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ABSTRACT

Aniket Bera: Interactive Tracking, Prediction, and Behavior Learning of Pedestrians in Dense Crowds.
(Under the direction of Dinesh Manocha)

The ability to automatically recognize human motions and behaviors is a key skill for autonomous

machines to exhibit to interact intelligently with a human-inhabited environment. The capabilities autonomous

machines should have include computing the motion trajectory of each pedestrian in a crowd, predicting

his or her position in the near future, and analyzing the personality characteristics of the pedestrian. Such

techniques are frequently used for collision-free robot navigation, data-driven crowd simulation, and crowd

surveillance applications. However, prior methods for these problems have been restricted to low-density or

sparse crowds where the pedestrian movement is modeled using simple motion models.

In this thesis, we present several interactive algorithms to extract pedestrian trajectories from videos

in dense crowds. Our approach combines different pedestrian motion models with particle tracking and

mixture models and can obtain an average of 20% improvement in accuracy in medium-density crowds over

prior work. We compute the pedestrian dynamics from these trajectories using Bayesian learning techniques

and combine them with global methods for long-term pedestrian prediction in densely crowded settings.

Finally, we combine these techniques with Personality Trait Theory to automatically classify the dynamic

behavior or the personality of a pedestrian based on his or her movements in a crowded scene. The resulting

algorithms are robust and can handle sparse and noisy motion trajectories. We demonstrate the benefits of our

long-term prediction and behavior classification methods in dense crowds and highlight the benefits over

prior techniques.

We highlight the performance of our novel algorithms on three different applications. The first application

is interactive data-driven crowd simulation, which includes crowd replication as well as the combination

of pedestrian behaviors from different videos. Secondly, we combine the prediction scheme with proxemic

characteristics from psychology and use them to perform socially-aware navigation. Finally, we present novel

techniques for anomaly detection in low-to medium-density crowd videos using trajectory-level behavior

learning.
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CHAPTER 1

Introduction

The ability to automatically recognize human movements and activities is key for autonomous machines

to interact intelligently with a human-inhabited environment (i.e. humans walking towards their goal and

avoiding collisions with other humans and obstacles while interacting with the environment). The possibility

of sensing human crowd motion has received considerable attention in the literature. It is a well-studied

problem that has applications in many domains. For example, it is considered in computer animation to

generate human motion for special effects (Kovar et al., 2002; Badler, 1997a). In virtual environments, it is

used to generate movements and interactions for human avatars and virtual agents (Baylor, 2009; Bainbridge,

2007; Badler, 1997b). Surveillance applications include evaluating atypical and suspicious movements that

differ from those of the crowd (Wu et al., 2010; Mahadevan et al., 2010). Similarly, behavior modeling

discusses this problem as it relates to the analysis of personalities and behaviors based on their interaction in

the real world (Cristani et al., 2013; Yi et al., 2015). In other applications, this problem has implications for

disaster prevention and planning evacuations, crowd scene analysis (analyzing global characteristics of the

crowd), and collision-free navigation of robots or autonomous vehicles in crowded or real-world scenarios.

The following are some specific applications that best illustrate the need for a better pedestrian or crowd

motion model:

Figure 1.1: The modeling of pedestrian movements has received considerable attention in multiple fields,
including computer-aided design, urban planning, robotics, and evacuation planning. In many of these
applications, the goal is to capture the trajectories and behaviors of the pedestrians. This image shows a
subset of the many applications that model pedestrian movements (e.g., pedestrian movement prediction,
personality recognition, data-driven crowd simulation, large-scale tracking, etc.).
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• As robots are increasingly used in households, offices, and public places, they navigate among humans

or pedestrians more and more. Because humans are dynamic agents (changing directions, positions,

etc.), these scenarios result in many new challenges related to navigation and the awareness of human

motion and interactions. Robots must move through crowds of people while preventing collisions

with each other and humans. In such scenarios, the robots need to interface with not only the physical

environment, but also the social environment, and should interact well with pedestrians.

• One of the key challenges in surveillance is to devise methods that can automatically analyze the

behavior and movement patterns in crowd videos to detect anomalous or atypical behaviors (Li et al.,

2015). Furthermore, since many of the surveillance systems need realtime planning for security, most

of these applications benefit from interactive performance, and do not rely on a priori learning or

labeling. However, current methods are typically limited to sparse crowds or are designed for offline or

non-realtime applications.

• Crowds have also been studied in computer animation for use in generating special effects. Frequently,

designers or animators must go through a tedious process to generate scene-specific behavior rules

such as events, trajectories, or interactions. To account for these factors, they have to manually

generate scene-specific behaviors or trajectories. This can be time consuming and, further, generating

realistic behaviors or simulations using such methods involves considerable tweaking of or variations

in simulation parameters. As the number of agents or the complexity of the scenarios increases, it

becomes increasingly difficult to model the diversity of behaviors or the interactions between the

agents.

1.0.1 Pedestrian Movements and Behaviors

From the problems and applications described above, it is apparent that it is important to design and

develop algorithms which not only efficiently capture pedestrian motion and behavior, but do it interactively.

This interactivity is especially important for applications such as realtime surveillance, autonomous vehicle

planning, and robot planning. For this work, we consider capturing pedestrian motion and behavior as a

collection of three interconnected components:

• Tracking: Locating a pedestrian (or pedestrians) along a window of time. We limit tracking to the

projected trajectory on a 2D plane assuming that the pedestrian is represented as a small circle.
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Figure 1.2: Overview: We highlight the different aspects of movements (tracked trajectories marked with
yellow in (1), predicted trajectories as blue dots in (2) and personalities/behaviors in (3)) of pedestrians in the
same scene.

• Prediction: Determining future pedestrian positions and velocities based on past data. We define

short term prediction as future pedestrian positions for 1–2 seconds and long term prediction as future

positions for 5 or more seconds.

• Behavior Learning: For this work we restrict ourselves to trajectory-level motion patterns and

personality traits based on prior work in psychology and various interactions with environment.

We take these three important problems and classify them as a part of ‘pedestrian sensing’. However,

sensing pedestrians in a crowded scene is regarded as a difficult problem due to, for example, intra-pedestrian

occlusion (i.e. one pedestrian blocking others) and changes in lighting and pedestrian appearance. Similarly,

predicting the trajectory of a pedestrian in a dense environment can also be very challenging. In general,

pedestrians have varying behaviors and can change their speed to avoid collisions with the obstacles and

other pedestrians in a scene. In crowded scenarios, the interactions between the pedestrians tend to increase

significantly, which affects their behavior and movement. While researchers in various fields like psychology

and other social sciences have been studying and observing human behavior for decades, modeling realistic

crowd behaviors is challenging. Further, there are no widely accepted models capable of capturing a wide

variety of behaviors. As a result, the highly dynamic nature of pedestrian movement makes it hard to estimate

a pedestrians current or future positions.

1.0.2 Motion Models

A motion model is a mathematical model, that defines a set of rules related to the local movement of a

pedestrian in a given scenario or environment (Kirchner and Schadschneider, 2002). There is an extensive
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body of work in robotics, multi-agent systems, crowd simulation, and computer vision on modeling pedestrian

motion in crowded environments. We limit the scope of the motion models discussed in this thesis to those

that mainly compute trajectory-level movements or behaviors of each independent individual, which we call

the agent or pedestrian, in the crowd. These models can be broadly classified into the following categories:

potential-based models, which model virtual agents in a crowd as particles with potentials and forces (Helbing

and Molnar, 1995a); boid-like approaches, which create simple rules to steer agents (Reynolds, 1999a);

geometric optimization models, which compute collision-free velocities (Van Den Berg et al., 2011a); and

field-based methods, which generate fields based on continuum theory (Treuille et al., 2006). Among these

approaches, velocity-based motion models (Karamouzas et al., 2009; Karamouzas and Overmars, 2010;

van den Berg et al., 2008b; Van Den Berg et al., 2011a; Pettré et al., 2009) have been successfully applied

to the simulation and analysis of crowd behaviors and to multi-robot coordination (Snape et al., 2011).

Velocity-based models have also been shown to have efficient implementations that closely match real human

paths (Guy et al., 2010). These models form the basis for modeling the pedestrian motion in our work (i.e.

pedestrian tracking, prediction, and behavior learning).

1.0.3 Pedestrian Tracking with Motion Models

Tracking pedestrians temporally and spatially in a video is an essential and significant task in any intelli-

gent video surveillance system, because it provides the fundamental information for semantic understanding

of the video. Prior work in pedestrian tracking (Cui et al., 2005; Kratz and Nishino, 2011) attempts to improve

tracking accuracy by making simple assumptions about pedestrian movement, such as constant velocity and

constant acceleration. More recently, higher-order motion models and pairwise interaction rules have been

combined with tracking to improve the accuracy. (Bruce and Gordon, 2004) and (Gong et al., 2011) first

estimate pedestrians’ destinations and then predict their motions along the path towards the estimated goal

positions. (Liao et al., 2003) extract a Voronoi graph from the environment and predict people’s motion

along the edges. (Luber et al., 2010) apply Helbing’s social force model to track people using a Kalman

filter based tracker. (Pellegrini et al., 2009a) use an energy function to build up a goal-directed short-term

collision-avoidance motion model. (Yamaguchi et al., 2011a) present a pedestrian-tracking algorithm that

uses an agent-based behavioral model called ATTR, with additional social and personal properties learned

from the behavioral priors (e.g., grouping information and destination information). Most of these methods
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are slow and work offline. Additionally, these methods are well-suited for modeling motion in dense crowds

with few distinct motion patterns; however, they may not work in heterogeneous crowds.

1.0.4 Pedestrian Prediction

Crowd trajectory prediction has been studied extensively for robot navigation and related areas. (Fulgenzi

et al., 2007) use a probabilistic velocity-obstacle approach combined with dynamic occupancy grid. This

method assumes constant linear velocity motion of the obstacles. (Du Toit and Burdick, 2010) present a robot

planning framework that accounts for each pedestrian’s anticipated future location information to reduce the

uncertainty of the predicted belief states. Other techniques use potential-based approaches for robot path

planning in dynamic environments (Pradhan et al., 2011). Some methods learn the trajectories from collected

data. (Ziebart et al., 2009a) use pedestrian trajectories collected in the environment for prediction using

Hidden Markov Models. (Bennewitz et al., 2005) apply Expectation Maximization clustering to learn typical

motion patterns from pedestrian trajectories before using Hidden Markov Models to predict future pedestrian

motion.(Henry et al., 2010) use reinforced learning from example traces, estimating pedestrian density

and flow with a Gaussian process. (Kretzschmar et al., 2014) consider pedestrian trajectories as a mixture

probability distribution of a discrete as well as a continuous distribution, and then use Hamiltonian Markov

chain Monte Carlo sampling for prediction. (Kuderer et al., 2012) use maximum entropy-based learning to

learn pedestrian trajectories and use a hierarchical optimization scheme to predict future trajectories. Many

of these methods involve a priori learning and may not work in new or unknown environments. Variations of

Bayesian filters for pedestrian path prediction have been studied in (Schneider and Gavrila, 2013; Mogelmose

et al., 2015). Most of these methods are not suitable for real-time applications or may not work well for dense

crowds. They also tend to fail for trajectories predicted over a longer time (> 5 seconds).

1.0.5 Learning Pedestrian Behaviors

Behavior models provide a way to control local navigation and collision avoidance behaviors of agents.

Unlike local interaction behaviors, which can be modeled with mathematical formulations, higher-level

behaviors can hardly be formulated due to the complexity of human behaviors. Instead, it has been a common

practice to script or manually specify behavior rules for pedestrian movement. For example, cognitive

approaches focus on defining rules or behavior to mimic cognition or the decision-making process of the

crowd (Shao and Terzopoulos, 2005; Ulicny and Thalmann, 2002). These methods can simulate very specific
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and detailed behaviors when used with corresponding scenarios such as buying a ticket or waiting in line.

Also, Finite State Machines (FSM) are commonly used to encode procedural behaviors or a set of goals based

on an agent’s state (Bandini et al., 2006; Paris and Donikian, 2009; Sean Curtis, 2013). There is also recent

work on analyzing pedestrian motion patterns on a semantic-level (Wang et al., 2017, 2016).

There is extensive work in computer vision, multimedia, and robotics that analyzes the behaviors and

movement patterns in crowd videos, as surveyed in (Li et al., 2015; Borges et al., 2013). The main objectives

of these works include human behavior understanding and crowd activity recognition for the detection of

abnormal behaviors (Hu et al., 2004). Many of these methods use a large number of training videos to learn

the patterns offline (Zen and Ricci, 2011; Solmaz et al., 2012). Other methods utilize motion models to learn

crowd behaviors (Pellegrini et al., 2012) or use machine learning algorithms (Zhou et al., 2012b; Cheung et al.,

2016). Some techniques focus on classifying the most common behavior patterns in a scene using offline

learning. These include activity prototypes using a convex learning algorithm (Zen and Ricci, 2011) and

detection of popular behavior patterns like bottlenecks, fountainheads, lanes, arches, and blocking (Solmaz

et al., 2012).

Crowd behavior learning using motion or simulation has been used for different applications. Parameter

learning has been used to predict pedestrian motion for tracking (Pellegrini et al., 2012). However, these

techniques use either manual selection or offline learning techniques to estimate the goal positions. Other

researchers have used low-density tracking data to learn agent intentions (Musse et al., 2007) or online

Bayesian motion-prediction methods for human-robot interactions, data-driven crowd simulation (Kim et al.,

2016), and offline training (Zhong et al., 2015). Different approaches have been used to model pedestrian

behavior. (Funge et al., 1999) use cognitive modeling to empower agents to plan and perform high-level

tasks (Godoy et al., 2016).

1.0.6 Crowd Density

Crowd density is an important property to consider when analyzing crowd characteristics for different

applications. There is no universal classification of crowd densities but for our work, we define low density

as crowds with 0–1 pedestrians per squared-meter, medium density as 1–3 pedestrians per squared-meter and

more than 3 pedestrians per squared-meter as high density.
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Density Average pedestrians/m2

Low <1
Medium 1–3

High >3

Table 1.1: We define our classification for different pedestrian densities

As a general rule, the higher the density the more difficult it becomes to track/predict pedestrian motion. In

most cases, the appearance model (algorithm for matching a statistical model of object shape and appearance

to a new image) isn’t capable of capturing partially-visible pedestrians in a crowd.

Figure 1.3: We show crowds at different densities (pedestrian marked with a red dot). We define low density
as crowds with 0–1 pedestrians per squared-meter, medium density as 1–3 pedestrians per squared-meter and
more than 3 pedestrians per squared-meter as high density.
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Figure 1.4: Overview: In this thesis, we present several interactive algorithms to extract pedestrian trajectories
from videos in dense crowds. Our approach combines different pedestrian motion models with particle
tracking and a mixture of motion models. We compute the pedestrian dynamics (a collection of different
behavior and movement patterns, (Kim & Bera et al. 2014)) from these trajectories using Bayesian learning
techniques and combine with global methods for long-term pedestrian prediction in dense crowds. Finally,
we combine these techniques with Personality Trait Theory from Psychology to automatically classify the
dynamic behavior or personality of a pedestrian based on his or her movements in a crowded scene. The
resulting methods are robust and can handle sparse and noisy trajectories. We demonstrate the benefits of our
long-term prediction and behavior classification methods in dense crowds and highlight the benefits over
prior techniques.

1.1 Thesis Statement

Our thesis statement is as follows:

Higher order motion models and learning techniques can be used to design accurate algorithms for

pedestrian tracking, long term prediction and behavior learning.

In this thesis, we propose interactive algorithms to track, predict and learn pedestrian behaviors. A

large part of our research borrows ideas related to understanding and observing human-like behaviors and

their interactions from other fields including psychology, physics, and machine learning. As a result, both

short-term, local interaction and long-term, high-level behavior models are improved. Our approaches use

online methods to learn the trajectory-level behaviors for each agent by combining non-linear motion models

and Bayesian inference. Moreover, we highlight applications of our pedestrian tracking, prediction and

behavior learning algorithms to many different areas, including computer animation, computer vision, and

robotics.

1.2 Main Results

Figure 1.4 illustrates the major algorithmic results of the thesis, shown in separate blocks, and their

applications.
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Figure 1.5: Application: We demonstrate the performance of our novel algorithms on three different applica-
tions. The first application is an interactive data-driven crowd simulation that includes crowd replication,
crowd merging, and a combination of pedestrian behaviors from different videos. Secondly, we combine the
prediction scheme with proxemic characteristics from psychology and use the result to perform socially-aware
navigation. Finally, we present novel techniques for anomaly detection in low to medium density crowd
videos using trajectory-level behavior learning.

1.2.1 Realtime Adaptive Pedestrian Tracking for Crowded scenes

We present new pedestrian tracking algorithms that are based on the use of particle filters to perform

realtime pedestrian tracking in moderately crowded scenes. We use the notion of a crowd model as a motion

prior. We demonstrate that using a crowd motion model (in this case, specifically using velocity obstacles) can

improve pedestrian tracking in dense scenes, compared to using a constant velocity or constant acceleration

model. Ours is also a hybrid approach which is computationally optimized and is adaptive to the crowd size,

dynamics etc.

We also describe a parallel approach in which different crowd motion models are used to model each

pedestrian’s trajectory. Motion algorithms usually have several parameters that can be tuned to change the

agents’ behaviors. We assume that each parameter can have a different value for each pedestrian. The

motion model of the crowd parameter estimation is formulated as an optimization problem, and the resulting

algorithm solves the optimization problem in a motion model-independent manner. Overall, this formulation

computes the best-fit mixture (i.e. the most optimized parameter set corresponding to every pedestrian for each

model). To characterize the heterogeneous, dynamic behavior of each agent, we use an optimization-based

scheme to perform the following steps:
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Figure 1.6: We highlight different motion models (Boids, Social-Forces, or reciprocal velocity obstacles)
used for the same pedestrian (marked in red) over different frames/time. We believe that it is not possible
to model the trajectory of all pedestrians based on a single, homogeneous motion. Instead, we adaptively
choose the best-fit model for every pedestrian in the scene, which can vary based on the environment or the
crowd conditions.

• Choose, every few frames, the new motion model that best describes the local behavior of each

pedestrian based on tracked data.

• Compute the optimal set of parameters for that motion model that best fit this tracked data.

• Compute the adaptive number of particles for each pedestrian based on a combination of metrics for

optimizing performance.

The resulting mixture model is used to predict the state of the pedestrian for the next frame. In other words,

the next state is used as motion prior input for the tracker; it is also combined with a confidence estimation

computation to dynamically compute the number of particles. As a final step, the tracker’s definitively

estimated next state is fed back into the loop.

Our approach can track the positions of tens of pedestrians in around 40-50 milliseconds over long-

intervals. Furthermore, we demonstrate its benefits over prior real-time prediction algorithms.

1.2.2 Realtime Pedestrian Path Prediction

We present a realtime algorithm that learns movement flows from real-world pedestrian 2D trajectories

extracted from a video Fig. 1.7 gives a broad overview of our approach, including the computation of

movement flows (a cluster of local pedestrian movement descriptors) and their use for pedestrian prediction.

The input of the method consists of a live or streaming crowd video. We extract the initial set of trajectories

using our online particle-filter based pedestrian tracker (described above). These trajectories are time-series

observations of the positions of each pedestrian in the crowd. The output is the predicted state of each agent,
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Figure 1.7: Prediction Overview: We highlight various components of our real pedestrian path prediction
algorithm. Our approach computes both local and global movement patterns using Bayesian inference from
2D trajectory data and combines them to improve prediction accuracy

which is based on learning the local and global pedestrian motion patterns, combining different local and

global pedestrians patterns learned from the trajectory data. Our approach is interactive and operates based

on current and recent states; in other words, it does not require future knowledge of an entire data sequence

and does not have to re-perform offline training steps whenever new, real-world pedestrian trajectory data is

acquired or generated. As a result, our approach can not only effectively capture local behaviors but also

individual motion variations. We describe the algorithm in detail in Chapter 3. Overall, our approach offers

the following benefits over prior work:

• Our algorithm is general and can compute global and local movement patterns in real-time with no

prior learning.

• We can robustly handle sparse and noisy trajectory data generated using current online pedestrian

trackers.

