22,556 research outputs found

    Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

    Full text link
    Model checking verifies that a model of a system satisfies a given property, and otherwise produces a counter-example explaining the violation. The verified properties are formally expressed in temporal logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the whole computation tree of the model, rather than on each single linear computation. This branching aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about systems with several transition relations. A prominent example is CTLK, a logic that reasons about temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear counter-examples for failed properties, composed of a single computation path of the model. But some branching properties are only poorly and partially explained by a linear counter-example. This paper proposes richer counter-example structures called tree-like annotated counter-examples (TLACEs), for properties in Action-Restricted CTL (ARCTL), an extension of CTL quantifying paths restricted in terms of actions labeling transitions of the model. These counter-examples have a branching structure that supports more complete description of property violations. Elements of these counter-examples are annotated with parts of the property to give a better understanding of their structure. Visualization and browsing of these richer counter-examples become a critical issue, as the number of branches and states can grow exponentially for deeply-nested properties. This paper formally defines the structure of TLACEs, characterizes adequate counter-examples w.r.t. models and failed properties, and gives a generation algorithm for ARCTL properties. It also illustrates the approach with examples in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been implemented, first by extending the NuSMV model checker to generate and export branching counter-examples, secondly by providing an interactive graphical interface to visualize and browse them.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    FPGA based remote code integrity verification of programs in distributed embedded systems

    Get PDF
    The explosive growth of networked embedded systems has made ubiquitous and pervasive computing a reality. However, there are still a number of new challenges to its widespread adoption that include scalability, availability, and, especially, security of software. Among the different challenges in software security, the problem of remote-code integrity verification is still waiting for efficient solutions. This paper proposes the use of reconfigurable computing to build a consistent architecture for generation of attestations (proofs) of code integrity for an executing program as well as to deliver them to the designated verification entity. Remote dynamic update of reconfigurable devices is also exploited to increase the complexity of mounting attacks in a real-word environment. The proposed solution perfectly fits embedded devices that are nowadays commonly equipped with reconfigurable hardware components that are exploited to solve different computational problems

    EasyUC: using EasyCrypt to mechanize proofs of universally composable security

    Get PDF
    We present a methodology for using the EasyCrypt proof assistant (originally designed for mechanizing the generation of proofs of game-based security of cryptographic schemes and protocols) to mechanize proofs of security of cryptographic protocols within the universally composable (UC) security framework. This allows, for the first time, the mechanization and formal verification of the entire sequence of steps needed for proving simulation-based security in a modular way: Specifying a protocol and the desired ideal functionality; Constructing a simulator and demonstrating its validity, via reduction to hard computational problems; Invoking the universal composition operation and demonstrating that it indeed preserves security. We demonstrate our methodology on a simple example: stating and proving the security of secure message communication via a one-time pad, where the key comes from a Diffie-Hellman key-exchange, assuming ideally authenticated communication. We first put together EasyCrypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-communication functionality. We then mechanically combine the two proofs into an EasyCrypt-verified proof that the composed protocol realizes the same ideal secure-communication functionality. Although formulating a methodology that is both sound and workable has proven to be a complex task, we are hopeful that it will prove to be the basis for mechanized UC security analyses for significantly more complex protocols and tasks.Accepted manuscrip

    XTribe: a web-based social computation platform

    Get PDF
    In the last few years the Web has progressively acquired the status of an infrastructure for social computation that allows researchers to coordinate the cognitive abilities of human agents in on-line communities so to steer the collective user activity towards predefined goals. This general trend is also triggering the adoption of web-games as a very interesting laboratory to run experiments in the social sciences and whenever the contribution of human beings is crucially required for research purposes. Nowadays, while the number of on-line users has been steadily growing, there is still a need of systematization in the approach to the web as a laboratory. In this paper we present Experimental Tribe (XTribe in short), a novel general purpose web-based platform for web-gaming and social computation. Ready to use and already operational, XTribe aims at drastically reducing the effort required to develop and run web experiments. XTribe has been designed to speed up the implementation of those general aspects of web experiments that are independent of the specific experiment content. For example, XTribe takes care of user management by handling their registration and profiles and in case of multi-player games, it provides the necessary user grouping functionalities. XTribe also provides communication facilities to easily achieve both bidirectional and asynchronous communication. From a practical point of view, researchers are left with the only task of designing and implementing the game interface and logic of their experiment, on which they maintain full control. Moreover, XTribe acts as a repository of different scientific experiments, thus realizing a sort of showcase that stimulates users' curiosity, enhances their participation, and helps researchers in recruiting volunteers.Comment: 11 pages, 2 figures, 1 table, 2013 Third International Conference on Cloud and Green Computing (CGC), Sept. 30 2013-Oct. 2 2013, Karlsruhe, German

    Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach

    Full text link
    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem using Statistical Model Checking. The method has been implemented in UPPAAL model checker and has been applied to the analysis of Aloha CSMA/CD and IEEE 802.15.4 CSMA/CA protocols.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Framework for Electroencephalography-based Evaluation of User Experience

    Get PDF
    Measuring brain activity with electroencephalography (EEG) is mature enough to assess mental states. Combined with existing methods, such tool can be used to strengthen the understanding of user experience. We contribute a set of methods to estimate continuously the user's mental workload, attention and recognition of interaction errors during different interaction tasks. We validate these measures on a controlled virtual environment and show how they can be used to compare different interaction techniques or devices, by comparing here a keyboard and a touch-based interface. Thanks to such a framework, EEG becomes a promising method to improve the overall usability of complex computer systems.Comment: in ACM. CHI '16 - SIGCHI Conference on Human Factors in Computing System, May 2016, San Jose, United State
    corecore