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Mechanizing Game-Based Proofs of
Security Protocols

Bruno BLANCHET!
INRIA, Ecole Normale Supérieure, CNRS, Paris, France

Abstract. After a short introduction to the field of security protocol verification,

we present the automatic protocol verifier CryptoVerif. In contrast to most previ-
ous protocol verifiers, CryptoVerif does not rely on the Dolev-Yao model, but on
the computational model. It produces proofs presented as sequences of games, like
those manually done by cryptographers; these games are formalized in a probabilis-
tic process calculus. CryptoVerif provides a generic method for specifying security
properties of the cryptographic primitives. It can prove secrecy and correspondence
properties (including authentication). It produces proofs valid for any number of
sessions, in the presence of an active adversary. It also provides an explicit formula
for the probability of success of an attack against the protocol, as a function of the
probability of breaking each primitive and of the number of sessions.

Keywords. Security protocols; computational model; automatic proof; sequences
of games; process calculi.

Introduction

A security protocol is a program that guarantees security properties, such as the secrecy
of some piece of data, by relying on cryptographic primitives, such as encryption or sig-
natures. Security protocols make it possible to securely exchange data on insecure net-
works such as Internet. The design of security protocols is well-known to be error-prone.
This can be illustrated by the attack against the Needham-Schroeder public-key proto-
col [49] found by Lowe [46] 17 years after its publication. Errors in security protocols
can have serious consequences, such as loss of money in e-commerce. Furthermore, se-
curity errors cannot be detected by testing, since they appear only in the presence of a
malicious adversary. Therefore, one aims at proving that security protocols are correct.
Manual proofs are complex and error-prone, so formal methods can play an important
role by providing tools for proving security protocols correct or for finding attacks.

There exist two main models for analyzing security protocols:

e In the symbolic model, often calledolev-Yaomodel [37], cryptographic prim-
itives are considered as perfect blackboxes, modeled by function symbols in an
algebra of terms, possibly with equations. Messages are terms on these primitives
and the adversary can compute only using these primitives.
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e In contrast, in thecomputationalmodel, messages are bitstrings, cryptographic
primitives are functions from bitstrings to bitstrings, and the adversary is any
probabilistic Turing machine.

The computational model is close to the real execution of protocols, but the proofs are
usually manual and informal. The Dolev-Yao model is an abstract model that makes
it easier to build automatic verification tools, and many such tools exist: AVISPA [5],
FDR [46], and ProVerif [20], for instance. Hubert Comon-Lundh’s course will deal
with the verification of security protocols in this model. However, security proofs in the
Dolev-Yao model in general do not imply security in the computational model.

In order to mechanize proofs in the computational model, several approaches have
been considered.

e In the indirect approach, following the seminal paper by Abadi and Rogaway [1],
one shows the soundness of the Dolev-Yao model with respect to the computa-
tional model, that is, one proves that the security of a protocol in the Dolev-Yao
model implies its security in the computational model, modulo additional assump-
tions. Combining such a result with a Dolev-Yao automatic verifier, one obtains
automatic proofs of protocols in the computational model. This approach received
much interest [6, 8, 29, 31, 39, 47] and a tool [30] was developed based on [31]
to obtain computational proofs using the Dolev-Yao verifier AVISPA, for proto-
cols that rely on public-key encryption and signatures. However, this approach
has limitations: since the computational and Dolev-Yao models do not correspond
exactly, soundness requires additional hypotheses. (For example, key cycles have
to be excluded, or a specific security definition of encryption is needed [3].)

In a related approach, Backes, Pfitzmann, and Waidner [9-11] have desighed
an abstract cryptographic library including symmetric and public-key encryp-
tion, message authentication codes, sighatures, and nonces and shown its sound-
ness with respect to computational primitives, under arbitrary active attacks. This
framework has been used for a computationally-sound machine-checked proof of
the Needham-Schroeder-Lowe protocol [54].

Canetti [27] introduced the notion of universal composability. With Herzog [28],
they show how a Dolev-Yao-style symbolic analysis can be used to prove security
properties of protocols within the framework of universal composability, for a
restricted class of protocols using public-key encryption as only cryptographic
primitive. Then, they use the automatic Dolev-Yao verification tool Proverif [21]
for verifying protocols in this framework.

e Techniques used previously in the Dolev-Yao model have also been adapted in
order to obtain proofs in the computational model.

For instance, Datta, Derek, Mitchell, Shmatikov, and Turuani [35, 36] have
adapted the logic PCL (Protocol Composition Logic), first designed for proving
protocols in the Dolev-Yao model, to the computational model. Other computa-
tionally sound logics include CIL (Computational Indistinguishability Logic) [12]
and a specialized Hoare logic designed for proving asymmetric encryption
schemes in the random oracle model [32, 33].

Similarly, type systems [34,43, 45, 53] can provide computational security guar-
antees. For instance, [43] handles shared-key and public-key encryption, with
an unbounded number of sessions. This system relies on the Backes-Pfitzmann-
Waidner library. A type inference algorithm is given in [7].



e In the direct approach, one aims at mechanizing proofs in the computational
model, without using a Dolev-Yao protocol verifier. Computational proofs made
by cryptographers are typically presented as sequences of games [18,52]: the ini-
tial game represents the protocol to prove; the goal is to show that the probability
of breaking a certain security property is negligible in this game. Intermediate
games are obtained each from the previous one by transformations such that the
difference of probability between consecutive games is negligible. The final game
is such that the desired probability is obviously negligible from the form of the
game. The desired probability is then negligible in the initial game. Halevi [38]
suggested to use tools for mechanizing these proofs, and several techniques have
been used for reaching this goal.

CryptoVerif [22—25], which will be the main topic of this course, is such a tool.

It generates proofs by sequences of games automatically or with little user inter-
action. The games are formalized in a probabilistic process calculus. CryptoVerif
provides a generic method for specifying security properties of many crypto-
graphic primitives. It proves secrecy and authentication properties. It also pro-
vides a bound on the probability of success of an attack. It considerably extends
early works by Laud [41, 42] which were limited either to passive adversaries or
to a single session of the protocol. More recently, TSahhirov and Laud [44, 55]
developed a tool similar to CryptoVerif but that represents games by dependency
graphs; it handles only public-key and shared-key encryption and proves secrecy
properties.

The tool CertiCrypt [13, 15, 16, 26] enables the machine-checked construction
and verification of cryptographic proofs by sequences of games. It relies on the
general-purpose proof assistant Coq, which is widely believed to be correct. Easy-
Crypt [14] generates CertiCrypt proofs from proof sketches that formally repre-
sent the sequence of games and hints, which makes the tool easier to use. Nowak
et al. [4, 50, 51] follow a similar idea by providing Coq proofs for several basic
cryptographic primitives.

In the tool CryptoVerif, games are represented in a process calculus inspired by the
pi-calculus and by the calculi of [48] and of [43]. In this calculus, messages are bitstrings,
and cryptographic primitives are functions from bitstrings to bitstrings. The calculus has
a probabilistic semantics. The main tool for specifying security assumptions is observa-
tional equivalence() is observationally equivalent 1@’ up to probabilityp, Q ~, @',
when the adversary has probability at mpstf distinguishing@) from Q’. With respect
to previous calculi mentioned above, our calculus introduces an important novelty which
is key for the automatic proof of security protocols: the values of all variables during the
execution of a process are stored in arrays. For instaridés the value ofr in thei-th
copy of the process that definesArrays replace lists often used by cryptographers in
their manual proofs of protocols. For example, consider the standard security assumption
on a message authentication code (MAC). Informally, this assumption says that the ad-
versary has a negligible probability of forging a MAC, that is, that all correct MACs have
been computed by calling the MAC oraclee(, function). So, in cryptographic proofs,
one defines a list containing the arguments of calls to the MAC oracle, and when veri-
fying a MAC of a message:, one can additionally check that is in this list, with a
negligible change in probability. In our calculus, the arguments of the MAC oracle are
stored in arrays, and we perform a lookup in these arrays in order to find the message



