4,125 research outputs found

    An On-line Diagnostic Method for Open-circuit Switch Faults in NPC Multilevel Converters

    Get PDF
    On-line condition monitoring is of paramount importance for multilevel converters used in safety-critical applications. A novel on-line diagnostic method for detecting open-circuit switch faults in neutral-point-clamped (NPC) multilevel converters is introduced in this paper. The principle of this method is based on monitoring the abnormal variation of the dc-bus neutral-point current in combination with the existing information on instantaneous switching states and phase currents. Advantages of this method include simpler implementation and faster detection speed compared to other existing diagnostic methods in the literature. In this method, only one additional current sensor is required for measuring the dc-bus neutral-point current, therefore the implementation cost is low. Simulation and experimental results based on a lab-scale 50 kVA adjustable speed drive (ASD) with a three-level NPC inverter validate the efficacy of this novel diagnostic method

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks

    Get PDF
    Introduction. The widespread use of photovoltaic systems in various applications has spotlighted the pressing requirement for reliability, efficiency and continuity of service. The main impediment to a more effective implementation has been the reliability of the power converters. Indeed, the presence of faults in power converters that can cause malfunctions in the photovoltaic system, which can reduce its performance. Novelty. This paper presents a technique for diagnosing open circuit failures in the switches (IGBTs) of power converters (DC-DC converters and three-phase inverters) in a grid-connected photovoltaic system. Purpose. To ensure supply continuity, a fault-diagnosis process is required throughout all phases of energy production, transfer, and conversion. Methods. The diagnostic approach is based on artificial neural networks and the extraction of features corresponding to the open circuit fault of the IGBT switch. This approach is based on the Clarke transformation of the three-phase currents of the inverter output as well as the calculation of the average value of these currents to determine the exact angle of the open circuit fault. Results. This method is able to effectively identify and localize single or multiple open circuit faults of the DC-DC converter IGBT switch or the three-phase inverter IGBT switches.Вступ. Широке використання фотоелектричних систем у різних застосуваннях висунуло на перший план нагальні вимоги до надійності, ефективності та безперервності обслуговування. Основною перешкодою для ефективнішого застосування була надійність силових перетворювачів. Справді, наявність несправностей у силових перетворювачах може спричинити збої в роботі фотоелектричної системи, що може знизити її продуктивність. Новизна. У цій статті представлена методика діагностики обриву кола в перемикачах (IGBT) силових перетворювачів (перетворювачів постійного струму та трифазних інверторів) у фотоелектричній системі, підключеній до мережі. Мета. Для забезпечення безперервності постачання потрібен процес діагностики несправностей на всіх етапах виробництва, передачі та перетворення енергії. Методи. Діагностичний підхід заснований на штучних нейронних мережах та вилучення ознак, що відповідають обриву кола IGBT-перемикача. Цей підхід ґрунтується на перетворенні Кларка трифазних струмів на виході інвертора, а т акож розрахунку середнього значення цих струмів для визначення точного кута обриву кола. Результати. Цей метод дозволяє ефективно ідентифікувати та локалізувати одиночні або множинні несправності розімкнутого кола IGBT-перемикача DC-DC перетворювача або IGBT-перемикача трифазного інвертора

    Ensuring a Reliable Operation of Two-Level IGBT-Based Power Converters:A Review of Monitoring and Fault-Tolerant Approaches

    Get PDF

    Research and development of diagnostic algorithms to support fault accommodating control for emerging shipboard power system architectures

    Get PDF
    The U.S. Navy has proposed development of next generation warships utilising an increased amount of power electronics devices to improve flexibility and controllability. The high power density finite inertia network is envisioned to employ automated fault detection and diagnosis to aid timely remedial action. Integration of condition monitoring and fault diagnosis to form an intelligent power distribution system is anticipated to assist decision support for crew while enhancing security and mission availability. This broad research being in the conceptual stage has lack of benchmark systems to learn from. Thorough studies are required to successfully enable realising benefits offered by using increased power electronics and automation. Application of fundamental analysis techniques is necessary to meticulously understand dynamics of a novel system and familiarisation with associated risks and their effects. Additionally, it is vital to find ways of mitigating effects of identified risks. This thesis details the developing of a generalised methodology to help focus research into artificial intelligence (AI) based diagnostic techniques. Failure Mode and Effects Analysis (FMEA) is used in identifying critical parts of the architecture. Sneak Circuit Analysis (SCA) is modified to provide signals that differentiate faults at a component level of a dc-dc step down converter. These reliability analysis techniques combined with an appropriate AI-algorithm offer a potentially robust approach that can potentially be utilised for diagnosing faults within power electronic equipment anticipated to be used onboard the novel SPS. The proposed systematic methodology could be extended to other types of power electronic converters, as well as distinguishing subsystem level faults. The combination of FMEA, SCA with AI could also be used for providing enhanced decision support. This forms part of future research in this specific arena demonstrating the positives brought about by combining reliability analyses techniques with AI for next generation naval SPS.The U.S. Navy has proposed development of next generation warships utilising an increased amount of power electronics devices to improve flexibility and controllability. The high power density finite inertia network is envisioned to employ automated fault detection and diagnosis to aid timely remedial action. Integration of condition monitoring and fault diagnosis to form an intelligent power distribution system is anticipated to assist decision support for crew while enhancing security and mission availability. This broad research being in the conceptual stage has lack of benchmark systems to learn from. Thorough studies are required to successfully enable realising benefits offered by using increased power electronics and automation. Application of fundamental analysis techniques is necessary to meticulously understand dynamics of a novel system and familiarisation with associated risks and their effects. Additionally, it is vital to find ways of mitigating effects of identified risks. This thesis details the developing of a generalised methodology to help focus research into artificial intelligence (AI) based diagnostic techniques. Failure Mode and Effects Analysis (FMEA) is used in identifying critical parts of the architecture. Sneak Circuit Analysis (SCA) is modified to provide signals that differentiate faults at a component level of a dc-dc step down converter. These reliability analysis techniques combined with an appropriate AI-algorithm offer a potentially robust approach that can potentially be utilised for diagnosing faults within power electronic equipment anticipated to be used onboard the novel SPS. The proposed systematic methodology could be extended to other types of power electronic converters, as well as distinguishing subsystem level faults. The combination of FMEA, SCA with AI could also be used for providing enhanced decision support. This forms part of future research in this specific arena demonstrating the positives brought about by combining reliability analyses techniques with AI for next generation naval SPS
    corecore