• We observe up to 24% increase in prediction accuracy as compared to prior real-time methods that are

based on simple filters or only local movement patterns.

Our approach for pedestrian prediction is general, makes no assumption about pedestrian movement or

density, and performs no pre-computation and can be combined with other real-time pedestrian trackers.
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Figure 1.8: Behavior Learning: Our approach can automatically classify the behavior of each pedestrian in
real-time. This behavior information is used to dynamically compute the motion parameters and improve
the performance of our long term prediction algorithm (shown in dark blue). Our results are very close to
ground truth (shown in red) and offer up to 24% improvement over prior real-time prediction algorithms,
whose predicted trajectories are shown in different colors.

1.2.3 Behavior Learning

We present a novel learning algorithm to classify pedestrian behaviors (motion patterns, personality

traits) based on their movement patterns. Our approach is general and makes no assumptions about the

size or density of the crowd or the pedestrian’s movement. We extract the trajectory of each pedestrian in

a video and use a combination of Bayesian learning and pedestrian dynamics techniques to compute the

pedestrian characteristics at interactive rates. The characteristics include the time-varying motion model

that is used to compute the personality traits. We also present new statistical algorithms to learn high-level

characteristics and global movement patterns. We combine these characteristics with Eysenck’s 3-factor PEN

model (Eysenck and Eysenck, 1985) and characterize the personality into six weighted behavior classes:

aggressive, assertive, shy, active, tense, and impulsive. We also use the individual personalities to predict the

state of the crowd under different environmental scenarios. Our approach offers many benefits:

• Robust: Our approach is robust, can account for noise in the pedestrian trajectories, and classifies the

behavior using time-varying pedestrian movement dynamics.

• General: Our approach is applicable to indoor and outdoor crowd videos and makes no assumption

about their size or density.

• Crowd Analysis and Prediction: Our approach can be used to analyze and estimate the future

movement or behavior of the crowd. Furthermore, it can be used to predict different scenarios based
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on the behaviors and global characteristics, e.g., the distribution and density of a large crowd at the

National Mall in Figure 4.1.

To the best of our knowledge, this is the first approach that can automatically identify the behavior

of each pedestrian in a crowd. We have evaluated its accuracy with a user study (88.48%) and evaluated

its performance on different videos with tens of pedestrians. One example is the large crowd gathered in

Washington, DC for the Presidential Inauguration (January 2017) using PBS HD video footage (see Chapter

6.4).

1.2.4 Applications

We demonstrate three applications from graphics, robotics and crowd surveillance based on our novel

algorithms for tracking, prediction and behavior learning. -

• Improved data-driven crowd simulation, including crowd replication, augmented crowds and merging

the behavior of pedestrians from multiple videos (Chapter 6.2).

• A socially-aware navigation of a robot among pedestrians. Our approach computes time-varying

behaviors of each pedestrian using Bayesian learning and Personality Trait theory to improve long-

term path prediction and generate proxemic characteristics for each pedestrian. We combine these

psychological constraints with social constraints to perform human-aware robot navigation (Chapter

6.3).

• Finally, we improve anomaly detection in low- to medium- density crowd videos using trajectory-level

behavior learning. These learned behaviors are used to segment the trajectories and motions of different

pedestrians and to detect anomalies (Chapter 6.4).
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CHAPTER 2

Real-time Pedestrian Tracking

2.1 Introduction

Technologies dedicated to pedestrian crowd traffic management are emerging. The tracking of human

crowd motion is a key problem in this field. Despite many recent advances, it is still difficult to accurately

track pedestrians in real-world scenarios, especially as the crowd density increases. The problem is hard

problem due to the following reasons: intra-pedestrian occlusion (one pedestrian blocking another), changes

in lighting and pedestrian appearance, and the difficulty of modeling human behavior or the intent of each

pedestrian. In this context, our objective is to improve the accuracy of tracking algorithms.

In this chapter, we restrict ourselves to online and realtime trackers (Li et al., 2008b; Breitenstein et al.,

2011; Li et al., 2008a; Khan et al., 2004; Comaniciu et al., 2000; SanMiguel et al., 2012), which tend to

compute the trajectories based on current and prior frames. Many of these trackers use motion priors to

update the trajectories of the pedestrians between successive frames, and propagate the search space from

one frame to the next. The simplest algorithms to model the motion are based on constant velocity or

constant acceleration formulations. However, these techniques are unable to model the interaction between

the pedestrians, as the crowd density increases.

The simpler motion models assume that agents will ignore any interactions with other pedestrians,

instead assuming that they will follow “constant-speed” or “constant-acceleration” paths to their immediate

destinations. However, the accuracy of this assumption decreases as crowd density in the environment

increases (e.g. to 2-4 pedestrians per square meter). More sophisticated pedestrian motion models take

into account interactions between pedestrians, formulated either in terms of attraction or repulsion forces or

collision-avoidance constraints.

In real-world scenarios, the trajectory of each pedestrian is governed by its intermediate goal location,

intrinsic behaviors, as well as local interactions with other pedestrians and obstacles in the scene. In a dense

crowd setting, the behavior of each pedestrian changes in response to the environment, the overall crowd
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Figure 2.1: Improved Realtime Tracking The results of our approach on some challenging datasets. We
highlight the performance of our algorithm for realtime tracking of pedestrians in indoor and outdoor scenes
(shown above) with many tens of pedestrians. In such challenging scenarios, our algorithm can track up to
79% of pedestrians in a frame at 26 fps (on average). We observe up to 20% improvement in the accuracy
over prior interactive methods.

density and flow, and the behavior of other pedestrians. It may not be possible, therefore, to model the

overall behavior of each pedestrian with a single, homogeneous motion model. Furthermore, each of these

homogeneous models is described using some parameters that may correspond to the size, speed, anticipation

period, or local navigation constraints of each pedestrian. The accuracy of each motion model is governed

by the choice of these parameters. As the behavior of each pedestrian responds to changes in a dynamic

environment, these model parameters should be recomputed or updated to improve the resulting motion

model’s accuracy. Overall, we need efficient techniques that can take into account heterogeneous behaviors

based on constantly changing models and underlying parameters.

Main Results:

We present a hybrid formulation that combines that combines discrete (microscopic) and continuum

(macroscopic) pedestrian motion models. The discrete model is used to predict the local interactions and
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collision avoidance behaviors of each pedestrian whereas the continuum method is used to model the flow of

homogeneous clusters within a crowd. Our primary contributions include:

• We cluster pedestrians in a crowd based on different characteristics including their positions, velocity,

inter-pedestrian distance, orientations, etc.

• For each large cluster, we model its trajectory using a continuum flow model.

• For small clusters and individual pedestrians, we model their motion using an adaptive microscopic

mixture motion model algorithm.

• We combine the discrete and continuum models with particle filters to track the pedestrians at interactive

rates.

Figure 2.2: The left image highlights the tracked trajectories based on discrete motion models. The image
on the right demonstrates the use of a hybrid motion model, using the continuum method for a cluster of
pedestrians as well as discrete motion models for individuals. These clusters are computed in realtime based
on frame coherence and pedestrian flow. The hybrid motion model can improve the tracking accuracy in
these dense scenarios by 20% over prior methods.

The motion model parameter (for microscopic clusters) estimation is formulated as an optimization

problem, and we use an approach that solves this combinatorial optimization problem in a model-independent

manner and that is hence scalable to include any multi-agent pedestrian motion model. Our formulation

computes the best-fit microscopic mixture motion model for each pedestrian based on prior tracked data. Our

approach can be viewed as a feedback pipeline. In order to characterize the heterogeneous, dynamic behavior

of each agent, we use an optimization-based scheme to perform the following steps:

• Choosing, every few frames, the new motion model that best describes the local behavior of each

pedestrian based on tracked data.
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Figure 2.3: Our microscopic mixture motion model can accurately compute the trajectories in real time. We
highlight different motion models (Boids, Social-Forces, or reciprocal velocity obstacles) used for the same
pedestrian (marked in red) over different frames. We believe that it is not possible to model the trajectory of
all pedestrians based on a single, uniform model. Instead, we adaptively choose the best-fit model for every
pedestrian in the scene that can be adapted to the environment or the crowd conditions

• Computing the optimal set of parameters for that motion model that best fit this tracked data.

• Computing the adaptive number of particles for each pedestrian based on a combination of metrics for

optimizing performance.

The resulting mixture model is used to predict the next state of the pedestrian for the next frame. In other

words, the next state is used as motion prior input for the tracker; it is also combined with a confidence

estimation computation to dynamically compute the number of particles. As a final step, the tracker’s

definitively estimated next state is fed back into the loop, becoming the most recent agent state. Our approach

can track the positions of tens of pedestrians in around 40-50 milliseconds over long-intervals. Furthermore,

we demonstrate its benefits over prior real-time prediction algorithms.

The rest of our chapter is organized as follows. Section II gives a brief overview of prior work in tracking

and motion models. We present our algorithm in Section III. We highlight its performance on different crowd

video datasets in Section IV and compare its performance with prior methods.

2.2 Related Work

Robots navigating in complex, noisy, dynamic environments have prompted the development of realtime

pedestrian tracking methods. Fulgenzi et al. (Fulgenzi et al., 2007) use a probabilistic velocity-obstacle

approach combined with the dynamic occupancy grid; this method assumes constant linear velocity motion

of the obstacles. DuToit et al. (Du Toit and Burdick, 2010) present a robot planning framework that takes into

account pedestrians’ anticipated future location information to reduce the uncertainty of the predicted belief
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states. Other techniques use potential-based approaches for robot path planning in dynamic environments

(Pradhan et al., 2011). Some methods learn the trajectories from collected data. Ziebart et al. (Ziebart

et al., 2009a) use pedestrian trajectories collected in the environment for prediction using Hidden Markov

Models. Bennewitz et al. (Bennewitz et al., 2005) apply Expectation Maximization clustering to learn typical

motion patterns from pedestrian trajectories, before using Hidden Markov Models to predict future pedestrian

motion. Henry et al. (Henry et al., 2010) use reinforced learning from example traces, estimating pedestrian

density and flow with a Gaussian process. Kretzschmar et al. (Kretzschmar et al., 2014) consider pedestrian

trajectories as a mixture probability distribution of a discrete as well as a continuous distribution and then use

Hamiltonian Markov chain Monte Carlo sampling for prediction. Guzzi et al. (Guzzi et al., 2013) present a

distributed method for multi-robot human like local navigation. Some of these methods are either not suitable

for real-time applications or may not work well for dense crowds or can’t efficiently capture the varying

pedestrian dynamics.

Many non-particle-based motion modeling techniques have also been proposed; these techniques are

useful mainly for crowded scenes in which pedestrians display similar motion patterns or movements. Song

et al. (Song et al., 2013) proposed an approach that clusters pedestrian trajectories based on the assumption

that “persons only appear/disappear at entry/exit.” Ali et al. (Ali and Shah, 2008) presented a floor-field

based method to determine the probability of motion in densely crowded scenes. Rodriguez et al. (Rodriguez

and Sivic, 2011) used a large collection of public crowd videos and learned about crowd motion patterns by

extracting global video features. Kratz et al. (Kratz and Nishino, 2012) and Zhao et al. (Zhao et al., 2012)

used local motion patterns in dense videos for pedestrian tracking.

The key difference between our approach and previous ones derives from the following assessment of the

state of the field. The accuracy of this category of trackers is improved by using realistic crowd motion models

for computing motion prior. However, a single, homogeneous motion model is generally used. Every motion

model relies upon one or more assumptions and has a limited validity range. It may not be possible, therefore,

to model the overall behavior of each pedestrian with a single, homogeneous motion model, especially as the

pedestrian or crowd conditions change. Furthermore, each of these homogeneous models is described using

some parameters that may correspond to the size, speed, anticipation period, or local navigation constraints

of each pedestrian. The accuracy of each motion model is governed by the choice of these parameters. As

the behavior of each pedestrian responds to changes in a dynamic environment (due to other pedestrians or

obstacles such as vehicles), these model parameters should be recomputed or updated to improve the resulting
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motion model’s accuracy. Overall, we need efficient techniques that can take into account heterogeneous

behaviors based on constantly changing models and underlying parameters.

2.3 Microscopic Mixture Motion Model

In this section, we introduce the notion of a parameterized motion model. We then describe the different

parameterized motion models that form the basis of the mixture motion model. Finally, we describe the

microscopic mixture motion model itself. For the rest of the chapter, we refer microscopic mixture motion

model by just mixture motion model or MMM.

2.3.1 Overview and Notations

We introduce the terminology and symbols used in the rest of the thesis. We use lowercase letters for

scalars and bold letters for vectors. We refer to an agent in the crowd as the pedestrian whose state includes

his/her trajectory and behavior characteristics. This state, denoted by the symbol x ∈ R5, governs the

pedestrian’s position on the 2D plane:

x = [p vc vpref ]T; (2.1)

where p is the pedestrian’s position, vc is his/her current velocity, and vpref is the preferred velocity on a

2D plane. A pedestrian’s current velocity vc tends to be different than the optimal velocity (the preferred

velocity vpref ) that he/she would take in the absence of other pedestrians or obstacles in the scene to achieve

his/her intermediate goal. The union of the states of all the other pedestrians and the current positions of

the obstacles in the scene is the current state of the environment denoted by the symbol S. The state of the

crowd, which consists of individual pedestrians, is a union of the set of each pedestrian’s state X =
⋃

i xi,

where subscript i denotes the ith pedestrian. We do not explicitly model or capture pairwise interactions

between pedestrians. However, the difference between vpref and vc provides partial information about the

local interactions between a pedestrian and the rest of the environment.

Data Representation Our algorithm keeps track of the state (i.e. position and velocity) of each pedestrian

for the last k timesteps or frames. These are referred to as the k-states of each pedestrian. These k-states are

initialized by pre-computing the states from the first k timesteps. The k-states are updated at each timestep by

removing the agents’ state from the oldest frame and adding the latest tracker-estimated state.
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The mixture motion model is a combination of several independent motion models. This mixture

motion model is used to compute the best motion model for the agents during each frame. First, based on an

optimization algorithm, we “configure” the motion models to “best” match the recent k-states data and select

the best model based on a specific metric. Second, we use the “best configured” motion model to make a

prediction on the agents’ next state.

The tracker is a particle-filter based tracker that uses the motion prior, obtained from the microscopic

Mixture of Motion Models, to estimate the agents’ next state. This tracker further uses a confidence estimation

stage to dynamically compute the number of particles that balance the trade-offs between the computation

cost and accuracy.

Figure 2.4: Overview of our real time tracking algorithm. The symbols used in this figure are explained in
Section 2.3.1. We use the trajectory computed over prior k frames, expressed as a succession of states, to
compute the new motion model; we use our microscopic mixture motion model to compute the next states
using a particle filter.

We use the following additional notations specific this chapter:

• m represents the “best configured” motion model from the microscopic Mixture of Motion Models

{f1, f2, ...}

• bold fonts are used to represent values for all the pedestrians in the crowd; for example S represents

the states (positions and velocities) of all pedestrians as computed by the tracker
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• subscripts are used to indicate time; for example mt represents the “best configured” motion model at

timestep t, and St−k:t represents all states of all agents for all successive timesteps between t− k and

t, as computed by the tracker.

The “best configured” motion model can then be used as follows: Xt+1 = mt(xt) or xt+1 = mt(xt) to

compute the motion of one arbitrary pedestrian or all pedestrians, respectively.

2.3.2 Particle Filter for Tracking

Though any online tracker that requires a motion prior system can be used, we use particle filters as

the underlying tracker algorithm. The particle filter is a parametric method that solves non-Gaussian and

non-linear state estimation problems (Arulampalam et al., 2002). Particle filters are frequently used in object

tracking, since they can recover from lost tracks and occlusions. The particle tracker’s tracking uncertainty is

represented in a Markovian manner by only considering information from present and past frames.

Here, we consider the “best configured” motion model mt as well as the error Qt in the prediction

that this “best configured” motion model generated. Additionally, the observations of our tracker can be

represented by a function h() that projects the state xt to a previously computed state St. Moreover, we

denote the error between the observed states and the ground truth as Rt. We can now phrase them formally in

terms of a standard particle filter as below:

St+1 = mt(xt) +Qt, (2.2)

St = h(xt) +Rt. (2.3)

Particle filtering is a Monte Carlo approximation to the optimal Bayesian filter, which monitors the

posterior probability of a first-order Markov process:

p(xt|St−k:t) =

αp(St|xt)
∫
xt−1

p(xt|xt−1)p(xt−1|St−k:t−1)dxt−1,
(2.4)

where xt is the process state at time t, St is the observation, St−k:t is all of the observations through time t,

p(xt|xt−1) is the process dynamical distribution, p(St, xt) is the observation likelihood distribution, and α

is the normalization factor. Since the integral does not have a closed form solution in most cases, particle
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filtering approximates the integration using a set of weighted samples x(i)t , π
(i)
t i=1,...,n, where x(i)t is an

instantiation of the process state, known as a particle, and π(i)t ’s are the corresponding particle weights. With

this representation, the Monte Carlo approximation to the Bayesian filtering equation is:

p(xt|St−k:t) ≈ αp(St|xt)
n∑

i=1

π
(i)
t−1p(x

(i)
t )|p(x(i)t−1), (2.5)

where n refers to the number of particles.

In our formulation, we use the motion model to infer dynamic transition, p(xt|xt−1), for particle filtering.

We optimize our computation speed by adaptively modifying the number of active particles in our system

using a combination of confidence metrics. A brief overview is given in Section 2.3.6.

2.3.3 Parameterized Motion Model

A motion model is defined as an algorithm f , which, from a collection of agent states xt, derives new

states xt+1 for these agents, representing their motion over a timestep towards the agents’ immediate goals

G:

xt+1 = f(xt,G). (2.6)

Motion algorithms usually have several parameters that can be tuned in order to change the agents’

behaviors. We assume that each parameter can have a different value for each pedestrian. By changing the

value of these parameters, we get some variation in the resulting trajectory prediction algorithm. We use P to

denote all the parameters of all the pedestrians. Typically, for a crowd of 50 pedestrians, the dimension of P

could be anywhere in the range of 150-300 depending on the motion model. In our formulation, we denote

the resulting parameterized motion model as:

xt+1 = f(xt,G,P). (2.7)

2.3.4 Motion Models

Our mixture motion model can include any generic motion model that conforms to Equation (2.7). Here

we describe the three component motion models that currently make up the mixture motion model in our

current implementation.
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2.3.4.1 Reciprocal Velocity Obstacles

RVO is a local collision-avoidance and navigation algorithm. Given each agent’s state at a certain

timestep, it computes a collision-free state for the next timestep(Van Den Berg et al., 2011b). Each agent is

represented as a 2D circle in the plane, and the parameters (used for optimization) for each agent consist of

the representative circle’s radius, maximum speed, neighbor distance, and time horizon (only future collisions

within this time horizon are considered for local interactions).

Let Vpref be the preferred velocity for a pedestrian that is based on the immediate goal location. The

RVO formulation takes into account the position and velocity of each neighboring pedestrian to compute the

new velocity. The velocity of the neighbors is used to formulate the ORCA constraints for local collision

avoidance (Van Den Berg et al., 2011b). The computation of the new velocity is expressed as an optimization

problem for each pedestrian. If an agent’s preferred velocity is forbidden by the ORCA constraints, that agent

chooses the closest velocity that lies in the feasible region:

VRV O = arg max
V /∈ORCA

‖V − Vpref‖. (2.8)

More details and mathematical formulations of the ORCA constraints are given in (Van Den Berg et al.,

2011b). As per Equation (2.7), f returns the states obtained with the admissible velocity that is closest to the

preferred velocity.

2.3.4.2 The Boids Model

Initially developed to simulate the flocking behavior of birds, this model has later been extended to

pedestrian motion in a crowd. Broadly, three rules are enforced on Boids agents:

• Separation: steer to avoid crowding local agents

• Alignment: steer towards the average heading of local agents

• Cohesion: steer to move toward the average position (center of mass) of local agents

Thus, as per Equation (2.7), f is a function of agents’ positions at some specified future time (current

time plus constant). When the predicted distance between the pedestrians gets too low, a separation force is
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computed and added to the attraction force that is pulling the agents toward their goal. The parameters are

radius (size of 2D circle agents) and comfort speed (i.e., speed when no interactions occur).

