5 research outputs found

    Concept of a Decision-Based Pedestrian Model

    Get PDF
    We develop a decision-based model for pedestrian dynamics which is an extension of the Stochastic Headway Distance Velocity (SHDV) model for single-file motion to two dimensions. The model is discrete in time, but continuous in space. It combines perception, anticipation and decision-making with the simplicity and stochasticity that are characteristic for cellular automaton models. The basic concept is discussed and preliminary results show that the model yield realistic trajectories and fundamental diagrams

    Data Driven Approach to Multi-Agent Low Level Behavior Generation in Medical Simulations

    Get PDF
    A multi-agent scenario generation framework is designed, implemented and evaluated in the context of a preventive medicine education virtual reality system with data collected from a sensor network at the University of Iowa Hospital. An agent in the framework is a virtual human that represents a healthcare worker. The agent is able to make certain decisions based on the information it gathers from its surroundings in the virtual environment. Distributed sensor networks are becoming very commonplace in public areas for public safety and surveillance purposes. The data collected from these sensors can be visualized in a multi-agent simulation. The various components of the framework include generation of unique agents from the sensor data and low level behaviors such as path determination, directional traffic flows, collision avoidance and overtaking. The framework also includes a facility to prevent foot slippage with detailed animations during the travel period of the agents. Preventive medicine education is the process of educating health care workers about procedures that could mitigate the spread of infections in a hospital. We built an application called the 5 Moments of Hand Hygiene that educates health care workers on the times they are supposed to wash their hands when dealing with a patient. The purpose of the application was to increase the compliance rates of this CDC mandated preventive measure in hospitals across the nation. A user study was performed with 18 nursing students and 5 full-time nurses at the Clemson University School of Nursing to test the usability of the application developed and the realism of the scenario generation framework. The results of the study suggest that the behaviors generated by the framework are realistic and believable enough for use in preventive medicine education applications

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Interactive Tracking, Prediction, and Behavior Learning of Pedestrians in Dense Crowds

    Get PDF
    The ability to automatically recognize human motions and behaviors is a key skill for autonomous machines to exhibit to interact intelligently with a human-inhabited environment. The capabilities autonomous machines should have include computing the motion trajectory of each pedestrian in a crowd, predicting his or her position in the near future, and analyzing the personality characteristics of the pedestrian. Such techniques are frequently used for collision-free robot navigation, data-driven crowd simulation, and crowd surveillance applications. However, prior methods for these problems have been restricted to low-density or sparse crowds where the pedestrian movement is modeled using simple motion models. In this thesis, we present several interactive algorithms to extract pedestrian trajectories from videos in dense crowds. Our approach combines different pedestrian motion models with particle tracking and mixture models and can obtain an average of 20%20\% improvement in accuracy in medium-density crowds over prior work. We compute the pedestrian dynamics from these trajectories using Bayesian learning techniques and combine them with global methods for long-term pedestrian prediction in densely crowded settings. Finally, we combine these techniques with Personality Trait Theory to automatically classify the dynamic behavior or the personality of a pedestrian based on his or her movements in a crowded scene. The resulting algorithms are robust and can handle sparse and noisy motion trajectories. We demonstrate the benefits of our long-term prediction and behavior classification methods in dense crowds and highlight the benefits over prior techniques. We highlight the performance of our novel algorithms on three different applications. The first application is interactive data-driven crowd simulation, which includes crowd replication as well as the combination of pedestrian behaviors from different videos. Secondly, we combine the prediction scheme with proxemic characteristics from psychology and use them to perform socially-aware navigation. Finally, we present novel techniques for anomaly detection in low-to medium-density crowd videos using trajectory-level behavior learning.Doctor of Philosoph

    Velocity-Space Reasoning for Interactive Simulation of Dynamic Crowd Behaviors

    Get PDF
    The problem of simulating a large number of independent entities, interacting with each other and moving through a shared space, has received considerable attention in computer graphics, biomechanics, psychology, robotics, architectural design, and pedestrian dynamics. One of the major challenges is to simulate the dynamic nature, variety, and subtle aspects of real-world crowd motions. Furthermore, many applications require the capabilities to simulate these movements and behaviors at interactive rates. In this thesis, we present interactive methods for computing trajectory-level behaviors that capture various aspects of human crowds. At a microscopic level, we address the problem of modeling the local interactions. First, we simulate dynamic patterns of crowd behaviors using Attribution theory and General Adaptation Syndrome theory from psychology. Our model accounts for permanent, stable disposition and the dynamic nature of human behaviors that change in response to the situation. Second, we model physics-based interactions in dense crowds by combining velocity-based collision avoidance algorithms with external forces. Our approach is capable of modeling both physical forces and interactions between agents and obstacles, while also allowing the agents to anticipate and avoid upcoming collisions during local navigation. We also address the problem at macroscopic level by modeling high-level aspects of human crowd behaviors. We present an automated scheme for learning and predicting individual behaviors from real-world crowd trajectories. Our approach is based on Bayesian learning algorithms combined with a velocity-based local collision avoidance model. We further extend our method to learn time-varying trajectory behavior patterns from pedestrian trajectories. These behavior patterns can be combined with local navigation algorithms to generate crowd behaviors that are similar to those observed in real-world videos. We highlight their performance for pedestrian navigation, architectural design and generating dynamic behaviors for virtual environments.Doctor of Philosoph
    corecore