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Mechanizing Game-Based Proofs of
Security Protocols

Bruno BLANCHET1

INRIA, École Normale Supérieure, CNRS, Paris, France

Abstract. After a short introduction to the field of security protocol verification,
we present the automatic protocol verifier CryptoVerif. In contrast to most previ-
ous protocol verifiers, CryptoVerif does not rely on the Dolev-Yao model, but on
the computational model. It produces proofs presented as sequences of games, like
those manually done by cryptographers; these games are formalized in a probabilis-
tic process calculus. CryptoVerif provides a generic method for specifying security
properties of the cryptographic primitives. It can prove secrecy and correspondence
properties (including authentication). It produces proofs valid for any number of
sessions, in the presence of an active adversary. It also provides an explicit formula
for the probability of success of an attack against the protocol, as a function of the
probability of breaking each primitive and of the number of sessions.

Keywords. Security protocols; computational model; automatic proof; sequences
of games; process calculi.

Introduction

A security protocol is a program that guarantees security properties, such as the secrecy
of some piece of data, by relying on cryptographic primitives, such as encryption or sig-
natures. Security protocols make it possible to securely exchange data on insecure net-
works such as Internet. The design of security protocols is well-known to be error-prone.
This can be illustrated by the attack against the Needham-Schroeder public-key proto-
col [49] found by Lowe [46] 17 years after its publication. Errors in security protocols
can have serious consequences, such as loss of money in e-commerce. Furthermore, se-
curity errors cannot be detected by testing, since they appear only in the presence of a
malicious adversary. Therefore, one aims at proving that security protocols are correct.
Manual proofs are complex and error-prone, so formal methods can play an important
role by providing tools for proving security protocols correct or for finding attacks.

There exist two main models for analyzing security protocols:

• In the symbolic model, often calledDolev-Yaomodel [37], cryptographic prim-
itives are considered as perfect blackboxes, modeled by function symbols in an
algebra of terms, possibly with equations. Messages are terms on these primitives
and the adversary can compute only using these primitives.
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• In contrast, in thecomputationalmodel, messages are bitstrings, cryptographic
primitives are functions from bitstrings to bitstrings, and the adversary is any
probabilistic Turing machine.

The computational model is close to the real execution of protocols, but the proofs are
usually manual and informal. The Dolev-Yao model is an abstract model that makes
it easier to build automatic verification tools, and many such tools exist: AVISPA [5],
FDR [46], and ProVerif [20], for instance. Hubert Comon-Lundh’s course will deal
with the verification of security protocols in this model. However, security proofs in the
Dolev-Yao model in general do not imply security in the computational model.

In order to mechanize proofs in the computational model, several approaches have
been considered.

• In the indirect approach, following the seminal paper by Abadi and Rogaway [1],
one shows the soundness of the Dolev-Yao model with respect to the computa-
tional model, that is, one proves that the security of a protocol in the Dolev-Yao
model implies its security in the computational model, modulo additional assump-
tions. Combining such a result with a Dolev-Yao automatic verifier, one obtains
automatic proofs of protocols in the computational model. This approach received
much interest [6, 8, 29, 31, 39, 47] and a tool [30] was developed based on [31]
to obtain computational proofs using the Dolev-Yao verifier AVISPA, for proto-
cols that rely on public-key encryption and signatures. However, this approach
has limitations: since the computational and Dolev-Yao models do not correspond
exactly, soundness requires additional hypotheses. (For example, key cycles have
to be excluded, or a specific security definition of encryption is needed [3].)
In a related approach, Backes, Pfitzmann, and Waidner [9–11] have designed
an abstract cryptographic library including symmetric and public-key encryp-
tion, message authentication codes, signatures, and nonces and shown its sound-
ness with respect to computational primitives, under arbitrary active attacks. This
framework has been used for a computationally-sound machine-checked proof of
the Needham-Schroeder-Lowe protocol [54].
Canetti [27] introduced the notion of universal composability. With Herzog [28],
they show how a Dolev-Yao-style symbolic analysis can be used to prove security
properties of protocols within the framework of universal composability, for a
restricted class of protocols using public-key encryption as only cryptographic
primitive. Then, they use the automatic Dolev-Yao verification tool Proverif [21]
for verifying protocols in this framework.

