where the inputted data is passed through the neural network and 

compressed over a series of hidden layers, which reduces the dimensionality of the imputed data 

down into the compressed dimensionality desired in the bottleneck. The bottleneck, therefore, is 

the linear or nonlinear compressed representation of the input data and is an example of 

dimensionality reduction when applying the encoder and bottleneck alone. However, the data from 

this latent representation at the bottleneck is then fed forward into the decoder, the final component 

of the autoencoder. The decoder attempts to uncompress the data into its original input form, and 

the autoencoder is then optimized via backpropagation to reduce the discrepancy between the 

decoder's values and the encoder's values (reconstruction error or loss) [25]. Because of the 

compression at the bottleneck, information is lost during the feedforward process. The 

compression allows the network to attempt to limit this data reduction throughout the neural 

network, allowing for the optimization to reduce the network's loss during each iteration [25]. 

Reducing the reconstruction error between the decoder and encoder allows the neural network to 

learn to find the most optimal compressed representation to fit the data. Autoencoders can be used 

for many different purposes for supervised, unsupervised, or semi-supervised cases but are 

generally used for unsupervised cases as labels are not necessary to determine how to fit the input 

data best. The reconstruction loss is written in the equation below in reference to Figure 1.  

Reconstruction loss = |𝑥 − 𝑥′|2  =   |𝑥 − 𝑓𝜃 (𝑔𝜙(𝑥))|
2
             (1) 

Where the reconstruction loss attempts to minimize the squared error between the input 

data, x, and the reconstructed output, x'. 
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Figure 1. Autoencoder model [26] 

The structure of an autoencoder can vary from very simple to have a complex multilayer 

structure based on the desired use cases of the network, though all the core components of the 

autoencoder remain the same. Sparse autoencoders can limit the number and size of the neural 

network by limiting the weights at each node and are used to determine an optimal number of 

nodes within the model, which determine what features best define the model. Denoising 

autoencoders attempt to correct and reconstruct noisy input data when passed through the network, 

where the decoder attempts to depict a clean or improved version of the imputed data [25,27]. 

Similarly, using an autoencoder for transfer learning is also possible, as once the mode is initially 

trained using the encoder-bottleneck-decoder model, the model itself can then use only the encoder 

and bottleneck to classify newly input data. 

Using variational inference methods within an autoencoder structure has been a new focus 

of study and development since the variational autoencoder (VAE) was proposed by Kingma et al. 

[29]. The variational autoencoder is a generative model, meaning it depicts a distribution of the 

inputted data that attempts to learn the probability distribution of the data. Every step of the 

autoencoder process is now probabilistic in nature. The reconstruction term is governed by the 

reconstruction loss between the encoder and decoder and the Kullback-Leibler divergence term 

(KL divergence), which describes the divergence between the probability distributions of the 

encoder and decoder. The divergence term is minimized when the model is trained to reconstruct 

the data best. The following equation describes the equation for the KL divergence loss [30] in 

reference to Figure 2:  
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KL divergence loss=𝐷𝐾𝐿 (𝑞𝜙(𝑧|𝑥)‖𝑝𝜃(𝑧|𝑥)) =∑ 𝑞𝜙(𝑧|𝑥)𝑙𝑜𝑔 (
𝑞𝜙(𝑧|𝑥)

𝜌𝜃(𝑧|𝑥)
)

x
     (2)      

Where 𝑞𝜙(𝑧|𝑥|) represents the probabilistic encoder and 𝑝𝜙(𝑧|𝑥|) represents the probabilistic 

decoder. 

 

Figure 2. Variational autoencoder model [26] 

The encoder generates a latent variable z giving an input sample x. The decoder 

reconstructs the original input sample x from the latent variable z once it has been randomly 

sampled within a Gaussian distribution [25, 27-29]. This model configuration effectively creates 

a latent space distribution at z, where the classifier will be inputted to determine if the distribution 

is being trained and configured in such a way that it gives a high classification accuracy. Similarly, 

implementing a contrastive loss function that attracts similar labels together while training the 

model can further make the latent space separable and distinct [31]. The equations for the 

classification loss and contrastive loss are given below:  

Classification loss = −∑ 𝑞𝜙(𝑧|𝑥)𝑙𝑜𝑔 (𝑞�̂�(𝑧|𝑥))
x

              (3) 

Where 𝑞𝜙(𝑧|𝑥) defines the true probability distribution and 𝑞�̂�(𝑧|𝑥) defines the model's 

predicted probability distribution. 