2.3.4.3 Social Forces Model

The social forces model is defined by the combination of three different forces: the personal motivation

force, social forces, and physical constraints:

• Personal Motivation force (FM ): This is the incentive to move at a certain preferred velocity in a

certain direction.

• Social forces (FS): These are the repulsive forces from other agents and obstacles.

• Physical Constraints (FP ): These are the hard constraints other than the environment and other

agents.

The net force FC = FM + FS + FP then defines an agent’s chosen new velocity. For a detailed

explanation of the method, refer to (Helbing and Molnar, 1995b).

As per Equation (2.7), f is a function of the agents’ positions from which all computed forces are derived.

The parameters are radius and comfort speed.

2.3.5 Microscopic Mixture of Motion Models

We now present the algorithm to compute the mixture motion model, which essentially corresponds

to computing the “best” motion model at any given timestep. In this case, the “best” motion model is the

one that most accurately matches agents’ immediately past states, as per a given error metric. This “best”

motion model is determined by an optimization framework, which automatically finds the parameters P that

minimize the error metric. Wolinski et al. (Wolinski et al., 2014) designed an optimization framework for

evaluating crowd motion models but it computes the optimal parameters in an offline manner for a single

homogenous simulation model. Our framework is online and iteratively computes the best heterogeneous

motion every few frames and chooses the most optimized crowd parameters at a given time. The computation

cost is considerably lower and hence useable for real-time tracking.
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Figure 2.5: Our parameter optimization algorithm used in Figure 2.4. Based on the error metric, we compute
optimal parameters for each motion model. The best motion model (from RVO2, Social Forces, Boids or
LIN) is used for trajectory extraction and to predict the next state.

Formalization Formally, at any timestep t, we define the agents’ (k+1)-states (as computed by the tracker)

St−k:t:

St−k:t =
t⋃

i=t−k
Si. (2.9)

Similarly, a motion model’s corresponding computed agents’ states f(St−k:t,P) can be defined as:

f(St−k:t,P) =
t⋃

i=t−k
f(xi,G,P), (2.10)

initialized with xt−k = St−k and G = St.

At timestep t, considering the agents’ k-states St−k:t, computed states f(St−k:t,P), and a user-defined

error metric error(), our algorithm computes:

Popt,f
t = argmin

P
error(f(St−k:t,P),St−k:t), (2.11)

where Popt,f
t is the parameter set which, at timestep t, leads to the closest match between the states computed

by the motion algorithm f and the agents’ k-states.
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For several motion algorithms {f1, f2, ...}, we can then compute the algorithm which best matches the

agents’ k-states St−k:t at timestep t:

mt = foptt = argmin
f

error(f(St−k:t,P
opt,f
t ),St−k:t), (2.12)

and consequently, the best (as per the error in the error() metric itself) prediction for the agents’ next state

obtainable from the motion algorithms for timestep t+ 1 is:

xt+1 = mt(St). (2.13)

Optimization Algorithm and Error Metric The optimization of crowd parameters is a unique and chal-

lenging problem. Because most simulation methods have several parameters to tune for each agent, even

moderately-sized scenarios with a few dozen agents can become a hundred-dimensional optimization problem.

In total we tested three global optimization approaches: Greedy Algorithm, Simulated Annealing, and

Genetic Algorithm.

For the greedy approach we start by choosing random parameters for every agent. The chosen data

similarity metric is then evaluated to establish a baseline measure of how well the simulation matches the

data. After several iterations, where in each iteration starts with the best set of simulation parameter seen so

far. This new set of parameters is evaluated, whichever set of parameters has the lowest error metric over all

the iterations is chosen as the optimal parameters for the agents.

The main limitation with a greedy approach is that it will get stuck in local minimum in search space and

also the final outcome depends on the starting point. Simulated Annealing addresses this problem. Analogous

with thermodynamics, simulated annealing incorporates a ‘temperature’ parameter into the minimization

procedure. At high temperatures, we explore the parameter space whereas at lower temperature, we restrict

the exploration.

Algorithm 1 gives the pseudocode for the process where:

neighborState(): pick a new random value for a random parameter according to the parameter’s base

distribution

move(): is True iff enew < eold, exp( eold−enew

T ).
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Algorithm 1: Simulated annealing.

1 k ← 0 // initialize loop counter
2 while k < K do
3 T ← temperature(k,K) // compute temperature
4 snew ← neighborState(s) // try new neighbor
5 enew ← cost(s) // compute cost
6 if move(e, enew, T ) then // is new state better?
7 s← snew; e← enew // yes, change state

8 if e < ebest then // did we find a new minimum?
9 sbest ← s; ebest ← e // save new optimum

10 k ← 0 // reset loop counter

11 k ← k + 1 // increase loop counter

temperature(): is K−k
K , k being the number of iterations with no improvement and K the number of such

iterations allowed.

cost(): the cost as returned by the currently used metric.

We also use a Genetic algorithm (Holland, 1992). The underlying optimization technique as algorithm

offers the best compromise between optimization results and speed. The efficiency component is important

as our goal is realtime pedestrian tracking.

Genetic algorithms seek to overcome the problem of local minima in optimization. This is accomplished

by keeping a pool of parameter sets and, during each iteration of the optimization process, creating a new

pool of potential solutions by combining and modifying these parameter sets.

Algorithm 2: Genetic algorithm.

1 pop← initialize() // initialize population
2 while true do
3 selection(pop) // evaluate and select fittest
4 if termination() then // should we terminate?
5 stop // yes, stop loop

6 pop← reproduction(pop) // new generation

Algorithm 2 provides pseudocode for the method given the following functions:

• initialize(): parameters randomly initialized in accordance with the base distribution for each parameter.

• selection(): individuals are sorted according to their score and divided into 3 groups: Best, Middle and

Worst.
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• termination(): the algorithm is terminated after finding K successive loop iterations without any new

optimum.

• reproduction(): based on which group it belongs to, a parameter set is attributed three probabilities α,

β and γ. For each parameter of this individual, α decides if the value is changed or not, β decides if

the value is changed by crossover or mutation and, finally, γ decides which type of mutation is done.

• crossover: a crossover is done by copying a value from an individual belonging to the Best group.

• mutation: a mutation is done by picking a new value at random based on either the base distribution or

the current real distribution of an individual from the Best group (according to γ).

At each iteration, this algorithm evaluates and ranks all possible parameter sets (solutions) currently in

the solution pool. If there have been a certain number of successive iterations without any improvement,

the process is terminated. Otherwise, individual parameter values in each solution have a probability of

being modified. If so, this modification has a probability of being either a crossover or a mutation. If it is

a crossover, a value from the corresponding parameter from a better ranked solution is selected; if it is a

mutation, a new value is sampled from a probability distribution. This probability distribution can either be

the one defined by the user (for instance, a preferred velocity could obey a normal law with mean 1.4m.s−1

and standard deviation 0.3m.s−1) or one that is computed on parameter values from better ranked solutions.

We have tested these algorithms both in terms of how well they minimize the error metric and in terms

of how fast they converge. Figure 2.6 shows the scores after optimization with all three methods, for the

Boids, Social-forces and RVO2 motion models (separately), as well as the Mixture of Motion Models. As

can be observed, the genetic algorithm leads to the lowest scores, followed by the simulated annealing and

greedy algorithms. Note that as expected, the Mixture of Motion Models gives the lowest error scores as it

consistently selects the best motion model for each situation.

The greedy algorithm is here the fastest, followed by the genetic and simulated annealing algorithms.

Note that the Mixture of Motion Models is only marginally slower than the other methods as the optimizations

for the models constituent of the Mixture are performed in parallel. From these comparisons, we chose the

genetic algorithm to generate all further results.

An error metric is also needed to compute the term in Equation (3.9). In our case, we have chosen a metric

that simply computes the average 2-norm between the observed agent positions and the tracker-computed
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Figure 2.6: Comparing the score of the different optimization approaches. Each graph is a range of the scores
(minimum and maximum) and the black dot is the mean score. We compute the score from the normalized
error metric. A lower value indicates better optimization. MMM or the ‘Motion-Model Mixture’ is our
approach.

positions. Formally, this metric is defined at timestep t as follows:

error(f(St−k:t,P),St−k:t) =
t∑

i=t−k
‖Si − xi‖, (2.14)

where the xi are from f(St−k:t,P) as per Equation (2.10).

2.3.6 Adaptive Particle Selection

The performance of a particle filter is proportional to the number of particles used for each pedestrian,

and the process can be expensive for a high number of particles. However, with more particles, the probability

that a pedestrian will be tracked accurately is higher; fewer particles, though computationally less expensive,

lowers the tracking accuracy. As a result, we need to use an appropriate number of particles to balance the

trade-offs between computation cost and accuracy. Ideally, one would use fewer particles most of the time,

increasing their number only when needed. This increase might be necessary when there is a large change in

motion trajectory, lighting, appearance, or partial occlusions, for example.
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To this end, we estimate tracker confidence and particle selection by using the motion model. We analyze

the confidence of our tracker given the number of particles based on combining various metrics to measure

the propagation and motion model reliability. The propagation reliability is a measure of how well the object

matches the initial target candidate and also the last tracked object:

prt = g(‖Ot −Ot−1‖, ‖Ot −O0‖), (2.15)

where prt is the propagation reliability at time t and Ot denotes the object representation at time t. Motion

model reliability is a normalized difference measure between the tracked state and the predicted state f(xt−1)

given by the motion model f :

mmrt+1 = h(‖f(xt−1)− St‖), (2.16)

where mmrt+1 is the motion model reliability at timestep t+ 1 and h is a function varying linearly to the

norm difference of the actual and simulated trajectories.

The combination of these metrics helps us in optimizing the number of active particles needed in the

system. In our Mixture of Motion Models, our system chooses the optimal motion algorithm mt from all

possible motion models {f1, f2, ...} (Equation (2.12)) with the optimal parameter set. Hence the motion

model reliability is always higher compared to systems with homogeneous or non-varying motion models.

mmroptt+1 = h(‖mt(xt−1)− St‖). (2.17)

In this section, we give details of various stages of our algorithm, shown in Figure 3. Our hybrid motion

model consists of two parts, the discrete or the microscopic model and the continuum model. Both these

models return a future pedestrian state. Next, we describe the various components of our approach.

2.3.6.1 Computing Pedestrian Clusters

Our algorithm identifies pedestrian clusters based on a bottom-up hierarchical clustering approach. We

initially assign each pedestrian to a separate cluster, that consists of a single pedestrian. Next we merge these

clusters, by analyzing their geometric proximity and velocities. This proximity a function of the Euclidean
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distance, the speed of each agent and their motion direction. In our experiments we found that a bottom-up

approach is more efficient in crowds composed of small clusters than top-down.

We improve on the group-expand procedure of (McPhail and Wohlstein, 1982) by including many

additional crowd features for clustering the pedestrians. A connectivity graph is constructed (Ge et al., 2009)

among the pedestrians and we measure the graph density based on intra-cluster proximity.

We compute a cluster graph for each cluster. For any cluster l ≥ 1, the vertices of the connectivity graph

CGl correspond to the pedestrians in the cluster. There is an edge between vertex ni and nj if and only if a

pedestrian i and j are temporarily together for some period of time, and their velocities are close to each

other. The density of this graph helps us define intra-cluster proximity as follows. Let el be the total number

of edges in CGl and êl+1 be the minimal number of edges desired in CGl+1 after including pedestrian pi in

CGk. A pedestrian i can be added to an existing cluster of size k if and only if it is connected with at least

half of the existing pedestrians in the cluster, i.e., the degree of ni ≥ d
k

2
e, we then have êl+1 = el + d l

2
e. By

definition, e1 = ê1 = 0. For l ≥ 1, given the basis condition that ê2 = 1 and ê3 = 2, we derive

êk =


(
l

2

2

) when l is even,

l − 1

2
(1 +

l − 1

2
) when l is odd.

(2.18)

Two clusters CGm and CGn satisfy the intra-cluster proximity criterion if

em+n ≥ (êm+n + em − êm + en − ên) (2.19)

2.3.6.2 Macroscopic/Continuum Representation

After estimating every cluster, we calculate the flow per cluster based on Hughes et al. (Hughes, 2003)

continuum crowd behavior. To derive the equations that govern the flow of a pedestrian, we need to combine

the unsteady continuity equation (Hughes, 2003) with the following three hypotheses governing the pedestrian

motion.

• The speed at which pedestrians walk is determined by the density of surrounding pedestrians.

• Pedestrians have a common sense of the task that they face to reach their common destination, such

that any two individuals at different locations having the same potential would see no advantage to

exchanging places
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• Pedestrians seek to minimize their estimated travel time (start position to destination time) but temper

this behavior to avoid extreme densities. This tempering is assumed to be separable, such that

pedestrians minimize the product of their travel time as a function of density.

The above hypotheses lead to the basic governing equations for the flow of a single pedestrian. These

equations are

− δρ

δt
+
δρg(ρ)f2(ρ)

δϕ

δx
δx

+

δρg(ρ)f2(ρ)
δϕ

δy

δy
= 0, (2.20)

and

g(ρ)f(ρ) =
1√

(
δϕ

δx
)2 + (

δϕ

δy
)2

(2.21)

where ϕ is the remaining travel time, which is a measure of the instantaneous goal, ρ is the density of

the crowd, f(ρ) is the speed of pedestrians as a function of density, g(ρ) is a factor related to the preferred

velocity at a given density, and (x, y, t) denotes the horizontal space and time coordinates. This represents

our flow state Yt. Derivation of these equations and for further explanation we direct our readers to Hughes et

al. 2002 (Hughes, 2002).
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2.3.7 Evaluation Metrics

In general, crowd data can be analyzed with a wide variety of similarity metrics, which capture different

aspects of the data. All the metrics capture different aspects of similarity (distance, path length, inter

pedestrian distance, density etc) and are equally important. Here we summarize several metrics tested in this

work. In all the data, we assume the reference data zk consists of a vector of positions for all the pedestrians.

The absolute difference metric (D) computes the total distance in position over all agents over all

timesteps:

Dk = ‖zk − xk‖. (2.22)

The path length metric (L) compares the difference in total length traveled between agents in the

reference data and the simulated agents:

Lk = (zk+1 − zk)− (xk+1 − xk). (2.23)

The inter-pedestrian distance metric (I) compares the difference in average distance (as a 2-norm)

between every pair of agents. If P is the ensemble of all agent pairs P =
⋃
{i, j}, then:

Ik =
∑
P

|xi
k − xj

k| −
∑
P

|zik − zjk|. (2.24)

Finally, the fundamental diagram metric (F) compares the speed of an agent to the density of agents

in its location. This metric is inspired by the field of pedestrian dynamics, where it is commonly used to

measure pedestrian flow rates (e.g., (Curtis and Manocha, 2012)). Our implementation of the metric defines

a “gate” area on the agent’s path (as in (Chattaraj et al., 2009), which allows us to compute the density of

population at an agent’s location (numberAgentsInsideGate
areaOfGate ) when the agent is inside this gate.

Fk = |zk(dk)− ‖vk‖|, (2.25)

where dk is the density at the location of each agent while inside the gate, and the reference data zk is a

function that maps density to speed based on results known from human motion studies.
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2.4 Model Analysis

Our Mixture Motion Model can include any generic motion model that conforms to Equation (2.7). Here

we describe the four component motion models that currently make up the Mixture Motion Model in our

current implementation. We selected 4 motion models: the Reciprocal Velocity Obstacle model (RVO2),

the Boids model, Social-Forces model and the Constant Velocity model (LIN). We analyse why and where

different model succeeded where other models failed. MMM will inherently choose the best-fit model due to

the optimization, this section tries to analyze why one model was chosen over the other (Figure 2.8).

As detailed in Section 2.3.4, they cover complementary ranges of crowd densities. The Social-Forces

model simulates local interactions between pedestrians as sets of repulsive forces. This is representative of

what happens in dense situations, where people may enter in contact with one another. In lower densities,

but still with highly cohesive motions, the Boids model simulates well how each pedestrian aligns his own

motion with his or her nearest neighbors. Finally, in less dense scenarios, trajectories are individualized

and anticipation plays a great role in interactions: RVO2 is the only one of the four techniques capable of

simulating such behaviors.

Low Density Data (3-7 pedestrians): This data category regroups various cases of 3-7 pedestrians crossing

ways. The following are two different categories of low density crowds.

• A mostly uni-directional flow with a maximum of 1-2 pedestrians walking against flow : In this case,

most complex collision avoidance methods performed as good as the constant velocity model.

• Mostly even distribution of flows (i.e. crosswalk) Random pedestrian directions without any major

observable flows : Both RVO and Social forces work good in terms of short-term collision anticipation

and hence fit better to the observed data. Constant velocity works well too in some cases where the

agents are far apart and the chance of collision is lesser.

• Random pedestrian directions without any major observable flows : Social forces and RVO perform

better than the other algorithms. Constant velocity performs the worst.

Medium Density data (8-24 pedestrians): This data category is similar to the previous, except that more

pedestrians are present.
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Figure 2.7: The three different categories of crowds based on increasing level of inter-pedestrian interaction:
1) Mostly unidirectional flow, 2) evenly distributed flow/crossflow, 3) high degree of randomness/no strong
flows visible

• A mostly uni-directional flow with a maximum of 1-4 pedestrians walking against flow : Similar to

what we observed in the last case, most complex collision avoidance methods performed as good as the

constant velocity model.

• Mostly even distribution of flows (i.e. crosswalk) Random pedestrian directions without any major

observable flows: RVO does a better job of anticipating long-term collision avoidance than the other

algorithms. All other algorithms perform poorly.

• Random pedestrian directions without any major observable flows : As previously, social forces

and RVO perform better than the other algorithms. RVO gives a better speed profile than the other

algorithms, because its agents accelerate and decelerate when needed and are better synchronized with

pedestrians. Constant velocity, as expected, performs the worst.

High Density data (more than 25 pedestrians):

• A mostly uni-directional flow with a maximum of 1-6 pedestrians walking against flow: Similar to what

we observed earlier, most complex collision avoidance methods performed as good as the constant

velocity model but as the number of pedestrian walking against the flow increased, it affected the

collision avoidance and the constant velocity become progressively worse.

• Mostly even distribution of flows (i.e. crosswalk): RVO does a better job of anticipating long-term

collision avoidance than the other algorithms. All other algorithms, inclusing social forces, perform

poorly.

• Random pedestrian directions without any major observable flows: RVO2 agents anticipate future

collisions and are spread in a pattern more similar to that of the real pedestrians. All other methods

perform poorly.
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General Trends:

• Fundamental Diagram: Boids-like algorithm gets easily stuck in scense with sharp corners, and the

resulting simulations are far from the observed data. However, the Social-force and RVO2 algorithms

fit the data well; RVO2 ultimately matches the fundamental diagrams better at higher densities. This is

largely due to the Social-force agents displaying instabilities near walls at high densities

• Denser Scenes: Boids-like model lacks anticipation and fails to completely recreate the wanted

behavior; RVO2 is more successful. This is likely due to RVO2 being the only one of the three

methods to incorporate predictive collision avoidance but as the density becomes very high (≥ 50) the

advantage of RVO2 decreased significantly. The convergence of the performance is expected, in part,

because there is little room to anticipate trajectories in dense scenarios with lots of individuals in close

quarters. RVO2 and the Social-force model score similarly in the Fundamental diagram metric for

similar reasons.
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Figure 2.8: Benchmarks: Comparative scores (y-axis, lower is better) of the Boids-like, Social-force and
RVO2 and LIN models at three different densities. Note: The fundamental diagram metric was only analyzed
for medium and high density videos.
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2.4.1 Tracking Evaluation

We use the CLEAR MOT (Keni and Rainer, 2008) evaluation metrics to analyze the performance

analytically. We use the MOTP and the MOTA metrics. MOTP evaluates the alignment of tracks with the

ground truth while MOTA produces a score based on the amount of false positives, missed detections, and

identity switches. These metrics have become standard for evaluation of detection and tracking algorithms in

the computer vision community, and we refer the interested reader to (Keni and Rainer, 2008) for a more

detailed explanation. We analyze these metrics across the density groups and the different motion models

(Table 2.3 and Figure 2.9).