m. Arrays make it easier to automate proofs since they are always present in the calcu-
lus: one does not need to add explicit instructions to insert values in them, in contrast to
the lists used in manual proofs. Therefore, many trivially sound but difficult to automate
syntactic transformations disappear. Furthermore, relations between elements of arrays
can easily be expressed by equalities, possibly involving computations on array indices.
CryptoVerif relies on a collection of game transformations, in order to transform the
initial protocol into a game on which the desired security property is obvious. The most
important kind of transformations exploits the security assumptions on cryptographic
primitives in order to obtain a simpler game. As described in Section 2.2, these trans-
formations can be specified in a generic way: we represent the security assumption of
each cryptographic primitive by an observational equivaleice, R, where the pro-
cesseqd. andR encode oracles: they input the arguments of the oracle and send its result
back. Then, the prover can automatically transform a proQetbst calls the oracles of
L (more precisely, contains as subterms terms that perform the same computations as
oracles ofL) into a procesg)’ that calls the oracles aR instead. We have used this
technique to specify several variants of shared-key and public-key encryption, signature,
message authentication codes, hash functions, Diffie-Hellman key agreement, simply by
giving the appropriate equivalende~, R to the prover. Other game transformations
are syntactic transformations, used in order to be able to apply an assumption on a cryp-
tographic primitive, or to simplify the game obtained after applying such an assumption.
In order to prove protocols, these game transformations are organized using a proof
strategy based on advice: when a transformation fails, it suggests other transformations
that should be applied before, in order to enable the desired transformation. Thanks to
this strategy, protocols can often be proved in a fully automatic way. For delicate cases,
CryptoVerif has an interactive mode, in which the user can manually specify the trans-
formations to apply. It is usually sufficient to specify a few transformations coming from
the security assumptions of primitives, by indicating the concerned cryptographic prim-
itive and the concerned secret key if any; the prover infers the intermediate syntactic
transformations by the advice strategy. This mode is helpful for proving some public-key
protocols, in which several security assumptions on primitives can be applied, but only
one leads to a proof of the protocol. Importantly, CryptoVerif is always sound: whatever
indications the user gives, when the prover shows a security property of the protocol, the
property indeed holds assuming the given assumptions on the cryptographic primitives.
CryptoVerif has been implemented in Ocaml (29800 lines of code for version 1.12
of CryptoVerif) and is available atttp://www.cryptoverif.ens.fr/.

Outline The next section presents the process calculus for representing games. Sec-
tion 2 describes the game transformations that serve for proving protocols. Section 3
gives criteria for proving secrecy properties of protocols. Section 4 explains how the
prover chooses which transformation to apply at each point. Section 5 presents applica-
tions of CryptoVerif and Section 6 concludes.

Notations We recall the following standard notations. We denote{B¥; /x4, ...,
M,,/zn} the substitution that replaces with M, for eachj < m. The cardinal of a set

or multisetS is denoted byS|. If S'is a finite setx & S chooses a random element uni-
formly in S and assigns it te. If A is a probabilistic algorithmy «+ A(z4, ..., z,,) de-
notes the experiment of choosing random ceiasd assigning te the result of running
A(zq,...,x,) with coinsr. Otherwisex + M is a simple assignment statement.



M,N == terms
i replication index
x[My, ..., M) variable access
f(My,..., M) function application
Q= input process
0 nil
Qe parallel composition
lsnQ) replicationn times
newChannel ¢; Q channel restriction
oMy, ..., M)(z1[i): Tu,. .. 2fi) : Th); P input
P = output process
C[Ml,...7Ml]<N17...7Nk>;Q output
new i1, ..., i, : T; P random number
let z[i1,...,im]: T=MinP assignment
if defined(Mq, ..., M;) A M then P else P’ conditional
find (@;nzl ujlm < M1y Ujm, m < Tjm, suchthat
defined(Mj1, ..., Mj;;) A M; then P;) else P array lookup
event e(My,..., M;); P event

Figure 1. Syntax of the process calculus
1. A Calculus for Games
1.1. Syntax and Informal Semantics

CryptoVerif represents games in the syntax of Figure 1. This calculus assumes a count-
able set of channel names, denotedcbyt uses parameters, denoted fbywhich are
integers that bound the number of executions of processes. It also uses types, denoted by
T, which are subsets dfitstring |, = bitstring U { L} wherebitstring is the set of all
bitstrings andL is a special symbol. Ldixed-lengthtypes be types that consist of the set
of all bitstrings of a certain length. Particular types are predefihed:= {true, false},
wherefalse is 0 andtrue is 1; bitstring; bitstring | ; [1,n] wheren is a parameter. (We
consider integers as bitstrings without leading zeroes.)

The calculus also uses function symbglsEach function symbol comes with a
type declarationf : T} x ... x T, — T, and represents an efficiently computable,
deterministic function that maps each tupldinx. .. xT,, to an element of . Particular
functions are predefined, and some of them use the infix notalibn= N for the
equality testM # N for the inequality test (both taking two values of the same tijpe
and returning a value of typiol), M Vv N for the boolean or) A N for the boolean
and,—M for the boolean negation (taking and returning values of tyjpé).

In this calculus, terms represent computations on bitstrings. The replication in-
dexi is an integer which serves in distinguishing different copies of a replicated pro-
cess!’=", (Replication indices are typically used as array indices.) The variable ac-
cessz[M, ..., M,,] returns the content of the cell of indicddy, ..., M, of them-
dimensional array variable. We user, y, z, u as variable names. The function applica-
tion f(My, ..., M,,) returns the result of applying functiofito My, ..., M,,.



The calculus distinguishes two kinds of processes: input procésses ready to
receive a message on a channel; output procd3segput a message on a channel after
executing some internal computations. The input process 0 does nathing) is the
parallel composition of) andQ’; !"<"(Q represents copies ofQ in parallel, each with
a different value ofi € [1,n]; newChannel ¢; ) creates a new private channeand
executes); the semantics of the inpuiM;, .. ., Ml](zl[ﬂ o ST ,xk[ﬂ : Ty); P will
be explained below together with the semantics of the output.

The output processew x[i1,...,i,] : T; P chooses a new random number uni-
formly in T, stores it inz[iy,...,i,], and executed. (The typeT must be a fixed-
length type, because probabilistic Turing machines can choose random numbers uni-
formly only in such types.) Function symbols represent deterministic functions, so all
random numbers must be chosembw i1, ..., i,,] : T. Deterministic functions make
automatic syntactic manipulations easier: we can duplicate a term without changing its
value. The procedst x[i1, ..., i) : T = M in P stores the bitstring value @ (which
must be inT) in z[iy,...,i,] and execute®. The procesevent e(Mi,..., M;); P
executes the evem{ My, ..., M;), then runsP. This event records that a certain pro-
gram point has been reached with certain value®/of. . . , M;, but otherwise does not

affect the execution of the process. Next, we explain the prooess®’” | u;i[i] <

i, ... ,ujm_jm < Ny, suchthat defined(Mj1, ..., Mj;;) A M; then P;) else P,
where denotes a tuplé,, ..., i, . The order and array indices on tuples are taken
component-wise, so for instance;, [i] < njl,...,ujmj[ﬂ < njm,; can be further
abbreviatedi;[i] < ;. A simple example is the followingfind u < n suchthat
defined(z[u]) A z[u] = a then P’ else P tries to find an index: such thatz[u] is de-
fined andz[u] = a, and when such a is found, it execute$”’ with that value ofu;
otherwise, it executeB. In other words, thisind construct looks for the value in the
arrayz, and wher is found, it stores iny an index such that[u] = a. Therefore, the
find construct allows us to access arrays, which is key for our purpose. More generally,
find u1[2~'] < ni,... ,um[z~'] < nyy, suchthat defined(Mq, ..., M;) A M then P’ else P
tries to find values ofu.,...,u,, for which My, ..., M; are defined and/ is true.

