231 research outputs found

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A Survey of Subscription Privacy on the 5G Radio Interface - The Past, Present and Future

    Get PDF
    End-user privacy in mobile telephony systems is nowadays of great interest because of the envisaged hyper-connectivity and the potential of the unprecedented services (virtual reality, machine-type communication, vehicle-to-everything, IoT, etc.) being offered by the new 5G system. This paper reviews the state of subscription privacy in 5G systems. As the work on 5G Release 15 -- the first full set of 5G standards -- has recently been completed, this seems to be an appropriate occasion for such a review. The scope of the privacy study undertaken is limited to the wireless part of the 5G system which occurs between the service provider\u27s base station and the subscriber\u27s mobile phone. Although 5G offers better privacy guarantees than its predecessors, this work highlights that there still remain significant issues which need rectifying. We undertook an endeavor to (i) compile the privacy vulnerabilities that already existed in the previous mobile telephony generations. Thereafter, (ii) the privacy improvements offered by the recently finalized 5G standard were aggregated. Consequently, (iii) we were able to highlight privacy issues from previous generations that remain unresolved in 5G Release 15. For completeness, (iv) we also explore new privacy attacks which surfaced after the publication of the 5G standard. To address the identified privacy gaps, we also present future research directions in the form of proposed improvements

    3G UMTS man in the middle attacks and policy reform considerations

    Get PDF
    Man in the middle attacks on 3G UMTS have been a known vulnerability since at least 2004. Many experts have presented solutions to resolve this issue. The first attempt to mitigate the issue in the form of mutual authentication fell short. It is now public knowledge that law enforcement and the FBI have used this man in the middle style attack to collect intelligence within the United States. It is imperative we openly acknowledge that while the man in the middle attack has immediate benefits, there are also inherent risks to maintaining a lower standard of security. There has been no official documentation from these agencies on the protocol used to conduct these collections. This paper will outline the deficiency in GSM and UMTS, show how a man in the middle style attack would work and what is keeping the attack still possible after so many years. Finally, there will be four points to consider for preliminary policy reform; constitutionality, oversight, vulnerability, and protection

    PROCESS FOR BREAKING DOWN THE LTE SIGNAL TO EXTRACT KEY INFORMATION

    Get PDF
    The increasingly important role of Long Term Evolution (LTE) has increased security concerns among the service providers and end users and made security of the network even more indispensable. The main thrust of this thesis is to investigate if the LTE signal can be broken down in a methodical way to obtain information that would otherwise be private; e.g., the Global Positioning System (GPS) location of the user equipment/base station or identity (ID) of the user. The study made use of signal simulators and software to analyze the LTE signal to develop a method to remove noise, breakdown the LTE signal and extract desired information. From the simulation results, it was possible to extract key information in the downlink like the Downlink Control Information (DCI), Cell-Radio Network Temporary Identifier (C-RNTI) and physical Cell Identity (Cell-ID). This information can be modified to cause service disruptions in the network within a reasonable amount of time and with modest computing resources.Defence Science and Technology Agency, SingaporeApproved for public release; distribution is unlimited

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed
    corecore