Contrastive loss = ∑max(margin − ⅆ(𝑖, 𝑗))             (4) 
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Where margin defines the radius around a selected sample in the latent sapce, ⅆ(𝑖, 𝑗) 

defines the Euclidian distance between labels in the latent space, and the summation considers all 

the negative pairs or examples of dissimilar labels.  

 

Summary 

In summation, this thesis investigates the application of autoencoders on multimodal sensor 

data to discover the representation of various motions and motion intentions. Such a model 

improves the model's intuitiveness while allowing such a method to be stored, applied, and reused 

for future use in a myoelectric control scheme. As stated previously, adding multimodal sensor 

data first allows for a myoelectric control scheme to have additional information to improve its 

response, accuracy, and robustness to new input data. Similarly, including multiple sensors allows 

for maintaining the control scheme's performance even though they may seem redundant. The data 

collected from the multimodal sensors need to be optimized to reduce the computational 

complexity of determining and processing large amounts of data during feature extraction. A 

primary method to find the optimal number of features is to use dimensionality reduction methods 

to determine what features best describe the high-dimensional feature space once it is compressed 

into a low-dimensional form. 

The features determined to be optimal to represent user intent must also be automated and 

adaptable so the control scheme can be used in a real-world setting. Using autoencoders is one 

option that applies a method of automated feature learning while also applying dimensionality 

reduction. The model can then learn how to represent the data and train remotely, allowing for less 

burden for the user. Further, using a variational autoencoder allows variability from the imputed 

data as the model will fit the data into a prescribed input distribution space rather than not 

determining an accurate representation of the imputed data. And using an integrated contrastive 

loss function allows for the latent space to be molded into a separable and distinct representation, 

allowing for increased classification and interoperability. 
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METHODOLOGY 

Data Configuration and Preprocessing 

Among studies in the field of EMG data collection and myoelectric controls, there is a lack 

of consensus when creating a benchmark protocol that is directly comparable to other studies 

[11,32]. Using online data sets allows for comparisons and further analysis of proposed control 

schemes without the need for extensive training and testing times, allowing for the rapid 

development of control schemes while also providing researchers avenues of guidance or further 

analysis of proposed methods. The Noninvasive Adaptive Prosthetics (Ninapro) database is a 

publicly available benchmark database containing ten distinct datasets with a wide variety of 

collected data for use and research in robotic and prosthetic hand control systems [4]. In particular, 

Ninapro's fifth database (DB5) will be used to investigate the validity of using a variational 

autoencoder model on multimodal sensor data. Using exercise A in DB5, which tests a range of 

12 hand-finger configurations, subjects one through three will be used in this investigation to create 

a separable latent space. In the database, 2 Thalmic Myo armbands were placed along the forearm 

of the subject and accounted for 16 active sensors recording sEMG signals and three sensors 

recording the inertial position of the arm. Additionally, the kinematic data of the hand was recorded 

using the Cyberglove 2, which accounts for 22 sensors whose raw data are proportional to the 

angles at the joints of the hand [5,33]. The raw data contains both the feature and resulting stimulus 

or labeled data. The data is first pruned of all non-labeled data when the hand is resting and not 

performing finger movements. The raw data is then under-sampled to fix any data imbalance, 

standardized, and split for training, validation, and testing. Finally, the respective data is converted 

into data loaders, making all the data types accessible and callable during training, validation, and 

testing.  
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Figure 3: Ninapro DB5 gesture positions [33] 

 

Figure 4: Ninapro experimental setup (left) and cyberglove sensor positions (right) 
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Model Implementation 

The overall implementation of the model to generate the separable and distinct latent spaces 

involves using a variational autoencoder with an integrated classifier. The classifier is connected 

to a two-dimensional latent space to visualize the latent space fully. From there, the goal of the 

added classifier is for the model to learn to maximize the classification accuracy at the latent space 

layer, which increases as the labels in the latent space become more separable and distinct. Over 

each training epoch, the latent space should become more separable. The Pytorch library was used 

to create the neural network and the training, validation, and testing loops [34].  

 

Figure 5: Methodology: data preprocessing and model implementation 
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Figure 6: Model Architecture  

The variational autoencoder loss functions that drive the learning of the neural networks 

are the reconstruction loss, KL-Divergence loss, and classification loss. An additional contrastive 

loss function was implemented to have similar labels cluster together more in the latent space to 

fully explore the effectiveness of a separable latent space. The importance of the loss functions in 

the creation of a separable latent space will be analyzed further in the Results and Discussion 

section. The total loss of the model is the summation of equations (1-4), where the margin term in 

the contrastive loss function is set to one. 