In case of success, it execut&s. In case of failure, it executeB. This is further
generalized ton branchesfind (@7, wiii] < Mjiy.. oy Wim, i) < njm, suchthat
defined(Mj1, ..., Mj;;) A M; then P;) else P tries to find a brancly in [1,m] such
that there are values af;y, ..., uj,, for which Mj,, ..., Mj;, are defined and/; is
true. In case of success, it execufgs In case of failure for all branches, it execufés
More formally, it evaluates the conditiodsfined(M;1, ..., Mj;,) A M; for eachj and

each value ofi;y [i], . .., wjp, [i] In [1,n51] X ... X [1,n;m,]. If none of these conditions
is true, it executesP. Otherwise, it chooses randomly with unifotmrobability onej
and one value 0fij1 (1], . .., u;jmn, (1] such that the corresponding conditiontisie and
executesP;. The conditionalf defined(M, ..., M;) A M then P else P’ executesP if
My, ..., M; are defined and/ evaluates tarue. Otherwise, it executeB’. This con-

ditional is equivalent tdind suchthat defined(Mi,..., M;) A M then P else P’. The

2A probabilistic Turing machine can choose a random number uniformly in a set of candioaly when
m is a power of 2. Whenmn is not a power of 2, there exist approximate algorithms: for example, in order to
obtain a random integer ijo, m — 1], we can choose a random integenniformly among[0, 2% — 1] for a
certaink large enough and return mod m. The distribution can be made as close as we wish to the uniform
distribution by choosing: large enough.



conjunctdefined(M;, . .., M;) can be omitted wheh= 0 and M can be omitted when
itis true.

Finally, let us explain the outpufMy, ..., M;](Ny, ..., Ng); Q. A channelc[M;,
..., Mj] consists of both a channel nameand a tuple of termd\/,, ..., M;. Chan-
nel names: can be declared private lmewChannel ¢; the adversary can never have
access to channelMy, ..., M;] whenc is private. (This is useful in the proofs, al-
though all channels of protocols are often public.) Terhds, ..., M; are intuitively
analogous to IP addresses and ports, which are numbers that the adversary may guess.
A semantic configuration always consists of a single output process (the process cur-
rently being executed) and several input processes. When the output process executes
c[My,...,Mj}(Ny,...,Nk); Q, one looks for an input on channgh\; . .., M/], where

M, ..., M/ evaluate to the same bitstrings&s, . . . , M;, and with the same arity, in
the available input processes. If no such input process is found, the process blocks. Oth-
erwise, one such input procesd\/1, ..., M/|(z1[i| : T1,...,x[t] : Tx); P is chosen

randomly with uniform probability. The communication is then executed: for gaclk,
the output messag¥; is evaluated and stored in [z~] ifitis in T; (otherwise the process
blocks). Finally, the output proceg3that follows the input is executed. The input pro-
cess( that follows the output is stored in the available input processes for future execu-
tion. The syntax requires an output to be followed by an input process, as in [43]. If one
needs to output several messages consecutively, one can simply insert fictitious inputs
between the outputs. The adversary can then schedule the outputs by sending messages
to these inputs.

Using different channels for each input and output allows the adversary to control
the network. For instance, we may write"c[i](z[i] : T) ...c'[i](M) ... The adversary
can then decide which copy of the replicated process receives its message, simply by
sending it orc[i] for the appropriate value of

An else branch offind or if may be omitted when it islse yield(); 0. (Note that
“else 0” would not be syntactically correct.) Similarlyjeld(); 0 may be omitted after
an event or a restriction. A trailing 0 after an output may be omitted.

Thecurrent replication indicesit a certain program point in a processate. . , i,
where the replications above the considered program pointare: ... !im<nm_ We
often abbreviate[i, ..., i,,] by z wheni,, ... i, are the current replication indices,
but it should be kept in mind that this is only an abbreviation. Variabldefined under
a replication must be arrays with indices the current replication indices at the definition
of x: for example)i1<n1 | limSnmlet x[iy, ... i,,] : T = M in ... More formally, we
require the following invariant:

Invariant 1 (Single definition) The process), satisfies Invariant 1 if and only if

1. in every definition ofz[i1,...,im] in Qo, the indicesiy, ..., of = are the
current replication indices at that definition, and

2. two different definitions of the same variahlén @)y are in different branches of
afind (orif).

Invariant 1 guarantees that each variable is assigned at most once for each value of its
indices. (Indeed, item 2 shows that only one definition of each variable can be executed
for given indices in each trace.)



Invariant 2 (Defined variables) The process), satisfies Invariant 2 if and only if every
occurrence of a variable accegd/1, ..., M,,] in Qq is either

e syntactically under the definition ef M, . .., M,,] (in which case\fy, ..., M,
are in fact the current replication indices at the definition)of

e orin adefined condition in afind process;

e or in M or P; in a process of the fornfind (@;’illufjﬁ] < nj; suchthat
defined(Mjy,..., M}, ) A Mj then Pj) else P where for somek < [,
x[My, ..., M,,]is a subterm OMJ’-k.

Invariant 2 guarantees that variables can be accessed only when they have been initial-
ized. It checks that the definition of the variable access is either in scope (first item) or
checked by dind (last item).

We use a type system, detailed in [23, Appendix A], to check that bitstrings of the
proper type are given to each function and that array indices are used correctly.

Invariant 3 (Typing) The process) satisfies Invariant 3 if and only if it is well-typed.

We require the adversary to be well-typed. This requirement does not restrict its com-
puting power, because it can always define type-cast funcfion§” — T’ to bypass

the type system. Similarly, the type system does not restrict the class of protocols that
we consider, since the protocol may contain type-cast functions. The type system just
makes explicit which set of bitstrings may appear at each point of the protocol. The

three invariants are checked by the prover for the initial game and preserved by all game
transformations.

The formal semantics is defined by a probabilistic reduction relation [23, Ap-
pendix B]. Our semantics is such that all processes can be simulated by probabilistic
Turing machines, and conversely.

We say that a functioif : 73 x ... x T,, — T is poly-injectivewhen it is injective
and its inverses are efficiently computable, that is, there exist funcfphs T = Tj
(1 < j < m)such thatf; ' (f(z1,...,2m)) = z; and f; ' is efficiently computable.
When f is poly-injective, we define a pattern matching consttectf (x1, ..., z,,) =
M in P else Q as an abbreviation fdet y : T = M inletx; : Ty = f;*(y) in ...
let 2, : Ty = £, (y) inif f(z1,...,2.,) =y then P else Q. We naturally generalize
this construct tdet N = M in P else Q whereNN is built from poly-injective functions
and variables.

We denote byar(Q) the set of variables that occur ép.

1.2. Example
Let us introduce two cryptographic primitives that we use below.

Definition 1 Let T}, Tyux, and T, be types that correspond intuitively to random
seeds, keys, and message authentication codes, respediyglig a fixed-length type.
A message authentication code schevi?eC [17] consists of three function symbols:

e mkgen : T,,. — T,k iS the key generation algorithm taking as argument a
random bitstring and returning a key. (Usuaitykgen is a randomized algorithm;
here, since we separate the choice of random numbers from compuiakigem
takes an additional argument representing the random coins.)



e mac : bitstring X T — Ths IS the MAC algorithm taking as arguments a
message and a key, and returning the corresponding tag. (We assume here that
mac is deterministic; we could easily encode a randomized by adding an
additional argument as fankgen.)

o verify : bitstring X T, X Tons — bool is a verification algorithm such that
verify(m, k, t) = true if and only if ¢ is a valid MAC of message: under keyk.
(Sincemac is deterministicyerify(m, k, t) is typically mac(m, k) = t.)

We havevm € bitstring Vr € T,,,,verify(m, mkgen(r), mac(m, mkgen(r))) = true.
The advantage of an adversary against unforgeability under chosen message attacks
(UF-CMA) is

R
e rTomry k < mkgen(r);
Succyac (s Gms Qo 1) = max Pr | (m,s) « AmacCk)verify(k.) + verify(m, k, s)
A m was never queried to the oracleac(., k)

where the adversaryl is any probabilistic Turing machine that runs in time at migst
callsmac(., k) at mosty,,, times with messages of length at mhstnd callsverify (., &, .)
at mostyg, times with messages of length at mast

uf —cma

Succpac (¢, gm, ¢u, 1) is the probability that an adversary forges a MAC, that is,
returns a pai(m, s) wheres is a correct MAC forn, without having queried the MAC
oraclemac(., k) onm. Intuitively, when the MAC is secure, this probability is small: the
adversary has little chance of forging a MAC. Hence, the MAC guarantees the integrity
of the MACed message because one cannot compute the MAC without the secret key.