2.4.2 Tracking Results

We highlight the performance of our algorithm based on a Mixture of Motion Models on different

benchmarks, comparing the performance of our algorithm with single, homogeneous motion model methods:

constant velocity model (LIN), LTA (Pellegrini et al., 2009a), Social-Forces (Yamaguchi et al., 2011b),

Boids (Reynolds, 1999b), and RVO2 (Van Den Berg et al., 2011b). LIN models the velocities of pedestrians

as constant, and is the underlying motion model frequently used in the standard particle filter. The other

four models compute the pedestrian states based on optimizing functions, which model collision avoidance,

destinations of pedestrians, and the desired speed. In our implementation, we replace the state transition

process of a standard particle-filtering algorithm with different motion models.

We evaluate some challenging datasets (Bera and Manocha, 2014a) which are available publicly and

also some standard datasets from the pedestrian tracking community. These videos were recorded at 24-30

fps. We manually annotated these videos and corrected the perspective effect by camera calibration We also

compare our performance to a baseline mean-shift tracker (Table 2.4).

For our evaluation, we have divided our system into two phases:

Initialization: Here we initialize the motion model estimation and parameter-optimization system with

hand-drawn or ground truth data for a few initial frames, which is computed offline. For our experiments, we

use the first 10 frames. We compute a score that is used to choose the best-fit model from our motion model

set and the associated parameters.
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Prediction: After learning from the initial data, we use the predicted set of parameters to model the state

transition part of the standard Bayesian inference framework. We iteratively and incrementally recompute the

score and update the motion model. This computation is performed in real time.

We show the number of correctly tracked pedestrians and the number of ID switches. A track is counted

as “successful” when the estimated mean error between the tracking result and the ground-truth value is less

than 0.8 meter in groundspace. The average human stride length is about 0.8 meter and we consider the

tracking to be incorrect if the mean error is more than this value. Our method provides 20% higher accuracy

over LIN for medium density crowds (Table 2.4).

Model / Parameters min max mean
Boids model
radius (m) 0.1 1 0.3
comfort speed (m/s) 1 2 1.5
Social-Forces model
radius (m) 0.1 1 0.3
comfort speed (m/s) 1 2 1.5
RVO2 model
comfort speed (m/s) 1 2 1.5
neighbor distance (m) 2 20 11
radius (m) 0.2 0.8 0.5
agent time horizon (s) 0.1 5 2
obstacle time horizon (s) 0.1 5 2

Table 2.1: Initial motion model parameters for optimization.

Figure 2.9: We visually analyze the data in Table 2.3 normalized MMM (Low Density) as a baseline.

39



Dataset Challenges Density Agents
NDLS-1 BV, PO, IC High 131
IITF-1 BV, PO, IC, CO High 167
IITF-3 BV, PO, IC, CO High 189
IITF-5 BV, PO, IC, CO High 71
NPLC-1 BV, PO, IC Medium 79
NPLC-3 BV, PO, IC, CO Medium 144
IITF-2 BV, PO, IC, CO Medium 68
IITF-4 BV, PO, IC, CO Medium 116
NDLS-2 BV, PO, IC, CO Low 72
NPLC-2 BV, PO Low 56
seq hotel IC, PO Low 390
seq eth BV, IC, PO Low 360
zara01 BV, IC, PO Low 148
zara02 BV, IC, PO Low 204

Table 2.2: Crowd Scenes used as Benchmarks. We highlight many attributes of crowd videos including
density and the number of pedestrians tracked. We use the following abbreviations about the underlying
scene: Background Variations(BV), Partial Occlusion(PO), Complete Occlusion(CO), and Illumination
Changes(IC).

LIN Boids Social-Forces RVO2 MMM
LD MD HD LD MD HD LD MD HD LD MD HD LD MD HD

MOTP 64.42% 52.82% 40.31% 67.24% 57.10% 43.14% 70.52% 61.33% 49.88% 72.19% 63.17% 51.31% 73.98% 69.23% 54.29%
MOTA 49.42% 35.3% 31.37% 50.59% 26.42% 30.88% 53.28% 44.19% 33.51% 53.95% 48.81% 35.83% 54.18% 50.16% 38.83%

Table 2.3: We compare the MOTA and MOTP values across the density groups and the different motion
models.

2.4.3 Implementation Details

We tested these algorithms on an IntelHaswell, Corei7-4771 Processor (4 Cores) with an 8MB Cache, 3.90

GHz and IntelHD Graphics 4600. Our work is implemented in C++, and some components use OpenMP and

OpenCL toexploit multiple cores.We adopted a agent-level parallelism: individual pedestrian computations

are distributed across the CPU cores (except for the motion-model computations, where pedestrian behavior

is interlinked and tasks are highly sequential)
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High Density Medium Density Low Density
NDLS-1 IITF-1 IITF-3 IITF-5 NPLC-1 NPLC-3 IITF-2 IITF-4 NDLS-2 NPLC-2
ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS

LIN 53 17 63 27 51 35 59 18 67 15 60 29 36 22 52 36 68 23 69 21
Boids 58 15 66 23 56 33 65 14 73 13 65 26 40 19 52 35 70 22 72 19

Social Forces 56 16 66 26 52 33 62 15 74 11 68 23 41 19 59 31 75 18 72 14
RVO2 57 14 69 20 53 29 64 13 71 10 64 26 42 18 53 32 72 20 74 16

MeanShift 27 32 31 38 23 52 34 29 39 36 41 31 22 33 39 45 31 28 45 28
MMM 63 12 73 19 57 27 67 10 77 7 71 20 44 16 63 28 79 17 78 14

Table 2.4: We compare the percentage of successful tracks (ST) and ID switches (IS) of our Mixture Motion
Model algorithm (MMM) with homogeneous motion models - LIN, Boids, Social Force, LTA, RVO2, and a
baseline mean-shift tracker. Our method provides higher accuracy compared to homogeneous motion models
and lesser ID switches. The benefits of our approach are higher, as the crowd density increases. These
datasets are publicly available at http://gamma.cs.unc.edu/RCrowdT/.
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2.5 Limitations, Conclusions, and Future Work

We present a real time algorithm for pedestrian tracking in crowded scenes that are needed for next

generation shared-environment human-robot collaboration systems as well as design of architectural models

and urban environments. Our algorithm provides a good balance between accuracy and runtime performance.

We highlight its performance on many pedestrian datasets, showing that it can track crowded scenes in real

time on a PC with a multi-core CPU. Furthermore, we highlight the improved accuracy and the performance

in complex benchmarks with low to medium density crowds.

Our approach has some limitations related to our motion model set. Our motion model set does not

take into account physiological and psychological pedestrian traits. All pedestrians are modeled with the

same sensitivity towards gender and density; our model set does not take into account heterogeneous agent

characteristics, which affect the final behavior. These behavior characteristics can introduce additional errors

in our confidence estimation. In practice, the performance of the algorithm can vary based on various other

attributes of the input video.

As part of our future work, we would like to incorporate the personality characteristics of the pedestrians,

along with other characteristics, such as “fundamental diagrams” from pedestrian dynamics. We would like

to parallelize the approach on a GPU to handle more complex pedestrian datasets in realtime. Finally, we

would like to evaluate their performance with robots, e.g. service robots or autonomous vehicles, navigating

through pedestrians.
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CHAPTER 3

Realtime Pedestrian Path Prediction using Global and Local Movement Patterns

3.1 Introduction

In Chapter 2, we discussed how we model different crowds and improve the motion model for tracking.

In this chapter we will present algorithms to improve pedestrian prediction which builds those tracking

algorithms. In everyday life, the use of robots is increasing. More and more robots are being introduced

into human surroundings. Thus, it becomes increasingly important to develop safe and reliable techniques

for human-robot interaction. It is necessary for robots working around humans to be able to successfully

navigate to their goal positions in dynamic environments with multiple people moving around them. A robot

in a dynamic environment thus needs the ability to sense, track, and predict the position of all people moving

in its workspace to navigate without collision in complicated environments.

As mobile robots are increasingly used for service tasks, it is important for these robots to perceive the

intent and trajectory of humans for collaborative collision avoidance. In the context of autonomous driving, it

is important to compute precise estimates of the current and future positions of each pedestrian with respect to

the moving vehicle for collision-free navigation. In computer vision and multimedia applications, pedestrian

movement detection and prediction is used for detecting abnormal activities or behaviors.

Pedestrian path prediction from videos or other sensor data is regarded as a challenging problem. In

general, pedestrians have varying behaviors and can change their speed to avoid collisions with the obstacles

in the scene and other pedestrians. In high density or crowded scenarios, the pairwise interactions between

the pedestrians tend to increase significantly. As a result, the highly dynamic nature of pedestrian movement

makes it hard to estimate their current or future positions. Furthermore, many applications need real-time

prediction capabilities to estimate the positions of large number of pedestrians in a short time.

Some of the commonly used algorithms for predicting the path of pedestrians are based on tracking

filters. These include Kalman filter, particle filter, and their variants. Other approaches are based on hidden

Markov models. Many of these trackers also use motion models for pedestrian movement to improve the
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Figure 3.1: Improved Prediction We demonstrate the improved accuracy of our pedestrian path prediction
algorithm (GLMP) over prior real-time prediction algorithms (BRVO, Const Vel, Const Accel) and compare
them with the ground truth. We observe upto 18% improvement in accuracy.

prediction accuracy. The simplest motion models are based on constant velocity or constant acceleration

assumptions (Del Bimbo and Dini, 2011). Other algorithms are based on sophisticated motion models

based on social forces (Helbing and Molnar, 1995a), reciprocal velocity obstacles (Van Den Berg et al.,

2011a), dynamic social behaviors (Pellegrini et al., 2009a), etc. to model pairwise interactions between the

pedestrians, or combine Bayesian statistical inference with velocity-space reasoning (Kim et al., 2014) for

computing individualized motion model for each pedestrian. In practice, all these methods only capture local

interactions and movements, which are mostly useful for short-term deviations from goal-directed paths.

However, they may not work well in dense situations where the pedestrians make frequent stops or long-term

predictions.

Main Results: In this chapter, we present a novel algorithm to learn pedestrian local and global movement

patterns from sparse 2D pedestrian trajectory data using Bayesian Inference. Our approach is general, makes

no assumption about pedestrian movement or density, and performs no pre-computation. We use the trajectory

data information over a sequence of frames to predict the future pedestrian states using Ensemble Kalman
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Figure 3.2: We highlight various components of our real pedestrian path prediction algorithm. Our approach
computes both local and global movement patterns using Bayesian inference from 2D trajectory data and
combines them to improve prediction accuracy.

Filters (EnKF) and Expectation Maximization (EM). The state information is used to compute movement-flow

information of individual pedestrians and coherent pedestrian clusters using a mixture of motion models.

The global movement features are combined with local motion patterns computed using Bayesian reciprocal

velocity obstacles to compute the predicted state of each pedestrian. The combination of Global and Local

Movement Patterns (i.e. GLMP) corresponds to computing dynamically varying individualized motion model

for each pedestrian. Overall, our approach offers the following benefits:

• Our algorithm is general and can compute global and local movement patterns in real-time with no

prior learning.

• We can robustly handle sparse and noisy trajectory data generated using current online pedestrian

trackers.

• We observe upto 18% increase in prediction accuracy as compared to prior real-time methods that are

based on simple filters or only local movement patterns.

We highlight the performance of GLMP to predict the positions of pedestrians using trajectory data

extracted from a variety of video datasets consisting of 30-400 pedestrians. Our approach can predict

the positions of tens of pedestrians in around 40-50 milliseconds over long-intervals. Furthermore, we

demonstrate its benefits over prior real-time prediction algorithms.

The rest of our chapter is organized as follows. Section II gives a brief overview of prior work in

pedestrian path prediction, tracking, and motion models. We present our movement flow learning algorithm
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in Section III and use that for path prediction. We highlight its performance on different crowd video datasets

in Section IV and compare its performance with prior methods.

3.2 Related Work

In this section, we give a brief overview of prior work on motion models and pedestrian path prediction.

3.2.1 Path Prediction

Fulgenzi et al. (Fulgenzi et al., 2007) use a probabilistic velocity-obstacle approach combined with the

dynamic occupancy grid; this method assumes constant linear velocity motion of the obstacles. DuToit et

al. (Du Toit and Burdick, 2010) present a robot planning framework that takes into account pedestrians’

anticipated future location information to reduce the uncertainty of the predicted belief states. Other

techniques use potential-based approaches for robot path planning in dynamic environments (Pradhan et al.,

2011). Some methods learn the trajectories from collected data. Ziebart et al. (Ziebart et al., 2009a) use

pedestrian trajectories collected in the environment for prediction using Hidden Markov Models. Bennewitz

et al. (Bennewitz et al., 2005) apply Expectation Maximization clustering to learn typical motion patterns

from pedestrian trajectories, before using Hidden Markov Models to predict future pedestrian motion. Henry

et al. (Henry et al., 2010) use reinforced learning from example traces, estimating pedestrian density and flow

with a Gaussian process. Kretzschmar et al. (Kretzschmar et al., 2014) consider pedestrian trajectories as a

mixture probability distribution of a discrete as well as a continuous distribution and then use Hamiltonian

Markov chain Monte Carlo sampling for prediction. Kuderer et al. (Kuderer et al., 2012) use maximum

entropy based learning to learn pedestrian trajectories and use a hierarchical optimization scheme to predict

future trajectories. Many of these methods involve a priori learning, and may not work in new or unknown

environments.

Trautman et al. (Trautman et al., 2013) have developed a probabilistic predictive model of cooperative

collision avoidance and goal-oriented behavior for robot navigation in dense crowds. Guzzi et al. (Guzzi

et al., 2013) present a distributed method for multi-robot human like local navigation. Variations of the

Bayesian filters for pedestrian path prediction have been studied in (Schneider and Gavrila, 2013; Mogelmose

et al., 2015). Some of these methods are not suitable for real-time applications or may not work well for

dense crowds.
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Figure 3.3: Prediction Outputs We test our approach on a variety of crowd datasets with varying density.
Our approach had a benefit of upto 18% better prediction at a 5 second time horizon for some high-density
datasets. Yellow lines represent past tracked trajectories whereas the red dots represent predicted motion.

3.3 Real-time Pedestrian Path Prediction

In this section, we present our real-time algorithm that learns movement flows from real-world pedestrian

2D trajectories that are extracted from video. Our approach involves no pre-computation or learning, and can

be combined with real-time pedestrian trackers.

Fig. 2 gives an overview of our approach, including computation of movement flows and using them

for pedestrian prediction. The input to our method consists of a live or streaming crowd video. We extract

the initial set of trajectories using an online particle-filter based pedestrian tracker. These trajectories are

time-series observations of the positions of each pedestrian in the crowd. The various components used in

our algorithm are shown in the figure and explained below. The output is the predicted state of each agent

that is based on learning the local and global pedestrian motion patterns.

3.3.1 Pedestrian State Estimation

The trajectories extracted from a real-world video tend to be noisy and may have incomplete tracks (En-

zweiler and Gavrila, 2009); thus, we use Bayesian-inference technique to compensate for any errors and to

compute the state of each pedestrian (Kim et al., 2014). At each time step, the observation of a pedestrian

computed by a tracking algorithm corresponds to the position of each pedestrian on the 2D plane, denoted

as zt ∈ R2. The observation function h() provides zt of each pedestrian’s true state x̂t with sensor error

r ∈ R2, which is assumed to follow a zero-mean Gaussian distribution with covariance Σr:

zt = h(x̂t) + r, r ∼ N (0,Σr). (3.1)

h() is the tracking sensor output.
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Figure 3.4: Global vs Local Movement Patterns The blue trajectories indicate prior tracked data. The red
dots indicate local predicted patterns retrieved from learning macro and microscopic simulation models, The
shaded (green-blue) path represent the global movement patterns learned from the path data in that cluster

We use the notion of a state-transition model f() which is an approximation of true real-world pedestrian

dynamics with prediction error q ∈ R6, which is represented as a zero-mean Gaussian distribution with

covariance Σq:

xt+1 = f(xt) + q, q ∼ N (0,Σq). (3.2)

We can use any local navigation algorithm or motion model for function f(), which computes the local

collision-free paths for the pedestrians in the scene. More details are given below. Our algorithm uses an

Ensemble Kalman Filter (EnKF) and Expectation Maximization (EM) with the observation model h() and

the state transition model f() to estimate the most likely state x of each pedestrian (Kim et al., 2014). In

particular, EnKF predicts the next state based on the transition model and the covariance matrix Σq and

updates them whenever a new observation is available. The EM step computes Σq to maximize the likelihood

of the state estimation.

Pedestrian Clusters Our approach is targeted towards computing the movement flows of pedestrians in

dense settings. It is not uncommon for some nearby pedestrians to have similar flows. As a result, we compute

clusters of pedestrians in a crowd based their positions, velocity, inter-pedestrian distance, orientations, etc.

In particular, we use a bottom-up hierarchical clustering approach, as they tend to work better for small

clusters. Initially, we assign each pedestrian to a separate cluster that consists of a single pedestrian. Next, we

merge these clusters based on computing the distance between various features highlighted above.
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Our approach is based on group-expand procedure (McPhail and Wohlstein, 1982) and we include many

pedestrian movement related features to compute the clusters. We compute a connectivity graph among

the pedestrians and measure the graph density based on intra-cluster proximity 2. Eventually, we use a

macroscopic model to estimate the movement of each cluster and use this model to predict their global

movement.

3.3.2 Global Movement Pattern

A key aspect of our approach is to compute global movement patterns that can be used to predict the state

of each pedestrian. These movement patterns describe the trajectory-level motion or behavior at a certain

position at time frame t. The patterns include the movement of the pedestrian during the past w frames,

which we call time window, and the intended direction of the movement (preferred velocity) at this position.

In our formulation, we represent each movement feature vector as a six-dimensional vector:

b = [p vavg vpref ]T , (3.3)

where p, vavg, and vpref are each two-dimensional vectors representing the current position, average velocity

during past w frames, and estimated preferred velocity computed as part of state estimation, respectively.

vavg can be computed from (pt − pt−w)/w ∗ dt, where dt is the time step.

We use the notion of average velocity over the last w frames as that provides a better estimate of

pedestrian movement. In a dense setting, some pedestrians may suddenly stop or change their local directions

as they interact with other pedestrians. As a result, the duration of the time window, w, is set based on

the characteristics of a scene. If we use small time windows, the movement flows will be able to capture

the details in dynamically changing scenes. On the other hand, larger time windows tend to smooth out

abrupt changes in pedestrian motion and are more suitable for scenes that have little change in pedestrians’

movement.

At every w steps, we compute the new trajectory features for each pedestrian in the scene, using

Equation 4.1. Moreover, we group the similar features and find K most common trajectory patterns, which

we call global movement patterns. We use recently observed behavior features to learn the time-varying
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movement flow. This set of K global movement patterns B = {B1, B2, ..., BK} is computed as follows:

argmin
B

K∑
k=1

∑
bi∈Bk

dist(bi, µk), (3.4)

where bi is a movement feature vector, µk is a centroid of each flow movement pattern, and dist(bi, µk) is a

distance measure between the arguments. In our case, the distance between two feature vectors is computed

as

dist(bi, bj) = c1 ‖pi − pj‖

+ c2

∥∥∥(pi − vavg
i w dt)− (pj − vavg

j w dt)
∥∥∥

+ c3

∥∥∥(pi + vpref
i w dt)− (pj − vpref

j w dt)
∥∥∥ ,

(3.5)

which corresponds to the weighted sum of the distance among three points: current positions, previous

positions and estimated future positions that are extrapolated using vpref , c1, c2, and c3 as the weight values.

Comparing the distance between the positions rather than mixing the points and the vectors eliminates the

need to normalize or standardize the data. We use the movement feature of the cluster to compute the

predicted state at time t, Sg
t .

3.3.3 Local Movement Pattern

During each frame, some of the pedestrians are modeled as discrete agents, while the clusters are treated

using macroscopic techniques. Based on the observations and state information, we estimate the motion

model for these discrete agents and pedestrian clusters. For each individual pedestrian represented as a

discrete agent, we compute the motion model that best fits its position as tracked over recent frames i.e. we

compute the features per-agent and predict motion patterns locally. We choose the “best” local motion model

from a fixed set of choices. The common choices are based on social forces, reciprocal velocity obstacles or

Boids. In our case, the “best” motion model is the one that most accurately matches the immediate past states

based on a given error metric. This “best” motion model is computed using a local optimization algorithm 2,

which automatically finds the motion model parameters that minimize that error metric.

