98,097 research outputs found

    Combining depth and intensity images to produce enhanced object detection for use in a robotic colony

    Get PDF
    Robotic colonies that can communicate with each other and interact with their ambient environments can be utilized for a wide range of research and industrial applications. However amongst the problems that these colonies face is that of the isolating objects within an environment. Robotic colonies that can isolate objects within the environment can not only map that environment in de-tail, but interact with that ambient space. Many object recognition techniques ex-ist, however these are often complex and computationally expensive, leading to overly complex implementations. In this paper a simple model is proposed to isolate objects, these can then be recognize and tagged. The model will be using 2D and 3D perspectives of the perceptual data to produce a probability map of the outline of an object, therefore addressing the defects that exist with 2D and 3D image techniques. Some of the defects that will be addressed are; low level illumination and objects at similar depths. These issues may not be completely solved, however, the model provided will provide results confident enough for use in a robotic colony

    Multiple Moving Object Recognitions in video based on Log Gabor-PCA Approach

    Full text link
    Object recognition in the video sequence or images is one of the sub-field of computer vision. Moving object recognition from a video sequence is an appealing topic with applications in various areas such as airport safety, intrusion surveillance, video monitoring, intelligent highway, etc. Moving object recognition is the most challenging task in intelligent video surveillance system. In this regard, many techniques have been proposed based on different methods. Despite of its importance, moving object recognition in complex environments is still far from being completely solved for low resolution videos, foggy videos, and also dim video sequences. All in all, these make it necessary to develop exceedingly robust techniques. This paper introduces multiple moving object recognition in the video sequence based on LoG Gabor-PCA approach and Angle based distance Similarity measures techniques used to recognize the object as a human, vehicle etc. Number of experiments are conducted for indoor and outdoor video sequences of standard datasets and also our own collection of video sequences comprising of partial night vision video sequences. Experimental results show that our proposed approach achieves an excellent recognition rate. Results obtained are satisfactory and competent.Comment: 8,26,conferenc

    Visual re-ranking with natural language understanding for text spotting

    Get PDF
    The final publication is available at link.springer.comMany scene text recognition approaches are based on purely visual information and ignore the semantic relation between scene and text. In this paper, we tackle this problem from natural language processing perspective to fill the gap between language and vision. We propose a post processing approach to improve scene text recognition accuracy by using occurrence probabilities of words (unigram language model), and the semantic correlation between scene and text. For this, we initially rely on an off-the-shelf deep neural network, already trained with large amount of data, which provides a series of text hypotheses per input image. These hypotheses are then re-ranked using word frequencies and semantic relatedness with objects or scenes in the image. As a result of this combination, the performance of the original network is boosted with almost no additional cost. We validate our approach on ICDAR'17 dataset.Peer ReviewedPostprint (author's final draft

    Visual Re-ranking with Natural Language Understanding for Text Spotting

    Get PDF
    Many scene text recognition approaches are based on purely visual information and ignore the semantic relation between scene and text. In this paper, we tackle this problem from natural language processing perspective to fill the gap between language and vision. We propose a post-processing approach to improve scene text recognition accuracy by using occurrence probabilities of words (unigram language model), and the semantic correlation between scene and text. For this, we initially rely on an off-the-shelf deep neural network, already trained with a large amount of data, which provides a series of text hypotheses per input image. These hypotheses are then re-ranked using word frequencies and semantic relatedness with objects or scenes in the image. As a result of this combination, the performance of the original network is boosted with almost no additional cost. We validate our approach on ICDAR'17 dataset.Comment: Accepted by ACCV 2018. arXiv admin note: substantial text overlap with arXiv:1810.0977
    corecore