Two frameworks exist for expressing security properties. In the asymptotic frame-
work, used in [22, 23], the length of keys is determined by a security parameded
a MAC is UF-CMA WhenSuch,\‘;;éma(t, dm, v, 1) is @ negligible function of; whent
is polynomial in7. (f(n) is negligiblewhen for all polynomialg;, there exists), € N
such that for ally > no, f(n) < ﬁ.) The assumption that functions are efficiently
computable means that they are computable in time polynomighimd in the length of
their arguments. The goal is to show that the probability of success of an attack against
the protocol is negligible, assuming the parameteese polynomial inp and the net-
work messages are of length polynomiakjinin contrast, in the exact security frame-
work, on which we focus in this course, one computes the probability of success of an
attack against the protocol as a function of the probability of breaking the primitives such
asSuch,f;éma(t, dm, v, 1), Of the runtime of functions, of the parametersand of the
length of messages, thus providing a more precise security result. Intuitively, the prob-
ability Succ;',fl;é’“a(t, dm, qv, 1) IS assumed to be small (otherwise, the computed proba-
bility of attack will be large), but no formal assumption on this probability is needed to

establish the security theorem.

Definition 2 Let T,. and T, be fixed-length types representing random coinsZlet
andT, be types for keys and ciphertexts respectively. A symmetric encryption scheme
SE [17] consists of three function symbols:

e kgen : T, — T} is the key generation algorithm taking as argument random coins
and returning a key,



e enc : bitstring x Ty, x T, — T, is the encryption algorithm taking as arguments
the cleartext, the key, and random coins, and returning the ciphertext,

e dec : T, x T, — bitstring | is the decryption algorithm taking as arguments
the ciphertext and the key, and returning either the cleartext when decryption
succeeds ot when decryption fails,

such that'm € bitstring, Vr € T,.,Vr' € T, dec(enc(m, kgen(r),r’), kgen(r)) = m.

Let LR(x,y,b) = « if b = 0 andLR(x,y,b) = y if b = 1, defined only when:
andy are bitstrings of the same length. The advantage of an adversary against indistin-
guishability under chosen plaintext attacks (IND-CPA) is

bﬁ{O, 1};7"£TT; k < kgen(r);
b o Ar'@T:;enc(LR(.,.,b)tk,r') -y =b

ind—cpa

Succgp (t,qe, 1) = max 2Pr -1

where A is any probabilistic Turing machine that runs in time at mosind calls
& T!:enc(LR(.,.,b), k,r") at mostg, times on messages of length at mbst

Given two bitstringsag and a; of the same length, the left-right encryption ora-
cler & T!;enc(LR(.,.,b), k,r") returnsr’ ﬁTT’; enc(LR(ag,a1,b),k,r'), that is, en-
cryptsap whenb = 0 anda; whenb = 1. Succes “P(t, q., 1) is the probability that

the adversary distinguishes the encryption of the messaggsen as first arguments to

the left-right encryption oracle from the encryption of the messageagven as second
arguments. Intuitively, when the encryption scheme is IND-CPA secure, this probability
is small: the ciphertext gives almost no information what the cleartext is (one cannot
determine whether it igy or a; without having the secret key).

Example 1 Let us consider the following trivial protocol:

A — B:e,mac(e,xpyr) Wheree = enc(z), zx, x)

andz’., x}, are fresh random numbers

A andB are assumed to share a kgyfor a symmetric encryption scheme and a kgy,

for a message authentication codecreates a fresh key/, and sends it encrypted under

xi to B. A MAC is appended to the message, in order to guarantee integrity. In other
words, the protocol sends the kel encrypted using an encrypt-then-MAC scheme [17].
The goal of the protocol is that, should be a secret key shared betweeand B. This
protocol can be modeled in our calculus by the following procgss

Qo = start();new z,. : T;let x, : T = kgen(z,.) in
New Ly Tonps et g+ Trne = mkgen(a,,,) in¢(); (Qa | QB)
Qa =""5"c4li](); new z}, : Ty; new . : T);

let @, : bitstring = enc(k2b(x},), Tk, x.) in cali]{xm, mac(zm,, Tmk))

Qp = !ilS”cB [i'](x,, Tma); If verify(z,

ms Tmk, znm) then

let i) (k2b(z})) = dec(a’, , x) in cp[i']()



When(@), receives a message on chanstel-t, it begins execution: it generates the keys
x5, andz,,; by choosing random coins, and x,» and applying the appropriate key
generation algorithms. Then it yields control to the adversary, by outputting on channel
c. After this output,n copies of processes fot and B are ready to be executed, when
the adversary outputs on channelgi] or cg[i] respectively. In a session that runs as
expected, the adversary first sends a message [6h Then@ 4 creates a fresh key),
(T} is assumed to be a fixed-length type), encrypts it ungewith random coinse/,,
computes the MAC undet,,;. of the ciphertext, and sends the ciphertext and the MAC
on ca[i]. The functionk2b : T, — bitstring is the natural injectiok2b(z) = z; itis
needed only for type conversion. The adversary is then expected to forward this message
on cgli]. When@ s receives this message, it verifies the MAC, decrypts, and stores the
obtained key inc}. (The functioni, : bitstring — bitstring | is the natural injection; it
is useful to check that decryption succeeded.) ThisKeghould be secret.

The adversary is responsible for forwarding messages fdota B. It can send
messages in unexpected ways in order to mount an attack.

This very small example is sufficient to illustrate the main features of CryptoVerif.
Section 5 presents results obtained on more realistic protocols.

1.3. Observational Equivalence

Let us now formally define game indistinguishability, which we name observational
equivalence by analogy with that notion in the Dolev-Yao model. A context is a process
containing a hol¢]. An evaluation context’ is a context built fronj |, newChannel ¢; C,

Q | C,andC | Q. We use an evaluation context to represent the adversary. We denote
by C[Q)] the process obtained by replacing the hdlan the contexiC' with the process

Q. The executed events can be used to distinguish games, so we introduce an additional
algorithm, adistinguisherD that takes as input a sequence of evéhsmd returnsrue

or false. An example of distinguisher i®,. defined byD.(£) = true if and only if

e € &: this distinguisher detects the execution of eventlore generally, distinguish-

ers can detect various properties of the sequence of egessscuted by the game. We
denote byPr[Q ~~ D] the probability thaty executes a sequence of evefitsuch that

D(€) returnstrue.

Definition 3 (Observational equivalence)Let Q and@’ be two processes arid a set
of variables. Assume th@ andQ’ satisfy Invariants 1, 2, and 3 and the variable$/of
are defined i) and@’, with the same types.

An evaluation context is said to laeceptabldor ¢ with public variables/ if and
only if var(C') Nvar(Q) C V andC[Q)] satisfies Invariants 1, 2, and 3.

We say that) and@’ areobservationally equivalentp to probabilityp with public
variablesV, written zz‘j @', when for all evaluation contexts acceptable fof) and
@’ with public variablesV/, for all distinguishersD, | Pr[C[Q] ~» D] — Pr[C[Q’] ~
DJ| < p(C, D).

This definition formalizes that algorithng$ and D distinguish@ and@’ with prob-
ability at mostp(C, D). The probabilityp typically depends on the runtime 6fandD,
but may also depend on other parameters, such as the number of message€’sent by
each replicated process. That is whiakes as argumen€s and D themselves.



The unusual requirement on variablestétomes from the presence of arrays and
of the associatefind construct which give§’ direct access to variables @fandQ’: the
contextC' is allowed to access variables@fand@’ only when they are iv. (In more
standard settings, the calculus does not have constructs that allow the context to access
variables of) and@’.) WhenV is empty, we writel) ~,, Q' instead ofQ) ~ V Q.

The following result is not difficult to prove:

Lemma 1 1. Reflexivity:Q ~Y Q.
2. Symmetry: iQ =) Q’, thenQ’ =~ Q.
3. Transitivity: if @ ~) Q" andQ’ z;j Q", then@ “z‘fﬂo/ Q".
4. 1fQ z]‘gf @' andC is an evaluation context acceptable fQrand Q’ with public
variablesV, thenC[Q] z;f/ C[Q’], wherep/’(C’, D) = p(C'[C], D) and V' C
V Uvar(C).

Proofs by sequences of games consist of a sequence of observationally equivalent games
Qo =y, Q1 =y, ...~ Qn. By transitivity, Qo ~) . ., Qn, so by definition of
observatlonal equwalencEr[ [Qo] ~ D] < Pr[C [Qn] ~ D}+(p1+ +pn)(C, D).