A motion model (microscopic or macroscopic) is defined as an algorithm f (defined in Equation 3.2) that

starts with a collection of agent states Xt, and computes the new states Xt+1 for these agents. It represents

50



their motion over a timestep towards the agents’ immediate goals G:

Xt+1 = f(Xt,G,P), (3.6)

where P denotes the individual pedestrian parameters. Formally, at any timestep t, we define the agents’

(k+1)-states (as computed by the tracker and state estimation) St−k:t:

St−k:t =
t⋃

i=t−k
Si. (3.7)

Similarly, the motion model corresponding to computed agents’ state f(St−k:t,P) can be defined as:

f(St−k:t,P) =

t⋃
i=t−k

f(Xi,G,P), (3.8)

initialized with Xt−k = St−k and G = St. At timestep t, considering the agents’ k-states St−k:t, computed

states f(St−k:t,P) and a user-defined error metric error(), our algorithm computes:

Popt,f
t = argmin

P
error(f(St−k:t,P),St−k:t), (3.9)

where Popt,f
t is the parameter set which, at timestep t, results in the closest match between the states computed

by the motion algorithm f and the agents’ k-states.

3.3.4 Prediction Output

For every pedestrian, we compute both the global and local movement patterns separately. In practice,

we observed that for lower density scenarios, local movement patterns are more useful than global patterns

and vice-versa. Our final predicted state is a weighted average of the individual predicted states generate

from the local and global patterns as:

Sp
t = (1− w) ∗ Sl

t + w ∗ Sg
t , (3.10)

where Sp
t is the final predicted state at time t, Sl

t is the state predicted from the local patterns and the Sg
t is

the state predicted from global patterns or from the movement flows. As a general rule of thumb, w varies
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Figure 3.5: Improved Prediction We demonstrate the improved accuracy of our pedestrian path prediction
algorithm (GLMP) over prior real-time prediction algorithms (BRVO, Const Vel, Const Accel).

from 0 to 1 and is computed based on the pedestrian density. We use a larger weight for higher density. In

order to perform long-term predictions (5-6 seconds or even longer), we tend to increase w as the global

movement patterns provide better estimates for pedestrian position.

3.4 Analysis

In this section, we highlight the prediction results using GLMP algorithm and compare its performance

with prior method. We have applied it to the 2D trajectories generated from different crowd videos and

compared the prediction accuracy with the ground truth data, that was also generated using a pedestrian

tracker. The underlying crowd videos have different pedestrian density corresponding to low (i.e. less

than 1 pedestrian per squared meter), medium (1-2 pedestrians per squared meter), and high (more than 2

pedestrians per squared meter). We highlight the datasets, their crowd characteristics, and the prediction

accuracy of different real-time algorithms for short-term and long-term prediction in Table 1. We also analyze

the accuracy of our appraoch based on varying the pedestrian density (Fig. 7) and the frame sampling rate
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(Fig. 8). The performance of the method with noisy data (i.e sensor noise) is also analyzed. Finally, we

perform a qualitative and quantitative comparison to other real-time pedestrian path prediction algorithms.

ConstVelocity Kalman Filter BRVO GLMPDataset Challenges Density # Tracked
1 sec 5 secs 1 sec 5 secs 1 sec 5 secs 1 sec 5 secs

NDLS-1 BV, PO, IC High 131 55.3% 32.0% 53.1% 37.9% 56.5% 42.0% 60.2% 51.2%
IITF-1 BV, PO, IC, CO High 167 63.5% 33.4% 63.9% 39.1% 65.3% 41.8% 71.2% 50.5%
IITF-3 BV, PO, IC, CO High 189 61.1% 29.1% 63.6% 31.0% 67.6% 37.5% 68.4% 45.7%
IITF-5 BV, PO, IC, CO High 71 59.2% 28.8% 61.7% 29.1% 62.9% 30.1% 64.6% 40.0%

NPLC-1 BV, PO, IC Medium 79 76.1% 63.9% 78.2% 65.8% 79.9% 69.0% 82.3% 72.5%
NPLC-3 BV, PO, IC, CO Medium 144 77.9% 70.1% 79.1% 71.9% 80.8% 74.4% 84.3% 78.1%
Students BV, IC, PO Medium 65 65.0% 58.2% 66.9% 61.0% 69.1% 63.6% 72.2% 66.8%
Campus BV, IC, PO Medium 78 62.4% 57.1% 63.5% 59.0% 66.4% 59.1% 69.6% 59.5%
seq hotel IC, PO Low 390 74.7% 67.8% 76.7% 68.3% 76.9% 69.2% 79.5% 70.1%

Street IC, PO Low 34 78.1% 70.9% 78.9% 71.0% 81.4% 71.2% 83.8% 72.7%

Table 3.1: Crowd Scene Benchmarks: We highlight many attributes of these crowd videos, including density
and the number of tracked pedestrians. We use the following abbreviations about some characteristics of
the underlying scene: Background Variations (BV), Partial Occlusion (PO), Complete Occlusion (CO) and
Illumination Changes (IC). We highlight the results for short-term prediction (1 sec) and long term prediction
(5 sec). We notice that our GLMP algorithm results in higher accuracy for long-term prediction and dense
scenarios. More details are given in Section IV(B).

We include comparisons to constant velocity (ConstVelocity) and constant acceleration (ConstAccel)

motion models, which are widely used for pedestrian tracking and prediction in robotics and computer

vision (Del Bimbo and Dini, 2011). We also compare the accuracy with recent methods that use more

sophisticated motion models (LTA and ATTR) to compute local movement patterns (Pellegrini et al., 2009a;

Yamaguchi et al., 2011a). Finally, we also compare the accuracy with the Bayesian reciprocal velocity obstacle

(BRVO) algorithm (Kim et al., 2014) that computes a more individualized motion model for estimating local

movement patterns.

3.4.1 Noisy Data

Sensor noise is an important concern in pedestrian prediction algorithms. In order to evaluate the impact

of noise, we add synthetic noise to the datasets and compare the performance of GLMP vs. other algorithms

on these benchmarks: IITF (Bera and Manocha, 2014b), ETH and Campus (Pellegrini et al., 2009b) datasets.

Fig. 6 compares the prediction accuracy of GLMP, constant velocity, constant acceleration and BRVO, by

comparing the predicted positions to the actual ground truth data extracted using pedestrian trackers. We use

these noise levels, 0.05m, 0.1m, and 0.15m to simulate different sensor variations. During the prediction step,

we assume that no further information is given when we are predicting the future state, and our best guess is
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that the pedestrians move according to their preferred velocity computed using the movement patterns. For

GLMP, the pedestrian’s movement direction changes when there is any interaction with obstacles or other

pedestrians as observed based on local and global movement patterns. Fig. 7 shows the fraction of correctly

predicted paths within varying accuracy thresholds. At an accuracy threshold of 0.5m, GLMP has higher

accuracy than BRVO and offers considerable benefits over constant velocity, constant acceleration models

even with little noise. As the noise increases, the benefit in prediction accuracy using GLMP also increases.

3.4.2 Long-term Prediction Accuracy

Being able to predict a trajectory over a longer time-horizon is important for service robots and au-

tonomous vehicles. Our approach is able to perform long-term prediction (5-6 seconds) with much higher

accuracy than prior methods (see Table 1).

We use a simple prediction metric to evaluate the accuracy of both, long and short term prediction. A

prediction is counted as “successful” when the estimated mean error between the prediction result and the

ground-truth value at that time instance is less than 0.8 meter in ground space coordinates. The average

human stride length is about 0.8 meter and we consider the prediction to be incorrect if the mean error is

more than this value. We define prediction accuracy as the ratio of the number of “successful” predictions

and total number of tracked pedestrians in the scene. We use our algorithm for long and short term prediction

across a large number of datasets, highlighted in Table 1.

Figure 3.6: Prediction Accuracy vs. Sensor Error (higher is better) We increase the sensor noise (Gaus-
sian) from left to right and highlight the prediction accuracy across various distance thresholds. The X-axis
represents the percentage of correctly predicted paths within varying accuracy thresholds. In this GLMP
results in more accurate predictions, as compared to BRVO, Constant Velocity, Constant Acceleration. As the
sensor noise increases (c), we observe more significant benefit.
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3.4.3 Varying the Pedestrian Density

We use a variation of crowd videos with different densities (Low, Medium and High) and compare

GLMP’s error to that of BRVO, constant velocity and constant acceleration models (see Fig. 3.7). Both the

constant velocity and constant acceleration models have large variations in error for different regions of the

scenario with varying densities. In contrast, the GLMP approach performs well across all densities because it

can dynamically adapt the parameters for each agent for each frame and learn global as well as local motion

patterns. We observe higher accuracy benefits in high density scenarios due to the computation of global

movement patterns.

Figure 3.7: Errors for varying Pedestrian Densities (lower is better). In low-density scenarios, local
movement patterns (e.g BRVO) are able to predict the positions well, but are more accurate than const.
velocity and const. acceleration. We observe improved accuracy with GLMP, as the pedestrian density
increases.

3.4.4 Varying the Sampling Rate

GLMP works very well on data with very low frame-rate, when the video or data is sampled at large

intervals. In low FPS videos, there is less temporal direct pixel overlap between frames. In a way, this is also

a metric for evaluating the accuracy of our prediction algorithm. In order to evaluate the performance, we

evaluated the accuracy on the Street, seq hotel, seq eth and IITF datasets at varying frame-rates. Fig. 3.8

shows the graph of the mean error versus the sampling interval. The graph in the figure shows that our method
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performs very well compared to BRVO, constant velocity and constant acceleration model across all the

sampling rates.

Figure 3.8: Error vs Sampling Interval As the sampling interval increases, the error from Constant Velocity,
Constant Acceleration and BRVO grows much larger than that from GLMP.

3.4.5 Comparison with Prior Methods

We directly compare our results with the prediction results of LTA (Pellegrini et al., 2009b) and ATTR

(Yamaguchi et al., 2011a), which report performance numbers for some of the same benchmarks. Unlike

GLMP, both these methods require offline preprocessing or annotation. We also compare GLMP with BRVO

along with LTA and ATTR on Street, NDLS, IITF, seq hotel and seq eth datasets, all sampled every 1.5

seconds, and measure mean prediction error for every agent in the scene during the entire video sequence.

The metric used was error reduction comparison, and is measured as improvement in percentage of

error reduction over the LIN model for different algorithms. The results are shown in Fig. 3.9. Our method

outperforms LTA and ATTR with 24-47% error reduction rate across the three different scenarios. LTA and

ATTR use the ground truth destinations for prediction; LTA+D and ATTR+D use destinations learned offline,

as explained in (Yamaguchi et al., 2011a); ATTR+D uses grouping information learned offline. Even though

GLMP is an online and real-time method, it shows significant improvement in prediction accuracy on all the

datasets, producing less error than other approaches.
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Figure 3.9: Error Reduction Comparison We compare the improvements of our method, LTA, ATTR and
BRVO over LIN (linear velocity) model. Our method (GLMP) outperforms LTA, ATTR with 24-47% error
reduction rate in all three different scenarios.

3.4.6 Implementation Details

We tested these algorithms on an IntelHaswell, Corei7-4771 Processor (4 Cores) with an 8MB Cache, 3.90

GHz and IntelHD Graphics 4600. Our work is implemented in C++, and some components use OpenMP and

OpenCL toexploit multiple cores. We adopted a agent-level parallelism: individual pedestrian computations

are distributed across the CPU cores (except for the motion-model computations, where pedestrian behavior

is interlinked and tasks are highly sequential)

3.5 Limitations, Conclusions, and Future Work

We present a novel real-time algorithm for pedestrian path prediction. The main idea is to learn the local

and global movement patterns using Bayesian inference. Our approach can handle low as well as high density

videos and is useful for short-term and long-term prediction. We have highlighted its performance on many

benchmarks and demonstrate the improvements in accuracy over prior real-time algorithms.

Our approach has some limitations. The underlying formulation does not model many other aspects of

pedestrian behavior, including physiological and psychological pedestrian traits as well as age, gender or

external environmental factors. The estimation techniques relies on Bayesian inferences and that may not work
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well in some cases. In terms of future work, we would like to overcome these limitations. Furthermore, we

would like to evaluate their performance with robots, e.g. service robots or autonomous vehicles, navigating

through pedestrians.
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CHAPTER 4

Learning Pedestrian Behaviors

4.1 Introduction

Modeling and classifying the behavior of different pedestrians in a crowd is an important problem in

various domains including psychology, robotics, pedestrian dynamics, and behavior learning. Even simple

tasks like walking towards a goal position involve several complex decisions such as figuring out the most

efficient path or route, and choosing between the various available paths to avoid collisions. According to

Convergence Theory (Turner and Killian, 1987), a well-known approach used in sociology and economics,

crowd behavior is not a sole product of the crowd itself; rather, it is defined by the individual pedestrians in

that crowd. As a result, it is important to accurately predict the behavior of individuals and their interactions

with the environment to capture realistic, heterogeneous crowd behaviors.

Recent advances in sensor technologies have made it easier to capture high resolution videos of pedes-

trians and crowds. Moreover, surveillance cameras are frequently used in public places and buildings for

monitoring human behaviors. In this chapter, we address the problem of classifying the behaviors of different

pedestrians in a crowd video based on their movement patterns and use these patterns for crowd behavior

prediction. Besides surveillance, these techniques are also useful for architectural design and collision-free

navigation of robots or autonomous vehicles in crowded scenarios.
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Figure 4.1: Crowd Behavior Learning/Prediction: Our approach can automatically classify the behavior
of each pedestrian in a large crowd. We highlight its application for the 2017 Presidential Inauguration
crowd video at the National Mall at Washington, DC (courtesy PBS): (1) original aerial video footage
of the dense crowd; (2) a synthetic rendering of pedestrians in the red square based on their personality
classification: aggressive (orange), shy (black), active (blue), tense (purple), etc; (3) a predicted simulation
of 1M pedestrians in the space with a similar distribution of personality traits.

Many factors including biological, developmental, and situational variations, along with individual

personalities, govern people’s overall behavior. We mainly focus on capturing the variations in behavior

that arise as humans navigate the physical world and avoid collisions. In general, categorizing the variety of

personalities that humans exhibit can be hard. Psychologists have proposed different models to represent

these variations, but they have some limitations (Harvey et al., 1995). Therefore, we base our classification
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on Personality Trait Theory, which proposes that a wide range of variations in behavior is primarily the result

of a small number of underlying traits. It is also important to model many external or environmental factors,

including surrounding pedestrians and the crowd’s movement flow for estimation and prediction.

Main Results: We present a novel learning algorithm to classify pedestrian behaviors based on their

movement patterns. We extract the trajectory of each pedestrian in a video and use a combination of Bayesian

learning and pedestrian dynamics techniques to compute the local and global characteristics at interactive

rates. The local characteristics include the time-varying motion model that is used to compute the personality

traits. We also present new statistical algorithms to learn high-level characteristics and global movement

patterns. We combine these characteristics with Eysenck’s 3-factor PEN model (Eysenck and Eysenck, 1985)

and characterize the personality into six weighted behavior classes: aggressive, assertive, shy, active, tense,

and impulsive. We also use the individual personalities to predict the state of the crowd under different

environmental scenarios.

To the best of our knowledge, this is the first approach that can automatically identify the behavior

of each pedestrian in a crowd. We have evaluated its accuracy with a user study (88.48%) and evaluated

its performance on different videos with tens of pedestrians. One example is the large crowd gathered in

Washington, DC for the Presidential Inauguration (January 2017) using PBS HD video footage (see Figure 1).

We also want to be clear and mention that our definition for behavior is restricted to specific pedestrian level

“motion patterns” observed in crowds. Our approach offers many benefits:

1. Robust: Our approach is robust, can account for noise in the pedestrian trajectories, and classifies the

behavior using time-varying pedestrian movement dynamics.

2. General: Our approach is applicable to indoor and outdoor crowd videos and makes no assumption about

their size or density.

3. Crowd Analysis and Prediction: Our approach can be used to analyze and estimate the future movement

or behavior of the crowd. Furthermore, it can be used to predict different scenarios based on the behaviors and

global characteristics, e.g., the distribution and density of a large crowd at the National Mall in Figure 4.1.

The rest of the chapter is organized as follows. Section 2 provides an overview of related work in

video-based crowd analysis and personality models. We introduce the terminology and present our algorithm

for computing the local and global characteristics in Section 3. We highlight the performance on challenging

benchmarks and describe results from our user evaluation in Section 4.
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Figure 4.2: Our method takes a streaming crowd video as an input. We compute the state of pedestrians in
the crowd, as explained in Section 3. Based on the state information, we learn local and global behavior
properties, which are combined for behavior classification and prediction.

4.2 Related Work

In this section, we give a brief overview of prior work on video-based crowd analysis, behavior classifi-

cation, and personality models.

4.2.1 Video-Based Crowd Analysis

There is extensive work in computer vision, multimedia, and robotics that analyzes the behaviors and

movement patterns in crowd videos, as surveyed in (Li et al., 2015; Borges et al., 2013). The main objectives

of these work include human behavior understanding and crowd activity recognition for detecting abnormal

behaviors (Hu et al., 2004). Many of these methods use a large number of training videos to learn the patterns

offline (Zen and Ricci, 2011; Solmaz et al., 2012). Other methods utilize motion models to learn crowd

behaviors (Pellegrini et al., 2012) or use machine learning algorithms (Zhou et al., 2012b; Cheung et al., 2016).

Some techniques focus on classifying the most common behavior patterns in a given scene using offline

learning. These include activity prototypes using a convex learning algorithm (Zen and Ricci, 2011) and

detection of popular behavior patterns like bottlenecks, fountainheads, lanes, arches, and blocking (Solmaz

et al., 2012).

Crowd behavior learning using motion or simulation has been used for different applications. Parameter

learning has been used to predict pedestrian motion for tracking (Pellegrini et al., 2012). However, these
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techniques use either manual selection or offline learning techniques to estimate the goal positions. Other

researchers have used low-density tracking data to learn agent intentions (Musse et al., 2007) or use online

Bayesian motion-prediction methods for human-robot interactions, data-driven crowd simulation (Kim et al.,

2016), and offline training (Zhong et al., 2015).

4.2.2 Pedestrian Behavior Modeling

Different approaches have been used to model pedestrian behavior. (Funge et al., 1999) use cognitive

modeling to empower agents to plan and perform high-level tasks (Godoy et al., 2016). Other approaches

use personality models to simulate the behavior of pedestrians and crowds including the OCEAN model (Du-

rupinar et al., 2011), the MBTI model (Salvit and Sklar, 2011), and Personality Trait theory (Guy et al., 2011)

and General Adaptation Syndrome Theory (Kim et al., 2012). However, these methods only take into account

local motion models, not the global characteristics.

4.3 Pedestrian Behavior Computation

In this section, we present our interactive algorithm, which classifies pedestrian behavior using 2D,

real-world trajectories that are extracted from video. Our approach can be combined with almost any real-time

pedestrian tracker that works on dense crowd videos. Figure 4.2 gives an overview of our approach. Our

method takes a live or streaming crowd video as an input. We extract the initial set of pedestrian trajectories

using an online pedestrian tracker. We learn the pedestrian motion model parameters using statistical methods

and learn global and local behavior characteristics. These can be used to predict the future state of the

pedestrian or the overall crowd.

Motion Model: P ∈ R5 denotes the set of parameters for the motion model. The motion model corresponds

to the local navigation rule or scheme that each pedestrian uses to avoid collisions with other pedestrians

or obstacles. Our formulation is based on the RVO velocity-based motion model (van den Berg et al.,

2008a). In this model, the motion of each pedestrian is governed by these five characteristics: Neighbor Dist,

Maximum Neighbors, Planning Horizon, Radius, and Preferred Speed. Our approach can also be combined

with other models based on social forces or Boids.
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4.3.1 Personality Trait Classification

Psychologists have proposed various ways of characterizing the personalities exhibited by pedestrians.