Once the network and loss functions are created, the model's hyperparameters need to be 

optimized and tuned to best fit the imputed data with the model's architecture. This is achieved 

using Optuna, a hyperparameter optimization framework that can search effectively for ideal 

hyperparameters even as the model becomes more complex [35]. The hyperparameters search 

utilizes a Tree-structured Parzen Estimator (TPE) algorithm, which performs better than grid or 

random search methods [36]. The TPE algorithm attempts to maximize the classification accuracy 

over each trial and approaches the optimal parameter values it discovers in the search over time. 
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The hyperparameters tested in all experiments include the learning rate, the batch size, the number 

of hidden layers in the model, the type of optimizer, and the individual weights of all the loss 

functions. A pruning mechanism is also implemented to remove trails that give ineffectual levels 

of accuracy. Once all trails are complete, the optimal hyperparameters found in the search are 

output, and the relative importance of all the tested hyperparameters on the effectiveness of 

achieving a high classification accuracy is also given. This allows for increased interoperability 

and understanding of how the model reacts to the chosen hyperparameters. 

After hyperparameter optimization, the hyperparameter values given in the search were 

then inputted into the training and validation loops. At this stage, the variational autoencoder 

model can be tested. Over a designated number of iterations ranging from 30 to 100 epochs, the 

model was trained and validated. The training and validation loss and the model's accuracy are 

outputted at each epoch. Once all the training is complete, the latent model space can be viewed 

across each epoch chronologically, which shows how the latent space evolves and develops during 

training.  
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Baseline Tests 

This section details the use of the multimodal sensor data of subject number one to develop 

and test the creation of a separable latent space. These tests will be primarily focused on the 

creation of the latent space itself and the processes of generating a latent space that produces a 

high classification accuracy. These tests also detail the impact of adding additional features during 

training and testing to determine feature importance and the use of hyperparameter optimization. 

Further, these tests span the entire development and creation of the VAE model. The tests will 

follow the previous section's data preprocessing and model implementation steps. 

Subject Tests 

These tests use subjects one through three in the Ninapro 5th database to test the model's 

effectiveness across subjects without changing the model architecture. The subject tests' latent 

space and their accuracies will be given and analyzed. The hyperparameter importance for all the 

trials will be given individually and combined to demonstrate each component's combined 

importance on the model. The tests will follow the data preprocessing and model implementation 

steps laid out previously. 
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RESULTS 

Baseline Tests 

In tests using the loss functions except for the contrastive loss function, the VAE model 

was unable to successfully classify hand position labels and create an uninterpretable latent space. 

The latent space below illustrates an ineffectual latent space where the model cannot effectively 

learn from the input data, resulting in a noisy latent space distribution. The resulting classification 

accuracy of the model architecture without the contrastive loss function typically ranged from 10% 

to 30% accurate, which is not within the threshold of effective myoelectric control schemes. 

 

Figure 7: Latent space of VAE without contrastive loss 

With the addition of the contrastive loss function, the model losses decreased more readily, 

and the model accuracy increased substantially (to 60-90% range depending on hyperparameters). 

This test used subject one from the 5th Ninapro database and used the assigned hyperparameters 

given after hyperparameter optimization. Further, the latent space itself is separable and distinct 

while also being fixed at the origin of the space. This configuration of the latent space is the ideal 

representation of the VAE model learning and compressing the underlying representation of the 

higher dimensional data into an interpretable continuous latent space distribution where specific 

labels are clustered together. 
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Figure 8: Loss and accuracies of VAE model  

 

Figure 9: Latent space of contrastive loss integrated VAE.  

Further, when using the testing data, the model's confusion matrix, precision, recall, and 

f1-scores indicate high-performance levels when classifying the hand gesture labels from the 

multimodal sensor data. This suggests that creating latent spaces for classification purposes can be 

viable for sensor fusion applications or myoelectric control schemes. 
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Figure 10: Confusion matrix of contrastive loss integrated VAE. 

 

label precision recall f1-score 

1 0.95 0.99 0.97 

2 0.96 0.95 0.96 

3 0.99 0.56 0.71 

4 0.71 0.98 0.82 

5 0.94 0.98 0.96 

6 0.96 0.99 0.97 

7 0.96 0.95 0.96 

8 0.95 0.96 0.95 

9 0.99 0.92 0.95 

10 0.95 0.99 0.97 

11 0.96 0.96 0.96 

12 0.98 0.96 0.97 

    
accuracy   0.93 

macro avg 0.94 0.93 0.93 

weighted avg 0.94 0.93 0.93 

Table 1: Model precision, recall, and F1 score. 
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Regarding feature importance, a gradient-boosting regressor from the Scikit-learn library 

[37] was used to indicate the importance of all the features inputted into the model during training 

and testing. The joint angle features were determined to be the most important features that 

describe what physical phenomenon is occurring, which in this case is specific hand 

configurations. To show how the VAE model latent space changes as more optimal features are 

input into the model, tests were done to visualize the latent space each time a new feature was 

added to the model, which accounted for 22 tests. These tests were performed with the same 

hyperparameters, optimizer, and number of hidden layers. 