2. Game Transformations

In this section, we describe the game transformations that allow us to transform the pro-
cess that represents the initial protocol into a process on which the desired security prop-
erty can be proved directly, by criteria given in Section 3. These transformations are pa-
rameterized by the séf of variables that the context can access. As we shall see in Sec-
tion 3,V contains variables that we would like to prove secret. (The context will contain
test queries that access these variables.) These transformations transform a@gocess
into a procesg);, such that)y zz‘,’ Q}; CryptoVerif evaluates the probabiliy

2.1. Syntactic Transformations

RemoveAssigii): Whenz is defined by an assignmelat «[i1,...,4] : T = M in P
and x does not occur inM (non-cyclic assignment), we replaae with its value.
Whenz has several definitions, we simply replacg,, . .., ;] with M in P. (For ac-
cesses ta: guarded byfind, we do not know which definition of is actually used.)
When 2 has a single definition, we replace everywhere in the gafié,, ..., M)
with M{M, /i1,...,M;/i;}. We additionally update theefined conditions offind

to preserve Invariant 2 and to make sure that, if a conditiofiref guarantees that
x[Ma, ..., M]is defined in the initial game, then so does the corresponding condition of
find in the transformed game. Whene V, its definition is kept unchanged. Otherwise,
whenz is not referred to at all after the transformation, we remove the definitian of
Whenz is referred to only at the root afefined tests, we replace its definition with a
constant. (The definition point of is important, but not its value.)

Example 2 In the process of Example 1, the transformati@emoveAssigiz,,)
substitutesmkgen(z,,,) for z,,, in the whole process and removes the assignment
let g : Tk = mkgen(zpy,,.). After Substitutionmac(xm,xmk) becomesnac(z,,,
mkgen(x,,,)) andverify (x! | €k, Tmq) becomeserify (), mkgen (), Tma ), thus
exhibiting terms required in Section 2.2. The situation is smﬂaRfemoveAssigr(mk).



SArenamgx): The transformatiorSArename (single assignment rename) aims at re-
naming variables so that each variable has a single definition in the game; this is use-
ful for distinguishing cases depending on which definition:dfas set:[i]. This trans-
formation can be applied only when ¢ V. Whenxz hasm > 1 definitions, we
rename each definition of to a different variabler,, ..., z,,. Termsz[i] under a

definition of ;L][?] are then replaced with;[i]. Each branch of findf'B = u[i] <
7 suchthat defined(My, ..., M;) A M then P wherez[M] is a subterm of som#/;, for

k < lis replaced withn branches'B{z; [M]/z[M]} for1 < j < m.
Simplify: The prover uses a simplification algorithm, based on an equational prover,
using an algorithm similar to the Knuth-Bendix completion [40]. This equational prover

uses:

e User-defined equations, of the fotvix, : T13,...,Va,, : T,,, M which mean
that for all values ofcy in T4, ..., z,, in T,,, M evaluates tarue. For example,
considering MAC and encryption schemes as in Definitions 1 and 2 respectively,
we have:

V1t T, Ym 2 bitstring, verify (m, mkgen(r), mac(m, mkgen(r))) = true
(mac)

Vm @ bitstring;Vr : T,., V7' : T)., dec(enc(m, kgen(r), r’), kgen(r)) =i, (m)
(enc)

We express the poly-injectivity of the functi&2b of Example 1 by

Vo : T, Vy : T, (k2b(z) = k2b(y)) = (x = y)
(k2b)
Vi : Ty, k2b ™ (k2b(z)) =

wherek2b ! is a function symbol that denotes the inversé&2ib. We have sim-
ilar formulas fori | .

e Equations that come from the process. For example, in the prdcésshen P
else P’, we haveM = truein P andM = falsein P’.

e The low probability of collision between random values. For example, when
is defined bynew x : T under replications bounded by, . . ., n,,, [M, ...,
M) = «[M{,...,M] ] impliesM; = M{, ..., M,, = M/, up to probability
p= % (probability that two distinct cells of the arrayare equal). This
transformation is performed when the types large, which means thafT’| is
large enough so that the probabiliican be considered small.

Similarly, when 1)x is defined bynew = : T andT is a large type, 2) for each
value of M7, there is at most one value of(or of a part ofz of a large type) that
can yield that value oMM, and 3)M; does not depend an, thenM; # M, up
to a small probability. The fact thdt/, does not depend anis proved using a
dependency analysis.

The prover combines these properties to simplify terms, and uses simplified forms of
terms to simplify processes. For examplelifsimplifies totrue, thenif M then P else

P’ simplifies toP. Similarly, a branch ofind is removed when the associated condition
simplifies tofalse.



Details on the simplification procedure can be found in [23, Appendix C]. The
asymptotic version of the following proposition is proved in [23, Appendix E.1].

Proposition 1 LetQ, be a process that satisfies Invariants 1, 2, and 3@fjdhe process
obtained fromQ, by one of the transformations above. Thgf satisfies Invariants 1,
2, and 3, andQ) z[‘f Qf, wherep = 0 for the transformation®RemoveAssign and
SArename, andp is the probability of eliminated collisions f@implify.

2.2. Applying the Security Assumptions on Primitives

The security of cryptographic primitives is defined using observational equivalences
given as axioms. Importantly, this formalism allows us to specify many different primi-
tives in a generic way. Such equivalences are then used by the prover in order to trans-
form a game into another, observationally equivalent game, as explained below.

The primitives are specified using equivalences of the f¢ém,...,G,,) ~,
(GY,...,G.,) whereG is defined by the following grammar, with> 0 andm > 1:
G:= group of oracles

li<nnew yy : Ty;...;new yp : Tp; (G, ..., Go) replication, restrictions

O(zy: Ty, ...,z : T1) == OP oracle
OP ::= oracle processes

M term

new z[i] : T'; OP random number

let z[i] : T = M in OP assignment

find (D), 4;[i] < nj suchthat
defined(Mj1, ..., Mj;,) A M; then OP;) else OP  array lookup

Intuitively, O(x;y : Ty, ...,x; : T;) := OP represents an oracle that takes as argu-
ment valuesey, ..., x; of typesTy, ..., T; respectively and returns a result computed
by OP. The observational equivalen¢€, . ..,G,,) =, (G4,...,G,,) expresses that
the adversary has probability at mgsbf distinguishing oracles in the left-hand side
from corresponding oracles in the right-hand side. Formally, oracles can be encoded as
processes that input their arguments and output their result on a channel, as detailed
in [23]. Denoting by[(G4,...,Gx)] the encoding of Gy, ..., G,,) as a process, the
observational equivalendé, ..., G.,) ~, (G, ...,G,,) is then an abbreviation for
(G, Gl 2 [(Gs - Gl

For example, the security of a MAC (Definition 1) is represented by the equivalence

L~ R where:

Pmac

i,/<n,,
L="3>"newr: T (

<" Omac(x : bitstring) := mac(z, mkgen(r)),

1<% Overify(m : bitstring, ma : Tps) := verify(m, mkgen(r), ma))



R=""<"newr: T (
=" Omac(x : bitstring) := mac’(x, mkgen’(r)),
i'<n’ Overify(m : bitstring, ma : Tp,s) =
find u < n suchthat defined(z[u]) A (m = z[u])
A verify’ (m, mkgen’ (1), ma) then true else false)
Pmac(C, D) = n' Succhi 2™ (to + (n' — 1)(time(mkgen) + n time(mac, maxl(x))

+ n’ time(verify, maxl(m)), n, n’, max(maxl(x), maxl(m)))

(maceg)

wheremac’, verify’, andmkgen’ are function symbols with the same typesrasc,

verify, andmkgen respectively. (We use different function symbols on the left- and right-
hand sides, just to prevent a repeated application of the transformation induced by this
equivalence. Since we add these function symbols, we also add the equation

Vr : Ty, Vi 2 bitstring, verify’ (m, mkgen’(r), mac’ (m, mkgen'(r))) = true

(mac’)
which restates rhac) for mac’, verify’, and mkgen’.) Intuitively, the equivalence
L =, .. Rleaves MAC computations unchanged (except for the use of primed function
symbols inR), and allows one to replace a MAC verificatioerify (m, mkgen(r), ma)
with a lookup in the arrayr of messages whoseac has been computed with key
mkgen(r): if m is found in the array: andverify(m, mkgen(r), ma), we returntrue;
otherwise, the verification fails (up to negligible probability), so we retaige. (If the
verification succeeds withn not in the arraye, then the adversary has forged a MAC.)
Obviously, the form ofL requires that is used only to compute or verify MACs, for
the equivalence to be correct. In the probability.. (C, D), t¢ is the runtime of context
C; n’ is the maximum number of considered MAC keySandn’ are respectively the
maximum number of calls t&mac and Overify for each MAC key 4, n’, n” are in fact
functions ofC); time(f, l1, . . ., ;) is the maximum runtime of, called with arguments
of length at mosty, ..., (the lengthdy, ..., are omitted when the type of the ar-
gument already bounds its lengti)axl(z) is the maximum length of. Formally, the
following result shows the correctness of our modeling. It is a fairly easy consequence
of Definition 1, and its asymptotic version is proved in [23, Appendix E.3].