Our work builds on Trait Theories of Personalities, a theory that categorizes people’s behavior based on a small

number of personality traits (Pervin, 2003). The overall goal is to automatically classify every pedestrian in a

crowd. In particular, we characterize each pedestrian behavior based on a weighted combination of different

personality traits that are inferred based on his or her movement pattern and interactions with other pedestrians

and obstacles in the environment. We use the well-known Personality Trait Theory from psychology and the

Eysenck 3-factor model (Eysenck and Eysenck, 1985) to classify such behaviors. This model identifies three

major factors that characterize the personality: Psychoticism, Extraversion, and Neuroticism (commonly

referred to as PEN). Each of these three traits has been linked to a biological basis such as the levels of

testosterone, serotonin, and dopamine present in ones body.

In our case, each pedestrian’s personality is identified based on how they exhibit each of these three traits.

Each pedestrian is then classified into one of six weighted behavior classes: aggressive, assertive, shy, active,

tense, and impulsive (see Fig. 4.3). We chose these six particular behavior characteristics because they are

useful in describing pedestrians’ behaviors, and span the space covered by the PEN model, with at least two

adjectives for each PEN trait (Pervin, 2003). We classify each pedestrian’s behavior using these traits, and our

fundamental assumption is that these behaviors are captured by a weighted combination of these six traits.

A key issue in this formulation is defining a mapping between the five motion model parameters for the

RVO model described in Section 3.1 and these six traits. We make use of the data-driven mapping presented

in (Guy et al., 2011) to derive such a mapping that adopts the results of a user study and derives a linear

model of the mapping as:

B =



Aggressive

Assertive

Shy

Active

Tense

Impulsive


= Mmat ∗



1
13.5(Neighbor Dist− 15)

1
49.5(Max. Neighbors− 10)

1
14.5(Planning Horiz.− 30)

1
0.85(Radius− 0.8)

1
0.5(Pref. Speed− 1.4)
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Figure 4.3: Personality Classification: We identify the personality of each tracked pedestrian based on
pedestrian dynamics and the motion model. Each pedestrian is automatically classified using a weighted
combination of different personality traits.

where,

Mmat =



−0.02 0.32 0.13 −0.41 1.02

0.03 0.22 0.11 −0.28 1.05

−0.04 −0.08 0.02 0.58 −0.88

−0.06 0.04 0.04 −0.16 1.07

0.10 0.07 −0.08 0.19 0.15

0.03 −0.15 0.03 −0.23 0.23


.

Even though our approach is general, the mapping (Mmat) is specific to the RVO motion model and the

user study described in (Guy et al., 2011).

4.3.2 Global Characteristics

We use an Ensemble Kalman Filter (EnKF) and Expectation Maximization (EM) to estimate the most

likely state x of each pedestrian (as in Section 3.3.1).
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Our approach extends the method presented in (Kim et al., 2016). The global dynamics consist of factors

that govern pedestrians’ trajectory behaviors in a group or crowd, i.e., the factors that influence a pedestrian’s

overall movement or flow. We use two main components to describe the global dynamics: start point of each

pedestrian in the scenario and movement flows. We then use them to analyze the global behavior of each

pedestrian. Formally, we represent these dynamic characteristics for each pedestrian with a vector-valued

function, f(), whose initial value is determined by the function, E():

xt+1 = f(t,xt) = [P (xt) I(xt) G(t,xt)]T; x0 = E(t0).

For each pedestrian in the crowd, the function G : R× R6 × S→ R2 maps time t, the current state of the

pedestrian x ∈ X, and the current state of the environment S ∈ S to a preferred velocity vpref . Function

I : R6 × S → R2 represents the RVO motion model that is used to compute the current velocity vc for

collision-free interactions with other pedestrians and obstacles. The function P : R2 → R2 computes

the position given vc and E : R → R2 computes the initial position for time t0, which is the time at

which a particular pedestrian enters the environment. The three components of the pedestrian dynamics

(start point, movement flow, and local collision-free navigation) are mapped to the functions E(), G(), and

I(), respectively. We use Bayesian inference to compute E() and G() from the 2D trajectory data of the

pedestrians.

Movement Feature The movement features describe the characteristics of the trajectory behavior at

a certain position at time frame t. These movement features of different pedestrians are grouped together

and form a cluster that represents the movement flow. The characteristics include the movement of the

pedestrians during the past w frames, which we call the time window, and the intended direction of the

movement (i.e. the preferred velocity) at this position. In our case, the movement feature vector is represented

as a six-dimensional vector:

g = [p vavg vpref ]T , (4.1)

where p, vavg, and vpref are each two-dimensional vectors that correspond to the current position, average

velocity during past w frames, and estimated preferred velocity computed as part of state estimation,

respectively. vavg can be computed from (pt − pt−w)/w ∗ dt, where dt is the time-step.
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At every w steps, we compute the new behavior features for each pedestrian using Equation 4.1. We

group similar features and find K most common behavior patterns, which correspond to the movement flow

clusters. We use recently observed behavior features to learn the time-varying movement flow. We use the

k-means data clustering algorithm to classify these features into K movement flow clusters. In our case, K

andNf are user defined values that represent the total number of the clusters and the total number of collected

behavior features, respectively, and K ≤ Nf . A set of movement-flow clusters G = {G1, G2, ..., GK} is

computed as follows:

argmin
G

K∑
k=1

∑
gi∈Gk

dist(bi, µk), (4.2)

where gi is a movement feature vector, µk is a centroid of each flow cluster, and dist(gi, µk) is a distance

measure between the arguments. In our case, the distance between two feature vectors is computed as

dist(gi, gj) = c1 ‖pi − pj‖

+ c2

∥∥∥(pi − vavg
i w dt)− (pj − vavg

j w dt)
∥∥∥

+ c3

∥∥∥(pi + vpref
i w dt)− (pj − vpref

j w dt)
∥∥∥ ,

which corresponds to the weighted sum of the distance among three points: current positions, previous

positions, and estimated future positions.

Estimation of Start Points Start points for each point correspond to the estimated position when that

pedestrian enters the scene. These starting positions and timings for each position are very important and are

used to compute the global behavior. We use a multivariate Gaussian mixture model to learn the time-varying

distribution of the start points. We define E() as the function that provides a position sampled from the

learned distributions. We assume that the distribution of start points, e, from which the function E() samples,

is a mixture of J components and that each of the components is a multivariate Gaussian distribution of a

two-dimensional random variable, p, with a set of parameters Θ = (α1, · · · , αJ , θ1, · · · , θJ):

e(p|Θ) =

J∑
j=1

αjej(p|µj , θj), (4.3)

ej(p; θj) =
1

2π|Σj |1/2
exp(−1

2
(p− µj)TΣ−1j (p− µj)). (4.4)
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Each component ej is a Gaussian distribution given by the parameters θj = (µj ,Σj), where µj is the mean

of the component j and Σj is a 2 × 2 covariance matrix. αj is a mixture weight, which is the probability

that a point p belongs to the component j. αj ∈ [0, 1] for all i and the sum of αjs are constrained to 1

(1 =
∑J

j=1 αj). From an initial guess of the parameters θj , we perform EM to learn these parameters

θj = (µj ,Σj) from the given start points collected from the real pedestrian trajectories.

4.3.3 Simulated Crowd Behavior Analysis & Prediction

Given a video, we can classify the personality trait, B, of each pedestrian (PTC) and compute the global

features (GMD) corresponding to the start points, e, and the movement flows, G. We can combine this

local and global information to predict the future position or state of each pedestrian and learn the shape,

distribution, or behavior of the crowd in different environmental conditions. These different conditions may

correspond to a change in the obstacle locations, an increase or decrease in the number of pedestrians in

the scene, or a change in crowd density, but still maintain the original distribution of pedestrian behaviors

and movement flows. We demonstrate our approach’s performance on the PBS video stream from the 2017

Presidential Inauguration ceremony at Washington, DC, USA. We extract a representative sample of the

crowd by selecting 130 pedestrians from a camera angle and learn their behaviors. As part of our crowd

prediction, we changed the number of pedestrians in the scenario (e.g., 1 million pedestrians), and estimated

the distribution and shape of the resulting crowd at the National Mall, as shown in Figure 1. The resulting

crowd of 1M pedestrians has the same behavior classification as the original 130 representative pedestrians.

4.4 Performance and User Evaluation

In this section, we highlight the performance of our algorithms on different crowd videos. Furthermore,

we evaluate the accuracy of our personality classification algorithm with a user study.

4.4.1 Performance Evaluation

We have applied our novel algorithms to the 2D pedestrian trajectories generated and extracted from

different crowd videos, as shown in Table 1. The pedestrian density in these crowd videos varies from

low-density (less than 1 pedestrian per square meter) to medium-density (1-2 pedestrians per square meter),

to high-density (more than 2 pedestrians per square meter). We have implemented our system on a Windows
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10 desktop PC with Intel Xeon E5-1620 v3 with 16 GB of memory and we use four cores for PTC and GMD

computations.

Scenario Analysed Input Avg. time Avg. time
Pedestrians Frames PTC GMD

Manko 42 373 0.034 3.72e-01
Marathon 18 450 0.041 0.98E-04
Explosion 19 238 0.033 3.12E-06
Street 147 9014 0.022 4.13E-08
TrainStation 200 999 0.061 5.11E-08
ATC Mall 50 7199 0.037 2.28E-01
IITF-1 18 450 0.041 3.11E-03
IITF-3 19 238 0.046 2.74E-04
IITF-5 18 450 0.056 2.98E-03
NPLC-1 19 238 0.039 1.31E-04
NPLC-3 18 450 0.031 4.16E-03
NDLS-2 19 238 0.049 3.00E-04
2017 Presidential 130* 1927 0.87 0.38

Inauguration

Table 4.1: Performance of PTC (Personality Trait computation) and GMD (Global Movement Dynamics)
algorithms on different crowd videos. We highlight the number of pedestrians used for personality classi-
fication, the number of video frames used for extracted trajectories, and the running time (in seconds). In
the PBS Presidential Inauguration video, we chose around 130 representative pedestrians in the video for
analysis and prediction.

4.4.2 User Evaluation

To evaluate the performance of our personality classification, we compare the results of PTC with a user

study on the same set of videos and pedestrians. We present the details and highlight the results.

Study Goals and Expectations The aim of the study was to compare the results of our personality trait

computation algorithm (PTC) to the perception of personality by human users for the given videos.

Experimental Design The participants of our web-based user study were recruited from students and

staff in a university. Each participant was shown 10 different videos of pedestrians walking among crowds

and asked to label them based on personality adjectives. At the beginning of each video, a specific pedestrian

was highlighted by a yellow circle and, over the next few seconds, that pedestrian would navigate the crowded

scene. Participants were given written instructions to carefully observe the highlighted pedestrian’s trajectory

and its interactions with the other pedestrians. They were advised not to take into account other factors
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corresponding to facial expressions, visual appearance, etc. After observing the pedestrian trajectory in each

video, participants reported the most appropriate personality trait from the given set: Aggressive, Shy, Active,

Tense, Impulsive, and Assertive.

Results and Discussion Figure 4.4 shows the responses of 31 participants for 10 videos. Even though

we model an individual’s personality as a combination of six personality traits (6-D), evaluating a nominal

variable with such a high number of categories is difficult. From the data, we observed that combining two

personality traits to reduce the six factor model to a three factor model increases the agreement between

participant responses. This three factor model is the PEN model (3-D) (explained in Section 3.3) and previous

studies have shown that it can also offer sufficiently rich dimensions to characterize personality traits in

crowd navigation. We therefore map the six personality traits to the 3-factor PEN model (Figure 4.5) using a

linear mapping as described below.

Trait Adjectives
Psychoticism Aggressive, Impulsive
Extraversion Assertive, Active
Neuroticism Shy, Tense

Table 4.2: Correspondence between six personality traits and the PEN model (Pervin, 2003).

Some of the videos still show disagreement between the participants; we attribute this to the inherent

features of the pedestrian in the videos and do not take these videos (Videos 2, 5, and 7) into account for

further analysis.

Figure 4.6 shows the comparison of participants’ responses to the personality traits predicted by our

PTC algorithm. Over the 7 crowd videos, we observed an overall accuracy of 76.96% for the most dominant

personality trait given by 31 participants. The accuracy increased to 88.48% if we also included the second

most dominant personality trait. We also computed a statistical measure, Fleiss’ kappa (κ), to assess the

reliability of agreement between the participants. A value of κ = 0.4578 indicated a moderate agreement

between the participants’ responses based on (Landis and Koch, 1977). Error analysis of κ revealed that the

observed agreement was not accidental (Z = 35.6444, p < 0.0001).

4.5 Conclusions, Limitations, and Future Work

We present a novel algorithm to classify the personalities of pedestrians in a crowd video. We compute

the time-varying motion model of each pedestrian using Bayesian inference and combine it with Personality
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Figure 4.4: Participant Responses Using the Six Factor Personality Model: Participants were shown 10
different videos of pedestrians walking among crowds. In each video, a single pedestrian was highlighted and
participants were asked to report the most appropriate personality trait for that pedestrian. 31 participants
reported the most appropriate personality trait from the given set: Aggressive, Impulsive, Active, Assertive,
Tense, and Shy.

Trait Theory. We also compute the global movement features and use them to analyze and simulate the crowd

movements or distributions. We evaluate the accuracy with a user study and our results are promising. To the

best of our knowledge, this is the first approach for automatic pedestrian personality classification based on

their movements in a video.

Our approach has some limitations. The behavior classification is based on personality models and

PEN, and may not be sufficient to capture all observed behaviors. We assume that it is possible to extract

the trajectory of every pedestrian in a crowd. The global algorithm assumes that the relative distribution of

pedestrian behaviors is about the same.

As part of future work, we would like to overcome these limitations and extend our algorithm for anomaly

detection and surveillance applications. We would further like to adopt the same data-driven techniques to

build mappings from simulation parameters to other personality trait theories, such as the OCEAN model.

We would also like to investigate the extent to which our proposed model is appropriate for different cultures.

Finally, we would like to use it for autonomous navigation of robots among crowded scenes.
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Figure 4.5: Participant Responses Using the PEN Model: We converted the participant responses to the three
factor PEN model to reduce the disagreement. Participant responses were converted to three PEN factors
(Psychoticism, Extraversion, and Neuroticism) using Table 4.2.

Figure 4.6: Accuracy of our PTC Algorithm: Our PTC algorithm predicted the most dominant trait for each
of the 7 videos. In 76.96% of the cases, participants also chose the most dominant trait as denoted by the dark
green color. If we also add the second most dominant trait (denoted by light green), the accuracy increased to
88.48%. This accuracy indicates that our PTC algorithm was able to correctly identify the personality traits
as perceived by human participants.
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CHAPTER 5

Applications

In this chapter, we demonstrate three applications from graphics, robotics and crowd surveillance based

on our novel algorithms for tracking, prediction and behavior learning.

5.1 Data-driven Crowd Simulation

We present a new data-driven technique that can be used to generate crowd simulations based on real-

world videos. Our method is built on top of an improved multi-person tracking algorithm. Furthermore,

we integrate an online smoothing technique with our tracking algorithm so that we can directly use the

trajectories for interactive applications (e.g. games, virtual environments) or animation.

Current techniques for automatic tracking are either limited to sparse crowds or are limited to offline

simulation. Most of the online tracking algorithms use a probabilistic basis. Therefore, human-agent detection

and the trajectories computed tend to be noisy, inaccurate and can have issues with agent orientations. This

leads to incorrect or low-fidelity simulation or rendering of resulting agents in interactive applications.

Even state-of-the-art multi-person trackers can result in lower accuracy in crowded scenes; seemingly small

problems, such as occlusion or changes in illumination, can cause major issues in tracking, such as ID

switches (when a tracker erroneously targets another pedestrian) or loss of the tracking target. Even though

pedestrian tracking is well studied, there are many challenging issues that arise due to the following reasons:

restricted visibility due to inter-pedestrian occlusion (one pedestrian blocking another), changes in lighting

and pedestrian appearance, and the difficulty of modeling human behavior or the intent of each pedestrian.

We apply our tracking and parameter-learning algorithms for data-driven crowd simulation. We demon-

strate their performance for crowd replication as well as a few applications.

We use our improved tracking algorithm for two applications: crowd replication and mixing crowd

streams.
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Figure 5.1: Noisy vs. Smooth trajectories: The red trajectories were tracked using LIN (constant velocity)
as the motion model and the blue trajectories are results from our baseline tracking algorithm (Chapter 2).
We display the improved trajectories extracted by our algorithm in green, which are smoother. Our motion
model iteratively refines pedestrian behavior and produces smooth trajectories. The blue circles highlight the
improvement using our method. (For clarity, these trajectories are just a cropped section of the entire scene.)

(a) Background extracted (b) Pedestrians extracted (c) Virtual+Real Crowd (d) Final Result

Figure 5.2: Augmented Crowd Video: Our approach can be used to augment a crowd video with additional
virtual agents. (a) We use an outdoor crowd scene (Crossing benchmark (Shao et al., 2014)) as a background.
(b) We extract pedestrian trajectories from a different video benchmark (Manko benchmark (Shao et al., 2014))
(c) We add computer-simulated virtual pedestrians following behaviors observed in the Manko video dataset.
(d) The resulting trajectories are rendered and overlaid upon the Crossing video dataset. We use chroma
keying to insert these new virtual agents into the original video, which includes additional environmental
features, such as moving cars.

5.1.0.1 Crowd Replication

One important application of data-driven crowd simulation is crowd replication. The goal is to faithfully

reproduce real human crowd trajectories or movements using virtual characters in a simulation. Crowd

replication is used extensively in movies and games, but in almost all cases, the pedestrian trajectories are

either drawn manually or the tracked data is subject to extensive post-production work to make it usable.

Some of the problems which beset pedestrian-tracking algorithms include trajectory noise, incorrect

pedestrian orientation (pedestrian orientation is computed using past states but due to noise, this computation

can be incorrect leading to frequent orientation changes), and ID switches; our algorithm produces smooth

trajectories (which also resolves orientation issues), and displays fewer ID switches and higher accuracy

overall.
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(a) Crossing

(b) Manko28

(c) Dawei

(d) Manko

Figure 5.3: Replicated Crowds. We improve the quality of the rendered crowd behaviors by adding online
smoothing step to the tracker. (a) to (d) shows the replicated crowds rendered directly using the tracking
results without any pre-processing, corresponding to each benchmark video.
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We feed the smooth trajectories from our pipeline to Golaem, a commercially available crowd-rendering

platform.

5.1.0.2 Mixing Crowd Streams

Another application is to combine the pedestrian trajectories extracted from two or more different videos.

Each video may only capture some aspects of crowd behavior, and we want to combine them for an application.

In this case, our mixing algorithm takes as input the smooth trajectories extracted by our algorithm from two

videos (those shown on the left and middle figures in Fig. 5.4). The mixing algorithm (Zhang et al., 2010)

uses the two sets of extracted trajectories and performs a simple local collision avoidance between them.

5.1.1 Crowd Content Generation

Generating crowd behaviors for multimedia content has received considerable attention in many fields,

including animation, gaming, virtual reality, education, computer-aided design of architectural structures,

etc. In this section, we use the trajectories of real-world agents and their behavior parameters to generate

or mix visual crowd content. This process involves augmenting real pedestrians in a video using virtual

characters or agents that have similar behaviors and that do not collide with one other agents or with obstacles.

We demonstrate that our approach can generate crowd movements or trajectories that are similar to those

observed for pedestrians in the original video.

Traditionally, crowd behavior is generated by designers or animators using editing tools (e.g., by drawing

the trajectory of each agent on a 2D screen). In our case, we use widely available crowd video datasets to

extract the trajectory-level behavior of characters and automatically insert them into other crowd videos.

5.1.1.1 Augmented Crowds

Our main goal is to add more agents into a real-world crowd video to increase the number or density of

pedestrians or agents engaged in other behaviors or movement. Different methods have been proposed to

insert virtual crowds as an overlay onto a real-world video in computer graphics and augmented reality. These

methods include the coupling of camera-tracked humans with virtual agents (Rivalcoba et al., 2014) based on

a precomputed human detector. Grid-based density fields have been used to overlay several simulated virtual

agents onto a real-world video (Ren et al., 2013) that is based on a generalized steering model utilizing linear
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Figure 5.4: Mixing Crowd Streams: The agents on the brown (left) and blue (central) floors exhibit varied
behaviors, generated from different videos. The final mixed video (green floor) has behaviors combined from
both the video streams. Pedestrians marked with brown are from the left video, and those marked blue are
from the central video. The overall mixing algorithm uses the two sets of extracted trajectories and performs
local collision avoidance between them.
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(a) Pedestrian trajectories extracted from two different videos

(b) Mixed trajectories

Figure 5.5: Mixing trajectories from multiple input videos. We can use multiple videos as inputs to a
single, more complex scenario. In the left two videos of (a), pedestrians move in an image-space from bottom
to top or from top to bottom. In the right two videos of (a), pedestrians move in a uniform direction: right
to left in a slightly tilted way in the image-space. There are, therefore, three different main directions of
pedestrian movements. (b) Using these trajectories with agent-based simulation methods, we can generate
crowds with these three different flows, while still achieving local collision avoidance between the agents.