 

 

Figure 11: Feature importance of all the features 
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Figure 12: Latent space with zero joint angle features added (19.3% accuracy) 

  

Figure 13: Latent space with the first seven joint angle features added (46.4% accuracy) 
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Figure 14: Latent space with the first 14 joint angle features added (56.1% accuracy) 

  

Figure 15: Latent space with all 22 joint angle features added (79.9% accuracy) 
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Across these tests of incrementally increasing the number of joint angle features input into 

the model, the model's accuracy increased from 19.3% classification accuracy at the start with 19 

features to 79.9% at all 41 features. Further, as the model's classification is directly inputted into 

the latent space, the classification accuracy increases, and therefore the latent space becomes more 

distinct and separable. 

Additionally, using the Optuna hyperparameter optimization methods, the intuitiveness of 

how the model can be expanded further as the search can be visualized and inspected. In this 

case, 100 trials were done to search through the best possible hyperparameter that describes the 

model, and the ranges of the best-performing hyperparameters can be seen. 

 

Figure 16: Hyperparameter search plot 
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Subject Tests 

All the subject data was trained and validated over 100 epochs using the given 

hyperparameters found during the hyperparameter search for each multisubject test. The resulting 

latent space distributions are shown below and show that the latent space is distinctive, but there 

is still noise present in the representation. This is further evident when looking at the training loss 

and accuracies for the subjects, particularly subjects two and three, where the loss over time gets 

incrementally more sporadic and prone to change, which is atypical for convergence at a set loss. 

As a result of the choppy loss, the accuracy fluctuates and varies as the epochs progress. The use 

of specific hyperparameter values relating to the weights of the loss functions relative to each other 

are possible causes of the noise as the model learns. 

 

Figure 17: Latent spaces for each subject (Subject 1 on left 69.9% accurate; Subject 2 in middle 

57.4% accurate; Subject 3 on right 62.1% accurate) 

 

 

 

 



27 

 

 

Figure 18: Subject 1 loss and accuracy  

 

Figure 19: Subject 2 loss and accuracy 

 

Figure 20: Subject 3 loss and accuracy 
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Regarding the hyperparameter search of the different subjects, the batch size when training 

the model was found to have the largest importance when governing how the model learns, with 

an average of 44% importance. The learning rate and the number of hidden dimensions similarly 

impacted the model's accuracy, resulting in 13% and 11% accuracy, respectively. The total 

importance of the loss functions themselves in descending order beings with the contrastive loss 

followed by the classification loss, KL divergence loss, and the reconstruction loss. The 

importance of the loss function was also evidently noticeable when training and developing the 

VAE model. 

 

Hyperparameter Importance 

  Subject 1 Subject 2 Subject 3 Average  

Batch Size  45% 47% 39% 44% 

Learning Rate 12% 18% 8% 13% 

Number of Hidden 

Dimensions  
14% 9% 9% 11% 

Contrastive loss weight 5% 4% 23% 11% 

Classification loss weight 13% 5% 6% 8% 

KL divergence loss weight 3% 10% 9% 7% 

Reconstruction loss weight 7% 6% 5% 6% 

Optimizer 1% 1% 1% 1% 

Table 2: Hyperparameter Importance  
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DISCUSSION 

Loss Functions 

In this thesis, the impact of different loss functions on the creation of latent space was 

investigated. By increasing the values of the weights of each of the loss terms, it is possible to 

investigate how the latent space is changed in response to each term. This section will discuss the 

consequences of amplifying each of the terms individually relative to the other loss functions on 

latent space generation. By increasing the reconstruction loss, the labels became more distant and 

extended from the center of the latent space (Figure 21). Further, the generated latent space 

contains more gaps in the representation rather than a compact distribution space. The KL 

divergence term, on the other hand, was observed to center the latent space while also expanding 

and distributing the labels in the space[30]. The amplified KL divergence term led to noisier 

distribution for each label in the latent space (Figure 22). This results in low classification 

accuracy, as the labels were not properly clustered. The classification loss function and contrastive 

loss function, however, were observed to have the opposite effect as they tried to cluster the labels 

together. The increased classification loss resulted in a more concentrated and organized 

distribution of the labels within the latent space (Figure 23). Finally, the contrastive loss function 

was the most effective in separating the labels by clustering similar labels [31]. Adding and 

increasing the weight value of the contrastive loss during training resulted in the most significant 

performance improvement in the model's classification accuracy. However, throughout training, 

the latent space representation becomes more sporadic and changes more frequently (Figure 24). 