Proposition 2 If (mkgen, mac, verify) is a UF-CMA message authentication code and
the symbolsnkgen’, mac’, and verify’ represent the same functions aggen, mac,
andverify respectively, thefil] ~,,... [R].

Similarly, if (kgen, enc, dec) is an IND-CPA symmetric encryption scheme (Defini-
tion 2), then we have the following equivalence:

1" <" new 1 : T, '<"Oenc(x : bitstring) := new 1’ : T'; enc(x, kgen(r), ")

~po VS new r: Tos <" Oenc(x « bitstring) := new ' : T'; enc’ (Z(z), kgen' (), 1)

(enceg)



ind—cpa

wherepen.(C, D) = n'Succgg " (tc + tp + (n’ — 1)(time(kgen) + n time(enc,
maxl(z)) + ntime(Z, maxl(z))), n, maxl(z)), enc’ andkgen’ are function symbols

with the same types asic andkgen respectively, and. : bitstring — bitstring is the
function that returns a bitstring of the same length as its argument, consisting only of
zeroes. Using equations suchvas: T, Z(T2b(x)) = Zr, we can prove that(T2b(z))

does not depend on whenz is of a fixed-length typd” andT2b : T" — bitstring

is the natural injection. The representation of other primitives can be found in [23, Ap-
pendix D.3]. The equivalences that formalize the security assumptions on primitives are
designed and proved correct by hand from security assumptions in a more standard form,
as in the MAC example. Importantly, these manual proofs are done only once for each
primitive, and the obtained equivalence can be reused for proving many different proto-
cols automatically.

Assuming L ~, R, Lemma 1 yieldsC[[L]] ~Y, C[[R]] with p'(C’,D) =
p(C'[C], D), for all evaluation context§' acceptable fof L] and [R] with no public
variables, so we can transform a proc€sssuch that), ~§ C[[L]] into a process);,
such thatQo ~y C[[L]] =}, C[[R]] = Q. In order to check thaQy ~; C[[L]],
the prover uses syntactic conditions detailed in [23, Appendix D.1] and sketched in Ex-
ample 3 below. The following proposition shows the soundness of the transformation; its
asymptotic version is proved in [23, Appendix E.4].

Proposition 3 Let@Q, be a process that satisfies Invariants 1, 2, and 3@fjdhe process
obtained fromQ), by the above transformation. Thé}j, satisfies Invariants 1, 2, and 3
and, if [L] ~, [R], thenQ, ~}, Qf wherep/(C’,D) = p(C’[C],D) andC is an
evaluation context such thélo ~y C[[L]] ~,, C[[R]] ~§ Q.

Example 3 In order to treat Example 1, the prover is given as input the indication
that T,,..., T, T/, and T}, are fixed-length types; the type declarations for the func-
tions mkgen, mkgen’ : Ty — Tk, mac,mac’ : bitstring X Tk — Times
verify, verify’ : bitstring x Ty X Tims — bool, kgen, kgen’ : T, — T}, enc, enc’ :
bitstring x Ty, x T, — T,, dec : T, x Ty, — bitstring |, k2b : T}, — bitstring,

i) : bitstring — bitstring |, Z : bitstring — bitstring, and the constary, : bitstring;

the equationsriac), (mac’), (enc), andvz : Ty, Z(k2b(z)) = Zi (which expresses that
all keys have the same length); the indication it andi, are poly-injective (which
generates the equatioris2p) and similar equations far, ); equivalenced. ~, R for
MAC (maceq) and encryptiondnceg); and the procesQ, of Example 1. Lel = {z//}.

The prover first applieRemoveAssigriz,,.) to the process), of Example 1, as
described in Example 2, yieldin@,. The process can then be transformed using the
security of the MAC. In the equivalende ~,, .. R (maceg) that expresses the security
of the MAC, L is an abbreviation for the process:

[[L]] = !i/,én”cmkgen [’LH](), new r : T’mr; Cmkgen [i//] <>a (

1i<n 7

Cmac|t”, 8| (z : bitstring); mac[t”, i) (mac(z, mkgen(r))) |

!iIS”,cvcrify [i", 3] (m : bitstring, ma : Tps); Cyerity [, 4] (verify (m, mkgen(r), ma)))

The process); can be written under the for@i[[L]], Q1 ~} C[[L]], for the following
contextC:



C = newChannel ¢pigen; NewChannel ¢pac; newChannel cyerity; ([] | start();

new z,. : T} let zy, : Ty, = kgen(z,) in m<>§ Cmkgen[1]();8(); (Qea | Qo))
Qca =="cali](); new &, : Ti; new o : T/;

let x,, : bitstring = enc(k2b(x},), zk, z..) in

CIII&C[17 Z] <xm>; Cmac[]-v 'L] (Ima); CA [Z] <=’Em7 55ma>
QCB = !i/gncB [Z/} (l‘;n, xma); Cyerify [1’ 7;/] <$;n, J3ma>; Cverify[la i/] (b), if b then
leti, (k2b(z})) = dec(x),, zx) in cpli’]{)

Instead of generating the coins,,. for the MAC key itself, this context sends a mes-
sage on channel,gen[1], Which is received by L], so that]L] generates these coins.
Similarly, instead of computing the MAC, the conteXtsends the message to MAC
on channek,,..[1, ], so that]L] computes the MAC and sends it back @p..[1, .
Instead of verifying the MAC(' sends the message and the candidate MAC on chan-
nel cyerity [1, 4'], SO that[L] verifies the MAC and sends the result backegis, [1,7'].
The channel$kgen, Cmac @Ndcyerify are declared private byyewChannel, so that the
adversary cannot directly acceddy .

Informally, the conditions verified by CryptoVerif to prove thiat ~§ C[[L]] show
that there is a correspondence between the variablésanifd terms or variables @p; .
In the exampley([1] in L corresponds t@,, in Q1, z[1, a] to x,,[a], m[1,a’] to z [a'],
andmall,a’] to x4 [a’]. This correspondence must be such that

e A variablez[a] bound bynew z : T in L must correspond to a variablga’]
bound bynew z : T'in @1, and the relation that associateia”] to z[a’] must
be an injective function (so that independent random numbeiimrrespond to
independent random numbers@h).

e An oracle argument|[a] in L must correspond to a term of the same type: as
and when two terms correspond to the satfig, they must evaluate to the same
value.

e If L contains an oracl®(xy : Ti,...,x; : T;) := M, the term obtained
by replacing the variables o¥/ with their corresponding terms or variables of
Q1 is a term of@Q,. The variables: of ; corresponding to variables bound
by new x : T in L occur only in such terms, at occurrences corresponding
to occurrences of in L. These variables do not belong to//. In the exam-
ple, mac(z[1, a], mkgen(r[1])) in L corresponds tanac(z,,[a], mkgen(x,,,))
in @1 andverify(m[1, a’], mkgen(r[1]), ma[l, a’]) corresponds teerify(x! [a’],
mkgen(z,,,), Tma[a’]). The variablez,,, does not occur anywhere else Gh
andz,,, ¢ V.

CryptoVerif then transformg), into C[[R]], which after some syntactic reorgani-
zations yields the following procesg;:
Q2 = start();new x,.: Ty;let zp: Ty, = kgen(x,) in new Ty 0 Tinr; €05 (Q24 | Q2B)
Qo4 =""="cali](); new ), : Ty;new . : T;

let ., : bitstring = enc(k2b(x}.), Tk, x.) in ca[i](m, mac’ (z,,, mkgen' (z,,,.)))