(a) Crossing (b) Manko28 (c) Dawei (d) Manko

Figure 5.6: Comparison of improved tracking (our method, above) to prior methods based on particle
filter + LIN (below). We compare the quality of the extracted trajectories on four different real crowd videos.
As compared to prior methods, our approach results in smoother trajectories and improved accuracy for each
benchmark. Our method runs at interactive rates (24-26fps)
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(a) (b) (c)

Figure 5.7: Augmented Crowd We use pedestrian tracking results for crowd content generation. In this
scenario, we add virtual pedestrians to the scene and generate collision-free trajectories for them at interactive
rates. (a) Trajectories of 23 real pedestrians in an open space; (b) adding 50 virtual pedestrians; (c) adding
300 virtual pedestrians;

velocity prediction. Other methods simulate virtual agents automatically by adjusting the behavior of such

virtual agents to mimic pre-learned behaviors (Pellegrini et al., 2012).

The trajectories and behaviors extracted from a real-world video can be used to create augmented crowds

containing rendered real pedestrians as well as computer-generated virtual pedestrians. At each time step,

our tracker computes a position for each pedestrian in the video, denoted as zt ∈ R2. The first step is to

compute appropriate trajectories for virtual pedestrians based on the trajectory behavior features learned from

the input video. We use the behavior features extracted from real pedestrians to generate salient movement

patterns by grouping them based on their similarities to one another. Finally, we use this information to steer

virtual agents’ short-term behavior. Overall, we compute the combined state of real and virtual pedestrians,

X, during each time step as follows:

X = XR ∪XV , (5.1)

where XR is the real crowd state and XV is the virtual crowd state. These states are used to generate the final

augmented crowd content.

Crossing Scenario: One scenario with which we can highlight the benefit of our approach is pedestrian

crossing. In this case, the goal is to use the same background environment and traffic vehicles and augment

these with different types of pedestrian behaviors or densities in the crossing video (See Fig. 5.2(a)). In this

case, we extract trajectory-level behavior characteristics from the Manko benchmark video (See Fig. 5.2(b))

and generate virtual pedestrians with similar characteristics. The final video contains both real pedestrians
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(from the original Crossing video) and virtual agents (from the Manko video) and demonstrates that our

approach can easily mix the pedestrian behaviors from two or more real-world videos.

Note that pedestrians in the final video are rendered in a 3D environment. The camera parameters

are often provided with the video dataset to compute the transformation from image space coordinates to

world-space coordinates. Otherwise, the parameters can be estimated with one frame of the input video.

The advantage of rendering the crowds in 3D is that we can visualize or evaluate the results for scenes with

different viewpoints. After rendering the pedestrians and their trajectories using a crowd rendering system,

we use chroma keying – a well-known method in video and multimedia editing – to remove the background.

We color correct and add motion and camera effects to the virtual crowd before overlaying it on top of the

real video (after masking the real people to remove them from the video).

Crowds in 3D Virtual Environment We can easily insert our mixed pedestrians into a virtual 3D scene.

Visual effects artists can create their own 3D scenes in any rendering/modeling software and easily import

our mixed trajectories to render crowds.

(a) (b) (c)

Figure 5.8: Augmented Crowd Rendered in a 3D Environment (a) Original Dawei video dataset with
tracked trajectories, from which 27 trajectories are extracted; (b) Rendered scene with real and randomly
inserted virtual pedestrians with similar trajectory-level behaviors, in which 100 virtual pedestrians have been
added; and (c) Rendered scene with real and virtual agents using our behavior-learning approach.

Dawei: In this benchmark, we use the trajectory-level behavior feature of real pedestrians to generate

3D crowd animation content. By augmenting real-world trajectories with virtual crowds or agents, we can

generate different scenarios (see Fig. 5.8). (a) We used 27 real pedestrian trajectories extracted from the

Dawei video. (b) The real pedestrians are rendered by using the extracted trajectories and are augmented

with virtual agents simulated with uniformly sampled initial and goal positions around the scene boundaries.

(c) The intermediate goal positions are selected based on the behavior features learned by our system.

Square: We used trajectories of 23 pedestrians from the original video of a crowd walking in an open

space (see Figure 5.7 (a)). During each frame, we estimate their state and compute the pedestrian behavior
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feature. We perform mixed crowd simulation by adding virtual pedestrians and increasing their number (see

Figure 5.7 (b)-(c)). Whereas the original video is relatively sparse, the crowd density in the mixed simulation

with 300 virtual pedestrians becomes about 4.5peds/m2

81



5.2 SocioSense: Socially-Aware Robot Navigation

Robots are increasingly used in households, offices and public places and frequently navigate amongst

humans or pedestrians. As humans are dynamic agents, these scenarios result in many new challenges related

to human-aware navigation and interaction. Robots must move through crowds of people while preventing

collisions with each other and with humans. In such scenarios, the robots need to interface with not only the

physical environment, but also the social environment, and should interact well with humans.

People have clear social norms about interpersonal space or acceptable behaviors (Burgoon and Jones,

1976). A robot that impinges on someone’s personal space could make them feel uncomfortable (Takayama

and Pantofaru, 2009). There is considerable work on socially-aware navigation in motion planning and HRI

(human-robot interaction) literature. These techniques tend to predict the movement or actions of human

pedestrians and use them to develop appropriate navigation algorithms (Kruse et al., 2013; Okal and Arras,

2016; Ferrer et al., 2013; Kuderer et al., 2012). The resulting paths account for social norms and conventions,

such as personal space and yielding the right of way.

We address the problem of a robot navigating through low- and medium-density crowds. In addition to

social constraints, we also take into account the personality or time-varying behaviors of different pedestrians.

It is known in psychology that even a simple task such as walking towards a destination involves several

complex human-centric decisions, such as which route to take and the various ways to avoid collision with

the robot, other pedestrians, and the obstacles in the environment. In many scenarios, different pedestrians

will accomplish the same goal in different ways and their resulting paths are governed by their underlying

personality (e.g. aggressive, shy, or active). Therefore, it is important to capture the pedestrians’ personality

traits, and use them to predict their future positions for socially-aware navigation. In many dense crowd

scenarios, the speed and movement pattern of a pedestrian may change in response to environmental factors,

such as crowd density and overall flow. A key issue is therefore modeling variations in behavior that arise

as humans navigate in the physical world and avoid collisions. Furthermore, it is important to capture and

compute these time-varying behaviors at interactive rates, so that the robot can navigate accordingly.

We present a real-time planning algorithm, SocioSense, that takes into account psychological constraints

of each pedestrian in the environment to perform socially-aware navigation. We extract the trajectory of each

pedestrian from the video and use Bayesian learning algorithms to compute his/her motion model and the

personality characteristics of the pedestrian. Our behavior classification is based on Personality Trait Theory
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Figure 5.9: Improved Navigation using SocioSense: (a) shows a real-world crowd video and the extracted
pedestrian trajectories in blue. The green markers are the predicted positions of each pedestrian computed by
our algorithm that are used for collision-free navigation. The red and yellow circles around each pedestrian
in (b) and (c) highlight their personal and social spaces respectively, computed using their personality traits.
We highlight the benefits of our navigation algorithm that accounts for psychological and social constraints
in (c) vs. an algorithm that does not account for those constraints in (b). The red trajectory of the white
robot maintains these interpersonal spaces in (c), while the robot navigates close to the pedestrians in (b) and
violates the social norms.
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in psychology literature. This theory assumes that the variations in behavior are governed by a small number

of underlying traits.

We combine the time-varying behavior classifications for each pedestrian with local and global learning

methods to perform long-term path prediction for collision-free, socially normative robot navigation. A key

contribution of this work is mapping the learned personalities to a set of social distances based on proxemics

and interpersonal distances (Hall, 1966). These distances constrain the robot navigation to avoid passing

through people’s personal and social spaces. Using the combination of psychological and social constraints

improves both the prediction and the navigation. We have evaluated the performance of our algorithm in

real-world captured videos consisting of tens of pedestrians, including dense scenarios

5.2.1 Psychological Constraints

In this section, we introduce the notation and present our approach to model psychological and social

constraints. In human environments, it is important to compute robot trajectories that follow the social norms

about interpersonal distance and acceptable behaviors. Most of the earlier work is limited to collision-free

trajectory planning or only takes into account physical constraints such as kinematics and dynamics. The

psychological constraints are complimentary to these physical constraints and depend on the personality or

behavior of a pedestrian in the crowd.

Fig. 5.9 gives an overview of our approach, including computation of the different constraints and their

use in navigation. Our real-time algorithm learns pedestrians’ psychological and social cues from trajectories

extracted from real-world crowd videos. Our approach is generic and can be combined with almost any

real-time pedestrian tracker that works well on low- to medium- density crowds. We learn a pedestrian’s

personality traits (psychological constraints) from the trajectories using Bayesian learning. We use these

time-varying psychological constraints to compute appropriate interpersonal distances for each pedestrian for

robot navigation (social constraints). The personality classification is also used for long-term path prediction,

which is also used by the socially-aware robot navigation algorithm.

5.2.2 Personality Traits and Psychological Cues

A key issue in our approach is classifying the personality of each pedestrian in the crowd. We first obtain

the motion model parameters from our algorithm in chapter 2 and then e use our behavior learning algorithm

from chapter 4 to determine the values of the personality traits, b = {Aggressive,Assertive, Shy,Active, Tense, Impulsive}.
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The only difference is that we weigh, all the personalities in the matrix b with {w1, w2, w3, w4, w5

and w6}. We use the default w values (wi = 1) for this step. Even though our approach is general, the

mapping (RVOmat) is specific to the RVO motion model and the user study described in (Guy et al., 2011).

However, we can use different mappings or other forms of regression to compute such a mapping between the

personality characteristics and the motion model. Next, we use these personality characteristics to compute

proxemic distances for socially-aware navigation.

5.2.3 Pedestrian Path Prediction

The key aspect of any real-time prediction algorithm is estimating the motion parameters of a pedestrian

as they provide the best estimator of their movement in a dense setting. We represent the motion parameters

of a pedestrian i by his/her state xi. Given the state of the crowd X =
⋃

i xi for the previous n frames at time

t, our pedestrian path prediction algorithm predicts the motion parameters of a pedestrian i for a future time,

xt+∆t
i . We compute these motion parameters from the personality trait learning module described above in

Section 5.2.2. We use these estimated motion parameters to extend the accuracy of the real-time prediction

algorithm GLMP 3.

Pedestrian behavior may have slight variations during the course of the motion. To capture these

variations, we find an upper bound Mub and a lower bound Mlb on the motion parameters. From the

computed values of six personality traits (b) in Section 5.2.2, we compute the trait with the largest value, the

most dominant trait, bd. Mub is calculated by adding y% to bd and adding (y/3)% to the other traits (b \ bd).

Similarly, we subtract y% and (y/3)% to compute Mlb, where y is a user-defined variable. A value of y =

5% is able to capture noise and the natural variance in the pedestrian behavior.

If the individual pedestrian parameters are within the bounds Mlb and Mub, we use them directly

for prediction; otherwise, we clamp M to the corresponding boundary value of the motion parameters,

(Mlb, Mub). Having updated the motion model parameters, we recompute the personality weights w. Our

formulation assumes that each pedestrian behavior generally remains constant and lies within a range of

variance; if the change in pedestrian behavior is substantial between successive frames, there is a possibility

of error in prediction. Since the behaviour of a pedestrian might changes considerably over a long period of

time, we re-sample the behavior every few frames.
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M =


Mlb, if Mi ≤Mlbi

, ∀i

Mub, if Mi ≥Mubi
, ∀i

M, otherwise

Next, we combine these motion parameters M with the local movement patterns from to perform

long-term path prediction for each pedestrian.

5.2.4 Proxemic Distances (Social Cues)

A key component of socially-aware navigation is computation of the appropriate distance between the

robot and each pedestrian, based on the notion of proxemics (Hall, 1966). In this context, we use the notions

of public distance and social distance to perform socially-aware navigation. In particular, public distance

refers to the distance at which people can give a speech and social distance characterizes the distance at

which people can talk to each other. These distances have been known to vary according to cultural norms,

environment, or an individual’s personality. In our formulation, we mainly focus on variations in these

distances originating from the differences in personality. It has been shown that traits like Extraversion affect

interpersonal distances. Though social and public distances do not vary significantly, extroverts can have a

smaller personal distance than introverts (Williams, 1971). Based on the formulation described in (Williams,

1971), we compute the limits on an individual’s personal distance (Table 5.1). We obtain the personal distance

of an individual by taking a weighted average of these limits, weighted by a computed value of Extraversion

(PENe) for that individual.

Personal Distance Social Distance

Extrovert 179.58 267.97

Introvert 88.9 233.17

Table 5.1: Extraversion vs Personal/Social Distances: The personal distance indicates the minimum
distance before the pedestrian feels uncomfortable with the robot. All distances are given in cms.

In order to determine the Extraversion of each pedestrian, we compute the mapping of the six personality

traits (b, computed earlier) to a 3-factor PEN model based on the function described below:
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Psychoticism

Extraversion

Neuroticism

 = PENmat ∗B

where,

PENmat =


0.22 0.28 −0.09 −0.01 −0.17 0.31

0.16 0.33 0.07 0.53 0.05 0.10

−0.15 0.16 0.47 −0.01 0.42 −0.08

 .

Currently, we use a single scalar quantity, Extraversion (PENe), from the PEN model. Based on the

proposed distances given in Table 5.1, we establish a linear mapping between the pedestrians’ personality

traits and their personal distance to the robot. After normalizing PENe by dividing it by the magnitude of

the PEN vector, we compute the personal distance dp of the pedestrian:

dp = 179.58(PENe) + 88.9(1− PENe)

For the other distance metrics,, like social distance ds, we select a distance from Table 5.1. If PENe < 0.5

then ds = 233.17 else ds = 267.97.

5.2.5 Socially-Aware Robot Navigation

We use the distances, ds and dp, computed using the psychological constraints to enable socially-aware

collision-free robot navigation through a crowd of pedestrians. Our navigation method is based on Generalized

Velocity Obstacles (GVO) (Wilkie et al., 2009), which uses a combination of local and global methods. The

global metric is based on a roadmap of the environment. The local method computes a new velocity for the

robot and takes these distances into account. Moreover, we also take into account the dynamic constraints of

the robot in this formulation.

Figure 5.11 illustrates how a robot avoids an approaching pedestrian based on these distances. At a given

time instant, the pedestrian is located at pcurr
human, and has two proxemic distances: a personal distance of dp

(red) and a social distance of dp (yellow). At the same time instance, the robot is located at pcurr
robot and has

a preferred velocity vpref
robot that is computed based on global navigation module. This is the velocity that it

would have for navigating to its goal position, in the absence of any static or dynamic obstacles. The robot

87



predicts that during the next time frame, the pedestrian will move to the position ppred
human using the path

prediction described in Section III(D), and computes its new velocity to avoid a collision with the pedestrian.

However this path prediction is not sufficient for socially-aware navigation, since the robot fails to take into

account the pedestrian’s proxemic distances. Based on these distances, the robot alters its goal position to

ppred+soc
robot and its velocity to vpred+soc

robot to accommodate both social and psychological constraints. Notice

that the velocity vpred
robot causes the robot to intrude on the pedestrian’s personal distance, shown by the red

circle centered around the pedestrian, whereas the updated velocity ppred+soc
robot successfully accounts for the

pedestrian’s personal distance and as well as its social distance.

We assume that the pedestrians in the environment are non-cooperative and may not actively avoid

collisions in a reciprocal manner with the robot. Thus, the robot must assume 100% responsibility to avoid

collisions and keep safe distances. During the navigation, our SocioSense algorithm predicts the pedestrian’s

future motion and avoids any steering inputs that result in a collision with the predicted pedestrian positions

(Figure 5.10). Our approach is agnostic to the underlying navigation algorithm (e.g. GVO) and can be

combined with other methods like potential field methods.

Figure 5.10: Example robot trajectory navigating through the crowd in Hotel dataset. Red/yellow circles
represent current pedestrian positions(personal/social distance), green circles are the current position of the
robot.

5.2.6 Performance and Analysis

We have evaluated the accuracy of our real-time prediction algorithm against other state of the art

real-time methods. We applied our algorithm to the 2D pedestrian trajectories tracked from different video

datasets, and calculated the accuracy of our predicted positions relative to the ground truth using an error

metric. Because of error accumulation over time, trajectory prediction algorithms tend to be more accurate

over shorter time windows as compared to longer time windows. Therefore, we measure the accuracy

results for two time windows for each algorithm - short (1 second) and long (5 seconds). In terms of video
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benchmarks, we chose different crowd video datasets corresponding to indoor and outdoor scenes with

varying pedestrian density and cultural background. The density varied considerably: from low (less than 1

pedestrians/m2) to medium (1-2 pedestrians/m2) to high (more than 2 pedestrians/m2). Table II summarizes

the crowd video datasets, their crowd characteristics, and the accuracies of the predicted trajectories computed

by different real-time algorithms for both time windows. The last columns highlight the improved prediction

results computed using our approach.

ConstVelocity Kalman Filter GLMP (Baseline) SocioSenseDataset Challenges Density # Tracked
1 sec 5 sec 1 sec 5 sec 1 sec 5 sec 1 sec 5 sec

UCSD-Peds1 BV, PO, IC Low 43 75.2% 54.1% 76.4% 56.4% 79.1% 61.6% 84.3% 74.3%
Marathon BV, PO, IC, CO High 76 32.1% 10.4% 35.2% 11.3% 41.3% 17.2% 46.8% 21.1%
NDLS-2 BV, PO, IC High 121 57.8% 31.0% 52.0% 34.1% 59.7% 39.6% 68.2% 43.0%
MANKO BV, PO, IC, CO High 87 43.7% 19.4% 44.4% 19.7% 49.4% 24.0% 59.2% 28.9%
879-38 BV, PO, IC, CO High 43 38.1% 29.1% 38.7% 31.0% 41.2% 35.6% 48.1% 42.9%

Crossing BV, PO, IC High 37 75.3% 52.0% 76.1% 53.1% 79.0% 59.3% 86.6% 59.3%
IITF-1 BV, PO, IC, CO High 167 63.5% 33.4% 63.9% 39.1% 65.3% 41.8% 65.3% 41.8%
IITF-3 BV, PO, IC, CO High 189 61.1% 29.1% 63.6% 31.0% 67.6% 37.5% 78.2% 42.9%
IITF-5 BV, PO, IC, CO High 71 59.2% 28.8% 61.7% 29.1% 62.9% 30.1% 68.1% 34.0%

NPLC-1 BV, PO, IC Medium 79 76.1% 63.9% 78.2% 65.8% 79.9% 69.0% 81.2% 72.6%
NPLC-3 BV, PO, IC, CO Medium 144 77.9% 70.1% 79.1% 71.9% 80.8% 74.4% 88.1% 74.6%
Students BV, IC, PO Medium 65 65.0% 58.2% 66.9% 61.0% 69.1% 63.6% 69.1% 63.6%
Campus BV, IC, PO Medium 78 62.4% 57.1% 63.5% 59.0% 66.4% 59.1% 66.4% 59.1%
seq hotel IC, PO Low 390 74.7% 67.8% 76.7% 68.3% 76.9% 69.2% 81.2% 73.6%

Street IC, PO Low 34 78.1% 70.9% 78.9% 71.0% 81.4% 71.2% 81.4% 71.2%

Table 5.2: Accuracy Benchmarks: We compare our path prediction algorithm with state of the art real-time
algorithms, on crowd video datasets with varying densities and numbers of tracked pedestrians, and time
windows of 1 sec and 5 sec. Our approach, SocioSense, consistently outperforms the other methods, even for
challenging datasets like Marathon. Abbreviations used for scene characteristics: BV: Background Variations,
PO: Partial Occlusion, CO: Complete Occlusion, IC: Illumination Changes.

