19 research outputs found

    Towards Visually Explaining Variational Autoencoders

    Get PDF
    Recent advances in Convolutional Neural Network (CNN) model interpretability have led to impressive progress in visualizing and understanding model predictions. In particular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these methods are designed for classification and categorization tasks, and their extension to explaining generative models, e.g. variational autoencoders (VAE) is not trivial. In this work, we take a step towards bridging this crucial gap, proposing the first technique to visually explain VAEs by means of gradient-based attention. We present methods to generate visual attention from the learned latent space, and also demonstrate such attention explanations serve more than just explaining VAE predictions. We show how these attention maps can be used to localize anomalies in images, demonstrating state-of-the-art performance on the MVTec-AD dataset. We also show how they can be infused into model training, helping bootstrap the VAE into learning improved latent space disentanglement, demonstrated on the Dsprites dataset

    Bayesian Prompt Learning for Image-Language Model Generalization

    Get PDF
    Foundational image-language models have generated considerable interest due to their efficient adaptation to downstream tasks by prompt learning. Prompt learning treats part of the language model input as trainable while freezing the rest, and optimizes an Empirical Risk Minimization objective. However, Empirical Risk Minimization is known to suffer from distributional shifts which hurt generalizability to prompts unseen during training. By leveraging the regularization ability of Bayesian methods, we frame prompt learning from the Bayesian perspective and formulate it as a variational inference problem. Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts. Our framework is implemented by modeling the input prompt space in a probabilistic manner, as an a priori distribution which makes our proposal compatible with prompt learning approaches that are unconditional or conditional on the image. We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space, prevents learning spurious features, and exploits transferable invariant features. This results in better generalization of unseen prompts, even across different datasets and domains. Code available at: https://github.com/saic-fi/Bayesian-Prompt-Learnin

    Non-Autoregressive Diffusion-based Temporal Point Processes for Continuous-Time Long-Term Event Prediction

    Full text link
    Continuous-time long-term event prediction plays an important role in many application scenarios. Most existing works rely on autoregressive frameworks to predict event sequences, which suffer from error accumulation, thus compromising prediction quality. Inspired by the success of denoising diffusion probabilistic models, we propose a diffusion-based non-autoregressive temporal point process model for long-term event prediction in continuous time. Instead of generating events one at a time in an autoregressive way, our model predicts the future event sequence entirely as a whole. In order to perform diffusion processes on event sequences, we develop a bidirectional map between target event sequences and the Euclidean vector space. Furthermore, we design a novel denoising network to capture both sequential and contextual features for better sample quality. Extensive experiments are conducted to prove the superiority of our proposed model over state-of-the-art methods on long-term event prediction in continuous time. To the best of our knowledge, this is the first work to apply diffusion methods to long-term event prediction problems

    Bayesian Prompt Learning for Image-Language Model Generalization

    Full text link
    Foundational image-language models have generated considerable interest due to their efficient adaptation to downstream tasks by prompt learning. Prompt learning treats part of the language model input as trainable while freezing the rest, and optimizes an Empirical Risk Minimization objective. However, Empirical Risk Minimization is known to suffer from distributional shifts which hurt generalizability to prompts unseen during training. By leveraging the regularization ability of Bayesian methods, we frame prompt learning from the Bayesian perspective and formulate it as a variational inference problem. Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts. Our framework is implemented by modeling the input prompt space in a probabilistic manner, as an a priori distribution which makes our proposal compatible with prompt learning approaches that are unconditional or conditional on the image. We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space, prevents learning spurious features, and exploits transferable invariant features. This results in better generalization of unseen prompts, even across different datasets and domains

    Long-Term Anticipation of Activities with Cycle Consistency

    Full text link
    With the success of deep learning methods in analyzing activities in videos, more attention has recently been focused towards anticipating future activities. However, most of the work on anticipation either analyzes a partially observed activity or predicts the next action class. Recently, new approaches have been proposed to extend the prediction horizon up to several minutes in the future and that anticipate a sequence of future activities including their durations. While these works decouple the semantic interpretation of the observed sequence from the anticipation task, we propose a framework for anticipating future activities directly from the features of the observed frames and train it in an end-to-end fashion. Furthermore, we introduce a cycle consistency loss over time by predicting the past activities given the predicted future. Our framework achieves state-of-the-art results on two datasets: the Breakfast dataset and 50Salads.Comment: GCPR 202

    A NOVEL APPROACH FOR LEARNING TEMPORAL POINT PROCESS

    Get PDF
    In this paper, we presented a novel methodology for learning temporal point process based on the implementation of one-dimensional numerical integration techniques. The implementation of numerical methodology is used for linearizing negative maximum likelihood (neML) function to enable backpropagation of neML derivative. The presented approach is tested on highway toll dataset. Moreover, four different wellknown point process baseline models were compared: first-order and second-order polynomial Poisson inhomogeneous process and Hawkes with exponential and Gaussian kernel. The results showed that different numerical integration techniques influence the quality of the obtained models
    corecore