Q2B = !ilgncB [i'](23 Tma);
find u < n suchthat defined(z,, [u]) A 2], = @ [u] A

verify’ (z!,, mkgen' (%), Tima)

then (if true then let i, (k2b(z})) = dec(x.,, xx) in cg[i’]{))

else (if false then let iy (k2b(x})) = dec(z),, zx) in cg[i']{))

The initial definition ofz,,,,- is removed and replaced with a new definition, which we still
call 2,,,. The termmac(z,,, mkgen(z,,.)) is replaced withmac’(x,,, mkgen’ (z,,,.)).
The termverify (z),,, mkgen(z ), Zmq) becomedind u < n suchthat defined(z,,[u])
Azl = T [u] Averify’ (x,, mkgen' (2, ), Tma) then true else false, which yieldsQs s
after transformation of oracle processes into processes. The process looks up the message
;. in the arrayz,,,, which contains the messages whose MAC has been computed with
key mkgen(z,,,). If the MAC of =/, has never been computed, the verification always
fails (it returnsfalse) by the security assumption on the MAC. Otherwise, it returns
when verify’ (2, mkgen'(z,,,-), Tma). By instantiating the probability formula given
in (mace), Q1 ~p Q2 Wherepl,,.(C, D) = puac(C[C’], D) = Succhad™ (tc +
time(kgen)+n time(enc, length(7y))+n time(dec, maxl(x},)), n, n, max(maxl(z’,),
maxl(z,,))) since we use one MAC kew( = 1), there are at most calls tomac
andverify for that key ¢/ = n), and the runtime of the adversary againste) iS
teje = to + time(kgen) + n time(enc, length(7})) + n time(dec, maxl(x7,)).

Applying Simplify yields a game&)s: Q2 4 is unchanged an@-p becomes

Q3B = !i/SnCB [Z/] (x;”n,v xma);

find u < n suchthat defined(z, [u], z}.[u]) A 2], = Ty [u] A

/

™ mkgen’ (2,,,), Tyma) then

verify’ (z

let 2 : Ti = aj,[u] in cpi']()

First, the test#f true then ... andif false then ... are simplified. The termec(«!,,, 1)

is simplified knowingz!,, = x,[u] by thefind condition,z,, [u] = enc(k2b(x}, [u]), 2k,
x}.[u]) by the assignment that defines,, x = kgen(x,.) by the assignment that defines
x, anddec(enc(m, kgen(r),r’),kgen(r)) = i, (m) by (enc). So we havelec(z),,
xy) = dec(xm[u], ) = dec(enc(k2b(z) [u]), zk, 2, [u]), xx) = 11 (k2b(z)[u])). By
injectivity of i, andk2b, the assignment to} simply becomes:] = ;. [u], using the
equations/z : bitstring,i*(is(z)) = = andVa : Ty, k2b~ ! (k2b(z)) = .

After applyingRemoveAssigiix, ), which yieldsQ,, we use the security of encryp-
tion, yielding Qs: enc(k2b(x},), kgen(x,), z,.) becomesenc’(Z(k2b(z},)), kgen' (z;.),
a!). We haveQ, ~,; Qs wherepl,.(C, D) = penc(C[C"], D) = Succlg P (tc +
tp + (n + n?)time(mkgen) + n time(mac, maxl(m)) + n? time(verify, maxl(m’)) +
n? time(=bitstring, maxl(m’), maxl(m)), n, length(T%)). (The evaluation of the run-
time of the contextC” is rather naive since we consider thakgen(z,,,) is com-
puted once in each execution §f,4 and once for eacfind test in Q45, and simi-
larly verify is computed once for eadind test in@,5. By noticing that it is enough
to computemkgen(z,,,,) once, andverify once in each execution @p,z, one would



ind—cpa

obtainSuccgg > (tc +tp + time(mkgen) 4+ n time(mac, maxl(m)) + n time(verify,
maxl(m’)) + n? time(= bitstring, maxl(m’), maxl(m)), n, length(7T})).) After Sim-
plify, enc’(Z(k2b(z},)), kgen' (z,.), z.) becomesenc’(Z, kgen'(z,.), z..), usingVz :

Tk, Z(k2b(zx)) = Zx (which expresses that all keys have the same length).
So we obtain the following game:

Qe = start();new x,. : Trsnew Tyt T ©0); (Qea | Qon)

Qo = ""="cali](); new z}, : Ty; new o, : T/

let z,, : bitstring = enc’(Zy, kgen'(z,.), z).) in ca[i]{(Zm, mac’ (z,,, mkgen' (z,,,.)))

QﬁB = QSB

By transitivity of ~ (Lemma 1),Qo zl‘j 4 Qg since the probability is O for steps

other than applying the security of MAC and encryption.

Using lists instead of arrays simplifies games transformations: we do not need to
add instructions that insert values in the list, since all variables are always implicitly
arrays. Moreover, if there are several occurrencesaf(z;, k) with the same key in the
initial process, eacherify(m;, k, ma;) is replaced with dind with one branch for each
occurrence ofnac. Therefore, the prover distinguishes automatically the cases in which
the verified MACma; comes from each occurrencerohc, that is, it distinguishes cases
depending on the value éfsuch thatn; = z;. Typically, distinguishing these cases is
useful in the following steps of the proof of the protocol. (A similar situation arises for
other cryptographic primitives specified usifigd.)

3. Criteria for Proving Secrecy Properties

Let us now define syntactic criteria that allow us to prove secrecy properties of protocols.
The proofs of asymptotic versions of these results can be found in [23, Appendix E.5].

Definition 4 (One-session secrecypuppose that the variabieof type T is defined in
Q under a singl¢#<". () preserves the one-session secrecy ap to probabilityp when,
for all evaluation context§’ acceptable fof) | @, without public variables that do not
containS, 2 Pr[C[Q | Q.] ~ Ds] — 1 < p(C') whereDs(€) = (S € &),

Qz =co();new b : bool; e5();
(c(u : [1,n]);if defined(x[u]) then if b then ¢(x[u]) else new y : T;¢(y)
| (b : bool);if b =1 then event S)

co, ¢, c, b, b, u,y, andS do not occur inQ.

Intuitively, the adversary” distinguishes the value of each secrét] from a random
number with probability at most(C). The adversary performs a single test query on
z[u], modeled by sending on channet in Q.. This test query returns[u] when the
random bit is true and a random number otherwise. The adversary then tries tolguess
by sending its gueds on channet’. When the guess is correct, evérnis executed.



Proposition 4 (One-session secrecyonsider a proces§) such that there exists a set
of variablesS such that 1) the definitions af are either restrictionsiew z[i] : 7" and

x € S, or assignmentt x[?] : T = z[M,, ..., M;] wherez is defined by restrictions
new z[i},...,4] : T, andz € S, and 2) all accesses to variablgse S in @ are of the

form “let y'[i] : T/ = y[M;,..., M;]" with ¢’ € S. ThenQ preserves the one-session
secrecy ofc up to probability O.

Intuitively, only the variables it depend on the restriction that defineghe sent mes-
sages and the control flow of the process are independentsof the adversary obtains
no information onz. In the implementation, the sétis computed by fixpoint iteration,

starting fromz or z and adding variableg defined by fet y'[i] : T/ = y[M1, ..., M;]"
wheny € S.

Definition 5 (Secrecy)Assume that the variable of type T is defined inQ under a
single !"=", () preserves the secrecy af up to probabilityp when, for all evalua-
tion contextsC' acceptable fo) | R, without public variables that do not conta

2Pr[C[Q | Ry] ~ Ds] — 1 < p(C) whereDs(E) = (S € £),

Ry = co(); new b : bool; ¢ ();
(=" ¢(u : [1,n]); if defined(x[u]) then if b then &(z[u]) else
find u’ < n' suchthat defined(y[u'], u[u']) A u[u’] = u then &(y[u'])
else new y : T;¢(y)
| (b : bool);if b =1 then event S)

co, ¢, c, b b u, v, y, andS do not occur inQ, andn’ > n.

Intuitively, the adversarg’ distinguishes the secret arrayrom an array of independent
random numbers with probability at mos{C'). In this definition, the adversary can
perform several test queries, modeled®y, which all return the value aof if b is true

and a random number ifis false. This corresponds to the “real-or-random” definition

of security [2]. (As shown in [2], this notion is stronger than the more standard approach
in which the adversary can perform a single test query and some reveal queries, which
always reveak[u).)