5.2.7 Prediction Accuracy

We use a simple metric to evaluate the accuracy of our predicted trajectories. The average human stride

length is about 0.8 meters (Reynolds, 1987). For a given time instant, the predicted pedestrian position is

counted as successful when the estimated mean error between the predicted position and the ground truth

value is less than this constant. We define prediction accuracy at a time instant as the ratio of the number of

“successful” predictions and the total number of tracked pedestrians in the video.

A prediction algorithm should be able to predict trajectories over a long time horizon. All the algorithms

listed in Table II have reduced accuracy scores when a longer time window is used. Even in these situation,

our approach outperforms (or does as well as) the other methods in these crowd video datasets. In particular,
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Figure 5.11: Our robot navigation algorithm satisfies the proxemic distance constraints, including personal
space (red) and social space (yellow). The trajetory computed by our SocioSense navigation algorithm (green
trajectory) does not intrude on the personal/social space of the pedestrian, whereas a robot that fails to take
into account the social constraints (purple trajectory) may cause discomfort to the pedestrians.

our algorithm is significantly more accurate than competing real-time methods in predicting trajectories over

a long time window in high-density crowd datasets like Marathon and IITF-5.

5.2.8 Socially-aware Navigation

We evaluate the performance of our socially-aware navigation algorithm, SocioSense with other algo-

rithms without that do not take into account proxemic or social constraints. We compute the number of

times the non-social robot intrudes on the personal space of the pedestrians, and thereby results in discomfort

for some of the pedestrians. We also measure the additional time a robot with our SocioSense algorithm

takes to reach the goal position, without any intrusions of pedestrians’ personal/social spaces. Our results

(Table 5.3) demonstrate that in < 30% additional time SocioSense can reach its goal while ensuring that

the personal/social space of any pedestrian is not intruded. Table 5.3 also lists the time taken to compute

proxemic social constraints.
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Figure 5.12: Our approach automatically classifies pedestrian behaviors in real-time (e.g. Shy behavior of a
pedestrian). This behavior information is used to dynamically compute motion parameters and improve the
performance of our long-term prediction algorithm (shown in dark blue) and compute proxemic distances.
Our results are very close to ground truth (shown in red) and offer up to 21% improvement over prior real-time
algorithms, whose predicted trajectories are shown in different colors. This demonstrates the benefits of using
the psychological constraints for prediction and navigation.

Dataset Additional Time Performance Intrusions Avoided

UCSD-Peds1 27% 3.00E-04 ms 11

NDLS-2 13% 2.74E-04 ms 24

Students 11% 0.72E-04 ms 17

seq hotel 17% 0.98E-04 ms 31

Table 5.3: Navigation Performance: A robot using our SocioSense navigation algorithm can reach its goal
position, while ensuring that the personal/social space of any pedestrian is not intruded with < 30% overhead.
We evaluated this performance in a simulated environment, though the pedestrian trajectories were extracted
from the original video.
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5.3 Anomaly Detection

There has been a growing interest in developing computational methodologies for simulating and

analyzing the movements and behaviors of crowds in real-world videos. This include simulation of large

crowds composed of a large number of pedestrians or agents, moving in a shared space, and interacting with

each other. Some of the driving applications include surveillance, training systems, robotics, navigation,

computer games, and urban planning.

In this work, we deal with the problem of interactive anomaly detection in crowd videos and develop

approaches that perform no precomputation or offline learning. Our research is motivated by the widespread

use of commodity cameras that are increasingly used for surveillance and monitoring, including sporting

events, public places, religious and political gatherings, etc. One of the key challenges is to devise methods

that can automatically analyze the behavior and movement patterns in crowd videos to detect anomalous or

atypical behaviors (Li et al., 2015). Furthermore, many of these applications desire interactive or realtime

performance, and do not rely on apriori learning or labeling. Many algorithms have been designed to track

individual agents and/or to recognize their behavior and movements and detect abnormal behaviors) (Junior

et al., 2010). However, current methods are typically limited to sparse crowds or are designed for offline or

non-realtime applications.

We present an algorithm for realtime anomaly detection in low to medium density crowd videos. Our

approach uses online methods to track each pedestrian and learn the trajectory-level behaviors for each

agent by combining non-linear motion models and Bayesian learning. Given a video stream, we extract the

trajectory of each agent using a realtime multi-person tracking algorithm that can model different interactions

between the pedestrians and the obstacles. Next, we use a Bayesian inference technique to compute the

trajectory behavior feature for each agent. These trajectory behavior features are used for anomaly detection

in terms of pedestrian movement or behaviors. Our approach involves no offline learning and can be used for

interactive surveillance and any crowd videos. We have implemented our system on a multi-core PC and

have applied it to both indoor and outdoor crowd videos containing up to tens of pedestrians. We are able to

compute crowd agents’ trajectories and behavioral features in less than a tenth of a second.
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5.3.1 Related Work

There is extensive research in computer vision and multimedia analyzing crowd behaviors and movements

from videos (Li et al., 2015). Most of the work has focused on extracting useful information including

behavior patterns and situations for surveillance analysis through activity recognition and abnormal behavior

detection. Certain methods focus on classifying the most common, simple behavior patterns (linear, radial,

etc.) in a given scene. However, most of these methods are designed for offline applications and tend to

use a large number of training videos for offline learning of patterns for detecting common crowd behavior

patterns (Solmaz et al., 2012), normal and abnormal interactions (Mahadevan et al., 2010), human group

activities (Ni et al., 2009). Other methods are designed for crowd analysis using a large number of web

videos (Rodriguez et al., 2011). However, these techniques employ either manual selection methods or

offline learning techniques for behavior analysis and therefore, cannot be used for interactive applications.

Other methods are based on low-density tracking data to learn agent intentions (Musse et al., 2007) or

pre-processing techniques that decompose crowd scenes into main agents and background agents (Sun et al.,

2013). All of these methods perform offline computations, and it is not clear whether they can be directly

used for interactive applications.

5.3.2 Approach

To capture the essence of a pedestrian behavior in a crowd, we need to capture both the individual level

movement features and also the dynamics of the group or cluster of which it is a part. Our approach computes

global movement flows of pedestrians in semi-dense to dense settings (the importance of global features

increases when the density increases). It is not uncommon for some nearby pedestrians to have similar

trajectories. As a result, we compute clusters of pedestrians in a crowd based on their positions, velocity,

inter-pedestrian distance, orientations, etc. We initially assign each pedestrian to a separate cluster, one

consisting of a single pedestrian. We then merge these clusters by analyzing their relative velocities and their

geometric proximity, which is a function of the Euclidean distance between the clusters, the speed of each

agent, and their motion. In our experiments, we found that a bottom-up approach is more efficient than a

top-down approach for crowds composed of small clusters.

We compute a connectivity graph among the pedestrians. There is an edge between vertices of this graph

if and only if the two pedestrians are together for some period of time and their velocities are close to each
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other. The density of this graph helps us define intra-cluster proximity. Eventually, all the behavior features

vectors of every cluster are computed in the same way they are computed per agent. This corresponds to

the global pedestrian features bg to predict their global movement. This clustering divides the crowd into

subsections with similar characteristics.

In the last section, we presented an algorithm to compute the trajectory level behavior features at each

time step from a given video. These trajectory level features can be used for different applications related

to crowd scene analysis. In this section, we highlight the use of these features and characteristics to detect

anomalies based on motion segmentation. Our approach does not use any offline learning methods, and is

based on unsupervised classification methods. We highlight their performance on many challenging scenarios.

5.3.2.1 Motion segmentation

The goal behind motion segmentation is to clearly classify variations of pedestrian behaviors in a crowd.

Our trajectory-level behavior features can also be used for motion pattern segmentation. Typically, motion

pattern segmentation techniques segment spatial regions on an image/video based on the similarity of the

pedestrians’ movement patterns.

Flow-based methods are often used to segment crowd movements in videos (Ali and Shah, 2007). These

techniques mostly work well for structured scenes. Coherent filtering (Zhou et al., 2012a) uses tracklets

instead of trajectories; thus, it can accommodate unstructured scenarios. Meta-tracking (Jodoin et al.,

2013) tracks sets of particles and is effective for unstructured scenarios with high density crowds. See, for

example, (Li et al., 2015). In terms of segmentation results, our method yields similar results as meta-tracking

in terms of handling both structured and unstructured scenarios with low or high densities.

We use the K-means data-clustering algorithm to group the trajectories’ behavior features observed

during a certain time window. Because we are focused on temporal local behavior analysis, we discard the

data observed before a particular threshold time or earlier frames. We classify these features into K groups

of flows, which we call behavior clusters. K and N are user-defined values that represent the total number of

the clusters and the total number of collected behavior features, respectively, and K ≤ N . A set of behavior

clusters B = {B1, B2, ..., BK} is computed as follows:

argmin
B

K∑
k=1

∑
bi∈Bk

dist(bi, µk), (5.2)
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where bi is a behavior feature vector, µk is a centroid of each cluster, and dist(bi, µk) is a distance measured

between the arguments. Further details about the behavior feature extraction and classification can be found

in (Kim et al., 2015).

In our case, the distance between two pedestrian feature vectors is computed as

dist(bi,bj) = c1 ‖pi − pj‖

+ c2

∥∥∥(pi − vavg
i wdt)− (pj − vavg

j wdt)
∥∥∥

+ c3 ‖gi − gj‖ ,

(5.3)

which corresponds to the weighted sum of the distance between three points: current positions, previous

positions, and future positions. c1, c2, and c3 are the weights.

Each behavior cluster is visualized with eight different colors based on the direction of the velocity

components of its centroid. Fig. 5.13 shows the segmentation examples in structured, unstructured, and

highly unstructured videos. For the Marathon video, we show that the segmentation from the sparse samples

matches the behavior patterns of entire crowds. In terms of computation, our algorithm takes only tens of

milliseconds for clustering computation during each frame.

(a) Marathon (Ali and Shah, 2007) (b) Crossing (Shao et al., 2014) (c) 879-38 (Rodriguez et al., 2011)

Figure 5.13: Motion segmentation of structured and unstructured scenarios: Different colors indicate
clusters grouped by similarity of behavior or movement features at interactive rates. We use eight discrete
colors for visualization of the results in these benchmarks.

5.3.2.2 Anomaly detection

Anomaly detection is an important problem that has been the focus of research in diverse research

areas and applications. It corresponds to the identification of pedestrians, events, or observations that do

not conform to an expected pattern or to other pedestrians in a crowd dataset. Typically, the detection
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of anomalous items or agents can lead to improved automatic surveillance. Anomaly detection can be

categorized into two classes based on the scale of the behavior that is being extracted (Kratz and Nishino,

2009): global anomaly detection and local anomaly detection. A global anomaly typically affects a large

portion of, if not the entire, crowd and local anomaly is limited to an individual scale (for example, individuals

moving against the crowd flow). We primarily use our trajectory-based behavior characteristics for local

anomaly detection. In other words, we detect a few behaviors that are rare and are only observed in the

video during certain periods. These periods can be as long as the length of the video or as short as a few

hundred frames. In other words, we classify an anomaly as temporally uncommon behavior. For example, a

person’s behavior going against the flow of crowds may be detected as an anomaly at one point, but the same

motion may not be detected as an anomaly later in the frame if many other pedestrians are moving in the

same direction.

For anomaly detection we compare the distance between the local and global pedestrian features of

every pedestrian (computed using equation 5.3). When an anomaly appears in a scene, the anomaly features

typically tend to be isolated in the cluster of which it is a part. In other words, the pedestrian’s motion will be

different from that of the surrounding crowd. If the Euclidean distance between the global and local feature

is more than a threshold value, we classify it as an anomaly.

dist(bl,bg) > Threshold (5.4)

This threshold is a user-tunable parameter. If this threshold is set low, the sensitivity of the anomaly

detection will increase and vice-versa.

5.3.3 Quantitative Results

We compare the accuracy of our motion segmentation and anomaly detection methods using the quantita-

tive metrics presented in Table 1 and Table V, as described in Li et al. (Li et al., 2015). Table 1 in (Li et al.,

2015) provides a true detection rate for motion pattern segmentation. It is based on the criterion that the

approach successfully detected the regions containing the moving pedestrians. Although we cannot directly

compare the numbers with pixel-based performance measures, MOTP values (Table 1) can be an indirect

measure for the true detection rate motion segmentation. Compared to the values range of 0.4-1.0 in [15], the
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corresponding values computed by our approach are in the range of 0.7-0.8 in terms of detecting moving

pedestrians, even for unstructured videos. These numbers indicate that the performance of our method is

comparable to the state of the art.

(a) (b)

Figure 5.14: Anomaly Detection. We also evaluate other datasets like UCSD. Trajectories of 63 real
pedestrians are extracted from a video. One person in the middle walks against the flow of crowd. Our
method can capture the anomaly of this pedestrian’s behavior or movement by comparing the behavior
features with those of other pedestrians.

Fig. 5.14 shows the results of anomaly detection in different crowd videos. 879-38 video dataset (Ro-

driguez et al., 2011): The trajectories of 63 pedestrians are extracted from the video. One person in the

middle is walking against the flow of pedestrians through a dense crowd. Our method can distinguish the

unique behavior of this pedestrian by comparing its behavior features with those found by methods. In

UCSD-Peds1-Biker and UCSD-Peds1-Cart benchmarks, our method is able to distinguish parts of the

trajectories of the biker and the cart because their speeds were noticeably different from those of other

pedestrians.

Apart from ARENA, we evaluated the accuracy of the anomaly detection algorithm on the UCSD PEDS1

dataset (Mahadevan et al., 2010) and compared it with Table V in Li et al. (Li et al., 2015) in Table 2.

Our method successfully detected the following anomalies in the ARENA - Person checking vehicle,

different motion pattern, person on a bike, push and run, abnormal motion near vehicle, man touching vehicle,

hit and run, suddenly people running and possible mugging.
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Video Density Total Frames BLT
ARENA (01 01) Low 1060 0.002
ARENA (01 02) Low 890 0.004
ARENA (03 05) Low 1440 0.002
ARENA (03 06) Low 1174 0.002
ARENA (06 01) Low 2941 0.001
ARENA (06 04) Low 1582 0.002
ARENA (08 02) Low 792 0.002
ARENA (08 03) Low 746 0.006
ARENA (10 03) Low 1173 0.002
ARENA (10 04) Low 1188 0.005
ARENA (10 05) Low 894 0.004
ARENA (11 03) Low 329 0.001
ARENA (11 04) Low 729 0.002
ARENA (11 05) Low 666 0.002
ARENA (14 01) Low 1081 0.001
ARENA (14 03) Low 1242 0.004
ARENA (14 05) Low 1509 0.001
ARENA (14 06) Low 857 0.002
ARENA (14 07) Low 1312 0.004
ARENA (15 02) Low 917 0.004
ARENA (15 05) Low 903 0.004
ARENA (15 06) Low 660 0.001
ARENA (22 01) Low 2079 0.002
ARENA (22 02) Low 1006 0.001
ARENA (23 01) Low 712 0.001
Crossing Medium 238 0.03
Marathon High 450 0.02
879-38 High 349 0.01
UCSD-Peds1-Cart Low 200 0.004
UCSD-Peds1-Biker Low 200 0.009
IITF-5 High 876 0.0512
NPLC-1 Low 775 0.012
NDLS-1 High 941 0.049

Table 5.4: Performance of trajectory level behavior learning on a single core for different benchmarks: We
highlight the number of frames of extracted trajectories, the time spent in learning pedestrian behaviors
(BLT - Behavior Learning Time (in sec)). Our learning and trajectory computation algorithms demonstrate
interactive performance on these complex crowd scene analysis scenarios.
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Reference Dataset Performance
Area under ROC Curve Accuracy DR Equal Error Rate Online/Offline

Our Method

UCSD

0.873 85% - 20% Online
Wang 2012 0.9 - 85% - Offline
Cong 2013 0.86 - - 23.9 Offline
Cong 2012 0.98-0.47 46% 46% 20% Offline
Thida 2013 0.977 - 17.8% Offline
Our Method 879-44 0.97 80% - 13% Online
Our Method ARENA 0.91 76% - - Online

Table 5.5: Comparison of Anomaly Detection techniques. All the reference methods have been explained in
detail in (Li et al., 2015). Our method has comparable results with the state of the art offline methods in
anomaly detection.

Video Name Camera ID Threat Level
11 03 TRK RGB 1 High
15 02 TRK RGB 1 High
22 02 ENV RGB 3 High
14 06 TRK RGB 1 Medium
15 06 TRK RGB 1 Medium
14 07 TRK RGB 1 Low
10 04 TRK RGB 1 Low
06 01 TRK RGB 1 Low
10 05 TRK RGB 1 Low

Table 5.6: Details of the anomalies detected in the ARENA Dataset.
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CHAPTER 6

Conclusion and Future Work

In this thesis, we have presented interactive algorithms to track (Chapter 2), predict (Chapter 3) and

learn pedestrian behaviors(Chapter 4). A large part of our research borrows ideas related to understanding

and observing human-like behaviors and their interactions from other fields including psychology, physics,

and machine learning. As a result, both short-term, local interaction and long-term, high-level behavior

models are improved. Moreover, we highlight applications of our pedestrian tracking, prediction and behavior

learning algorithms to many different areas, including computer animation, computer vision, and robotics

(Chapter 5). Specifically, we have presented following approaches:

Pedestrian Tracking: We proposed a real time algorithm for pedestrian tracking in crowded scenes.

Our approach has a hybrid formulation that combines discrete (microscopic) and continuum (macroscopic)

models. The continuum method is used to model the flow of homogeneous clusters within a crowd. The

discrete model is used to predict the local interactions and collision avoidance behaviors of each pedestrian.

Our discrete formulation computes the best-fit mixture motion model (for microscopic clusters). The motion

model parameter estimation is formulated as an optimization problem, and we use an approach that solves

this combinatorial optimization problem in a model-independent manner and that is hence scalable to include

any multi-agent pedestrian motion model.

Pedestrian Prediction: We proposed a novel real-time algorithm for pedestrian path prediction. Our

algorithm is general and can compute global and local movement patterns in real-time with no prior learning

and can handle low as well as high density videos and is useful for short-term and long-term prediction. Our

approach makes no assumption about pedestrian movement or density, and performs no pre-computation. We

observe up to 18% increase in prediction accuracy as compared to prior real-time methods that are based on

simple filters or only local movement patterns.

Behavior Learning: We proposed a novel algorithm to classify the personalities of pedestrians in a

crowd video. We computed the time-varying motion model of each pedestrian using Bayesian inference and

combine it with Personality Trait Theory. We also compute the global movement features and use them to
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analyze and simulate different crowd movements or distributions. We evaluated the accuracy with a user

study and our results are promising. To the best of our knowledge, this is the first approach for automatic

pedestrian personality classification based on their movements in a video.

There are many avenues for future work, in addition to overcoming the limitations of our work discussed

in each chapter. Currently, our methods only compute the predictions and behaviors derived from trajectories.

We would like to incorporate other pedestrian features like facial expressions, full body motions etc. for

learning different aspects of pedestrians interactions. We also want to look into improvements using deep

learning and extending our methods to handle higher density crowds.

Our behavior learning approach has some limitations. The underlying formulation does not model many

other aspects of pedestrian behavior, including physiological and psychological pedestrian traits as well as

age, gender or external environmental factors. The estimation techniques relies on Bayesian inferences and

that may not work well in some cases. In terms of future work, we would like to overcome these limitations.

The behavior classification is based on personality models and PEN, and may not be sufficient to capture all

observed behaviors. We assume that it is possible to extract the trajectory of every pedestrian in a crowd. The

global prediction algorithm assumes that the relative distribution of pedestrian behaviors is about the same.

One possibility is to combine the classification scheme with other personality models like the Myers-Briggs

Type Indicator (Myers et al., 1999). Furthermore, a behavior representation based on six traits may not be

sufficient. We would like to integrate these algorithms with different robots and evaluate their performance

in crowded indoor and outdoor scenes. We would also like to take into account cultural norms and group

behaviors during social-aware navigation.
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