92,101 research outputs found

    Image Processor for Visual Prosthesis Based on ARM

    Get PDF
    Visual prosthesis is designed and developed to help the blind people to restore vision [1]. Image processor is an essential part of visual prosthesis. It receives image data from a camera, and fulfills specific image processing strategy to transfer image information to data forms that can be recognized by implanted stimulator. To extract useful information from original image and provide satisfying image processing ability are the basic requirements for the image processor. In this article, an image processor based on ARM Cortex-A9 processor running mobile operating system Android is introduced. Image processing algorithms such as edge detection are applied to provide vital information of the scene to the following components. Software optimizations like using native code and hardware acceleration are made to reduce the processing time. After optimization, this image processor can process a 640*480 image within 50ms. This work could become the foundation of future researches to build visual prosthesis with impressive processing ability and flexibility

    All-optical image denoising using a diffractive visual processor

    Full text link
    Image denoising, one of the essential inverse problems, targets to remove noise/artifacts from input images. In general, digital image denoising algorithms, executed on computers, present latency due to several iterations implemented in, e.g., graphics processing units (GPUs). While deep learning-enabled methods can operate non-iteratively, they also introduce latency and impose a significant computational burden, leading to increased power consumption. Here, we introduce an analog diffractive image denoiser to all-optically and non-iteratively clean various forms of noise and artifacts from input images - implemented at the speed of light propagation within a thin diffractive visual processor. This all-optical image denoiser comprises passive transmissive layers optimized using deep learning to physically scatter the optical modes that represent various noise features, causing them to miss the output image Field-of-View (FoV) while retaining the object features of interest. Our results show that these diffractive denoisers can efficiently remove salt and pepper noise and image rendering-related spatial artifacts from input phase or intensity images while achieving an output power efficiency of ~30-40%. We experimentally demonstrated the effectiveness of this analog denoiser architecture using a 3D-printed diffractive visual processor operating at the terahertz spectrum. Owing to their speed, power-efficiency, and minimal computational overhead, all-optical diffractive denoisers can be transformative for various image display and projection systems, including, e.g., holographic displays.Comment: 21 Pages, 7 Figure

    Computation and parallel implementation for early vision

    Get PDF
    The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations

    Credit card display system

    Full text link
    A card-oriented transaction system (10) is provided with the capability of communicating with the card user. Specifically, the system is provided with a user card (11) having a surface region (13) capable of receiving an erasable visual image, a card reader (14) capable of detecting the card and writing on the display surface, and a data processor (16) adapted for providing information to be written on the display surface. In a preferred embodiment, the erasable visual display surface (13) is a plastic film embedding droplets of oil containing reflecting magnetic flakes. The film can be laminated onto the user card and reset by a magnetic field in the plane of the major surface. Writing can be effected by application of a magnetic field perpendicular to the surface.Published versio

    A Focal-Plane Image Processor for Low Power Adaptive Capture and Analysis of the Visual Stimulus

    Get PDF
    Portable applications of artificial vision are limited by the fact that conventional processing schemes fail to meet the specifications under a tight power budget. A bio-inspired approach, based in the goal-directed organization of sensory organs found in nature, has been employed to implement a focal-plane image processor for low power vision applications. The prototype contains a multi-layered CNN structure concurrent with 32times32 photosensors with locally programmable integration time for adaptive image capture with on-chip local and global adaptation mechanisms. A more robust and linear multiplier block has been employed to reduce irregular analog wave propagation ought to asymmetric synapses. The predicted computing power per power consumption, 142MOPS/mW, is orders of magnitude above what rendered by conventional architectures

    Algorithms for the enhancement of dynamic range and colour constancy of digital images & video

    Get PDF
    One of the main objectives in digital imaging is to mimic the capabilities of the human eye, and perhaps, go beyond in certain aspects. However, the human visual system is so versatile, complex, and only partially understood that no up-to-date imaging technology has been able to accurately reproduce the capabilities of the it. The extraordinary capabilities of the human eye have become a crucial shortcoming in digital imaging, since digital photography, video recording, and computer vision applications have continued to demand more realistic and accurate imaging reproduction and analytic capabilities. Over decades, researchers have tried to solve the colour constancy problem, as well as extending the dynamic range of digital imaging devices by proposing a number of algorithms and instrumentation approaches. Nevertheless, no unique solution has been identified; this is partially due to the wide range of computer vision applications that require colour constancy and high dynamic range imaging, and the complexity of the human visual system to achieve effective colour constancy and dynamic range capabilities. The aim of the research presented in this thesis is to enhance the overall image quality within an image signal processor of digital cameras by achieving colour constancy and extending dynamic range capabilities. This is achieved by developing a set of advanced image-processing algorithms that are robust to a number of practical challenges and feasible to be implemented within an image signal processor used in consumer electronics imaging devises. The experiments conducted in this research show that the proposed algorithms supersede state-of-the-art methods in the fields of dynamic range and colour constancy. Moreover, this unique set of image processing algorithms show that if they are used within an image signal processor, they enable digital camera devices to mimic the human visual system s dynamic range and colour constancy capabilities; the ultimate goal of any state-of-the-art technique, or commercial imaging device

    Programmable retinal dynamics in a CMOS mixed-signal array processor chip

    Get PDF
    The low-level image processing that takes place in the retina is intended to compress the relevant visual information to a manageable size. The behavior of the external layers of the biological retina has been successfully modelled by a Cellular Neural Network, whose evolution can be described by a set of coupled nonlinear differential equations. A mixed-signal VLSI implementation of the focal-plane low-level image processing based upon this biological model constitutes a feasible and cost effective alternative to conventional digital processing in real-time applications. For these reasons, a programmable array processor prototype chip has been designed and fabricated in a standard 0.5μm CMOS technology. The integrated system consists of a network of two coupled layers, containing 32 × 32 elementary processors, running at different time constants. Involved image processing algorithms can be programmed on this chip by tuning the appropriate interconnections weights. Propagative, active wave phenomena and retina-like effects can be observed in this chip. Design challenges, trade-offs, the buildings blocks and some test results are presented in this paper.Office of Naval Research (USA) N00014-00-10429European Community IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    Development of a bio-inspired vision system for mobile micro-robots

    Get PDF
    In this paper, we present a new bio-inspired vision system for mobile micro-robots. The processing method takes inspiration from vision of locusts in detecting the fast approaching objects. Research suggested that locusts use wide field visual neuron called the lobula giant movement detector to respond to imminent collisions. We employed the locusts' vision mechanism to motion control of a mobile robot. The selected image processing method is implemented on a developed extension module using a low-cost and fast ARM processor. The vision module is placed on top of a micro-robot to control its trajectory and to avoid obstacles. The observed results from several performed experiments demonstrated that the developed extension module and the inspired vision system are feasible to employ as a vision module for obstacle avoidance and motion control
    corecore