Proposition 5 (Secrecy)Assume thaf) satisfies the hypothesis of Proposition 4.

If T is a trace ofC'[Q] for some evaluation contekt, we definelefRestrs(z[a]),
the defining restriction of[a] in trace T, as follows: ifz[a] is defined byew z[a] : T
in 7, defRestry(z[a]) = z[al; if z[a] is defined bylet x[a] : T = z[M,...,M],
defRestry(z[a]) = z[a), ..., a;] where, for allk <, M}, evaluates ta, in the traceT
at the definition of:[a).

For all evaluation contexts” acceptable for@Q with public variables{z}, let
p(C) = Pr[3(T,a,ad’), C[Q] reduces according td” A @ # a’ A defRestry(z[d]) =

defRestrr(x[a’])]. Then@ preserves the secrecy ofup to probability2p.

The collisionslefRestr7(x[d]) = defRestry(z[a’]) are eliminated using the same equa-
tional prover as foSimplify in Section 2.1, which yields a bound @(C). Intuitively,



whena # o/, we havedefRestry(z[a]) # defRestr(xz[a’]) (except in cases of proba-
bility p(C)), soz[a] andz[a’] are defined by different restrictions, so they are indepen-
dent random numbers.

As we show in [22], secrecy composed with correspondence assertions [56] can be
used to prove security of a key exchange. (Correspondence assertions are properties of
the form “if some event(M) has been executed then some eventd/;) fori < m
have been executed”. The verification of correspondence assertions in CryptoVerif in
presented in [22].)

Lemma 2 If Q z;{f} @’ and(Q preserves the one-session secrecy op to probability
p’ then@’ preserves the one-session secrecy op to probabilityp” (C) = p'(C) +
2p(CI[] | Qz], Ds). A similar result holds for secrecy.

We can then apply the following technique. When we want to prove@ggtreserves
the (one-session) secrecy of we transform@, by the transformations described in
Section 2 withV = {z}. By Propositions 1 and 3, we obtain a procégssuch that
Qo ;::X Q. We use Propositions 4 or 5 to show tf@} preserves the (one-session)
secrecy ofr and finally conclude thaf), also preserves the (one-session) secrecy of
up to a certain probability by Lemma 2.

Example 4 After the transformations of Example 3, the only variable acces$ to the
considered processlist x} : T, = ;. [u] andz; is not used in the considered process.

So by Proposition 4, the considered process preserves the one-session segféatbf

S = {},,z}}). By Lemma 2, the process of Example 1 also preserves the one-session
secrecy oft} up to probability2(p), .. +Pine) (Cl[] | @], Ds). (The runtimes o), and

Ds can be neglected inside this formula.) However, this process does not preserve the
secrecy ofr//, because the adversary can force several sessidBsmiise the same key

x}/, by replaying the message sentdyAccordingly, the hypothesis of Proposition 5 is

not satisfied.

The criteria given in this section might seem restrictive, but in fact, they should
be sufficient for all protocols, provided the previous transformation steps are powerful
enough to transform the protocol into a simpler protocol, on which these criteria can then
be applied.

4. Proof Strategy

Up to now, we have described the available game transformations. Next, we explain how
we organize these transformations in order to prove protocols.

At the beginning of the proof and after each successful cryptographic transformation
(that is, a transformation of Section 2.2), the prover execsiteplify and tests whether
the desired security properties are proved, as described in Section 3. If so, it stops.

In order to perform the cryptographic transformations and the other syntactic trans-
formations, our proof strategy relies of the idea of advice. Precisely, the prover tries to
execute each available cryptographic transformation in turn. When such a cryptographic
transformation fails, it returns some syntactic transformations that could make the de-
sired transformation work. (These are the advised transformations.) Then the prover tries



to perform these syntactic transformations. If they fail, they may also suggest other ad-
vised transformations, which are then executed. When the syntactic transformations fi-
nally succeed, we retry the desired cryptographic transformation, which may succeed or
fail, perhaps with new advised transformations, and so on.

Examples of advised transformations include:

e Assume that we try to execute a cryptographic transformation, and need to rec-
ognize a certain term/ of L, but we find inQQy only part of M, the other parts
being variable accesses . .] while we expect function applications. In this case,
we adviseRemoveAssigiiz). For example, ifQ containsenc(M’, xy, «}.) and
we look forenc(z,,, kgen(x,), z.), we adviseRemoveAssigizy). If Qo con-
tainslet z; = mkgen(z,) and we look formac(z,,, mkgen(z,)), we also ad-
vise RemoveAssigfiz;). (The transformation of Example 2 is advised for this
reason.)

e When we try to execut®emoveAssigiiz), = has several definitions, and there
are accesses to variabteguarded byfind in @)y, we adviséSArename(x).

e When we want to prove thatis secret or one-session secret, we have an assign-
mentlet a:[?] T = y[M] in P, and there is at least one assignment defining
we adviseRemoveAssigify).

When we want to prove that is secret or one-session secret, we have an as-
signmentlet z[i] : T = y[J\AI] in P, y is defined by restrictiong; has several
definitions, and some variable accesseg e not of the formet y/[i'] : T =

y[ﬁ’} in P/, we adviseSArename(y).

5. Experimental Results

CryptoVerif has been tested on a number of protocols given in the literature. We proved
secrecy of keys for the Otway-Rees and Yahalom protocols as well as original and
corrected versions of the Needham-Schroeder shared-key and public-key and Denning-
Sacco public-key protocols, as reported in [23]. We proved authentication properties for
these protocols as well as for original and corrected versions of the Woo-Lam shared-key
and public-key protocols [22]. The proof succeeded in most cases (it failed for only 3
properties that in fact hold). For some proofs, for public-key protocols, we needed to
provide manual indications of the game transformations to perform, mainly because sev-
eral game transformations are sometimes applicable, and the proof succeeds only for a
particular choice of the applied game transformation.

For each proof, the prover outputs the sequence of games it has built, a succinct ex-
planation of the transformation performed between consecutive games, and an indication
of whether the proof succeeded or failed. When the proof fails, the prover still outputs a
sequence of games, but the last game of this sequence does not show the desired property
and cannot be transformed further by the prover. Manual inspection of this game often
makes it possible to understand why the proof failed: because there is an attack (if there
is an attack on the last game), because of a limitation of the prover (if it should in fact
be able to prove the property or to transform the game further), for other reasons (such
as the protocol cannot be proved from the given assumptions; this situation may not lead
immediately to a practical attack in the computational model).



CryptoVerif can also be used for proving cryptographic schemes, such as the FDH
signature scheme [25]. It has been used for studying more complex protocols: the Ker-
beros protocol, with and without its public-key extension PKINIT [24], as well as parts
of the record protocol and of the handshake protocol of TLS [19].

6. Conclusion

CryptoVerif produces proofs by sequences of games, in the computational model. The
security assumptions on primitives are given as observational equivalences, which are
proved once for each primitive and can be reused for proving many different protocols.
The protocol or cryptographic scheme to prove is specified in a process calculus. Cryp-
toVerif provides the sequence of games that leads to the proof and a bound on the prob-
ability of success of an attack. The user is allowed, but does not have, to provide manual
indications on the game transformations to perform.

The essential idea of simulating proofs by sequences of games in an automatic tool
can be applied to any protocol or cryptographic scheme. However, CryptoVerif applies
in a fairly direct way the security assumptions on the primitives and cannot perform deep
mathematical reasoning. Therefore, it is best suited for proving security protocols that
use rather high-level primitives such as encryption and signatures. It is more limited for
proving the security of such primitives from lower-level primitives, since more subtle
mathematical arguments are often needed.

Future work includes adding support for more primitives, for example associativ-
ity for exclusive or and primitives with internal state. Improvements in the proof strat-
egy and the possibility to give more precise manual hints would also be useful. Future
case studies will certainly suggest additional extensions. In the long term, it would be
interesting to certify CryptoVerif, possibly to combine it with the Cog-based framework
CertiCrypt [15]. Grand challenges include the proof of protocol implementations in the
computational model, by analyzing them (as started in [19] for instance) or by generating
them from specifications, and taking into account side-channel attacks.
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