This is indicative of how large amplification of the loss function can result in the VAE model not 

effectively learning the representation of the data, resulting in lower overall classification 

performance. It is noted that each term provides its own unique response to how latent spaces are 

generated and developed over each training epoch. 
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Figure 21: Latent Space with amplified reconstruction loss  

 

Figure 22: Latent Space with amplified Kl divergence loss  
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Figure 23: Latent Space with amplified classification loss  

 

Figure 24: Latent Space with amplified contrastive loss  
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Hyperparameter Importance  

The use of hyperparameter optimization methods helped to expedite the process of 

selecting hyperparameters. Further, being able to visualize how the search takes place across all 

the trials and the determined most important parameters that govern how the model learns 

increases the model's overall interpretability, differentiating itself from most "black box" models. 

The batch size was the most important factor when used in the model architecture. Determining 

the batch size is a critical step during training as it determines the range or amount of data passed 

through the model by the dataloaders. Selecting a value that is too large or small results in the 

model ineffectually learning the weights and biases, and underlying representation of the data. The 

loss function weights also were essential factors in how the model learned. However, as stated 

previously relating to noise present in the multisubject results, the ranges of these values or the 

final output searched values after hyperparameter optimization tended to cause added strain on the 

model's performance. The losses and accuracies converged towards a set value but fluctuated or 

even dipped in performance due to the model not effectively learning as these values increased. 

This suggests that more tuning of the ranges of the loss weights and hyperparameters, in general, 

is necessary to ensure that the model can successfully learn from the data over more and more 

epochs. 
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Feature Importance 

Early in the development of the VAE model, there were many failed iterations and tests in 

generating a distinct latent space that wasn't purely a randomly noisy latent space distribution. 

Further, it was evident that the model itself was attempting to learn as the latent space would be 

noisy but would begin to become more separable among specific labels. At the time, only the IMU 

and electromyographic data were used as the model's input data, resulting in low classification 

accuracies and noisy latent spaces. With the introduction of the joint angle data, the classification 

accuracies increased from 10-20% without the data to 60-90% with the inclusion of the data. 

Similarly, as shown using the gradient boosting regressor, because the joint angle data was 

extremely pertinent to understanding what higher dimensional action was taking place (specific 

hand-finger gestures), introducing the said data into the model would generate a more accurate 

compressed depiction or representation of what was occurring. The joint angle data was a more 

meaningful representation of the state of the desired set of actions than the EMG and IMU as it 

was more related to the hand response itself. This finding on the relative importance of each feature 

is in line with the findings of Wu et al., where specific features hold more weight when utilizing 

sensor fusion for classification [21]. Therefore, the goal should always be to determine and utilize 

the most critical features when relating to sensor fusion in a myoelectric control scheme. Figure X 

below demonstrates how the latent space should generate when the model can learn effectively 

using meaningful feature data (EMG, IMU, and joint angle) versus when only using suboptimal 

feature data (EMG and IMU only).  

 

Figure 25: Example of model learning latent space using optimal features(left) versus suboptimal 

features (right). 
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CONCLUSION 

The contrastive variational autoencoder with an integrated classifier model learned to 

create a separable latent space that was highly discriminative against the different hand positions 

when using recorded multimodal signal data as input. This suggests that the trained model was 

able to learn a meaningful representation for a specific range of actions based on the features 

input that define those actions. Similarly, due to the nature of how variational autoencoders 

operate, the dimensionality reduction component of decreasing the number of hidden layers 

progressively results in the most important features contributing to the learning of the model. 

The high classification accuracy achieved by our proposed model has significant 

implications for developing myoelectric control schemes. By increasing the model's accuracy 

and the separability of the latent space by adding additional loss functions or appropriately 

optimizing hyperparameters, the latent space can approach the higher echelons of accuracy 

needed for a successful myoelectric control scheme. Further, using larger training sets, a wider 

range of actions can be classifiable and compressed in the learned latent space. This could 

improve the robustness of the control schemes to confounding factors that impact signal quality 

so long that the data being collected is pertinent and representative of the actions taking place.  
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