• Techniques used previously in the Dolev-Yao model have also been adapted in
order to obtain proofs in the computational model.
For instance, Datta, Derek, Mitchell, Shmatikov, and Turuani [35, 36] have
adapted the logic PCL (Protocol Composition Logic), first designed for proving
protocols in the Dolev-Yao model, to the computational model. Other computa-
tionally sound logics include CIL (Computational Indistinguishability Logic) [12]
and a specialized Hoare logic designed for proving asymmetric encryption
schemes in the random oracle model [32,33].
Similarly, type systems [34, 43, 45, 53] can provide computational security guar-
antees. For instance, [43] handles shared-key and public-key encryption, with
an unbounded number of sessions. This system relies on the Backes-Pfitzmann-
Waidner library. A type inference algorithm is given in [7].



• In the direct approach, one aims at mechanizing proofs in the computational
model, without using a Dolev-Yao protocol verifier. Computational proofs made
by cryptographers are typically presented as sequences of games [18,52]: the ini-
tial game represents the protocol to prove; the goal is to show that the probability
of breaking a certain security property is negligible in this game. Intermediate
games are obtained each from the previous one by transformations such that the
difference of probability between consecutive games is negligible. The final game
is such that the desired probability is obviously negligible from the form of the
game. The desired probability is then negligible in the initial game. Halevi [38]
suggested to use tools for mechanizing these proofs, and several techniques have
been used for reaching this goal.
CryptoVerif [22–25], which will be the main topic of this course, is such a tool.
It generates proofs by sequences of games automatically or with little user inter-
action. The games are formalized in a probabilistic process calculus. CryptoVerif
provides a generic method for specifying security properties of many crypto-
graphic primitives. It proves secrecy and authentication properties. It also pro-
vides a bound on the probability of success of an attack. It considerably extends
early works by Laud [41, 42] which were limited either to passive adversaries or
to a single session of the protocol. More recently, Tšahhirov and Laud [44, 55]
developed a tool similar to CryptoVerif but that represents games by dependency
graphs; it handles only public-key and shared-key encryption and proves secrecy
properties.
The tool CertiCrypt [13, 15, 16, 26] enables the machine-checked construction
and verification of cryptographic proofs by sequences of games. It relies on the
general-purpose proof assistant Coq, which is widely believed to be correct. Easy-
Crypt [14] generates CertiCrypt proofs from proof sketches that formally repre-
sent the sequence of games and hints, which makes the tool easier to use. Nowak
et al. [4, 50, 51] follow a similar idea by providing Coq proofs for several basic
cryptographic primitives.

In the tool CryptoVerif, games are represented in a process calculus inspired by the
pi-calculus and by the calculi of [48] and of [43]. In this calculus, messages are bitstrings,
and cryptographic primitives are functions from bitstrings to bitstrings. The calculus has
a probabilistic semantics. The main tool for specifying security assumptions is observa-
tional equivalence:Q is observationally equivalent toQ′ up to probabilityp, Q ≈p Q′,
when the adversary has probability at mostp of distinguishingQ from Q′. With respect
to previous calculi mentioned above, our calculus introduces an important novelty which
is key for the automatic proof of security protocols: the values of all variables during the
execution of a process are stored in arrays. For instance,x[i] is the value ofx in thei-th
copy of the process that definesx. Arrays replace lists often used by cryptographers in
their manual proofs of protocols. For example, consider the standard security assumption
on a message authentication code (MAC). Informally, this assumption says that the ad-
versary has a negligible probability of forging a MAC, that is, that all correct MACs have
been computed by calling the MAC oracle (i.e., function). So, in cryptographic proofs,
one defines a list containing the arguments of calls to the MAC oracle, and when veri-
fying a MAC of a messagem, one can additionally check thatm is in this list, with a
negligible change in probability. In our calculus, the arguments of the MAC oracle are
stored in arrays, and we perform a lookup in these arrays in order to find the message



m. Arrays make it easier to automate proofs since they are always present in the calcu-
lus: one does not need to add explicit instructions to insert values in them, in contrast to
the lists used in manual proofs. Therefore, many trivially sound but difficult to automate
syntactic transformations disappear. Furthermore, relations between elements of arrays
can easily be expressed by equalities, possibly involving computations on array indices.

CryptoVerif relies on a collection of game transformations, in order to transform the
initial protocol into a game on which the desired security property is obvious. The most
important kind of transformations exploits the security assumptions on cryptographic
primitives in order to obtain a simpler game. As described in Section 2.2, these trans-
formations can be specified in a generic way: we represent the security assumption of
each cryptographic primitive by an observational equivalenceL ≈p R, where the pro-
cessesL andR encode oracles: they input the arguments of the oracle and send its result
back. Then, the prover can automatically transform a processQ that calls the oracles of
L (more precisely, contains as subterms terms that perform the same computations as
oracles ofL) into a processQ′ that calls the oracles ofR instead. We have used this
technique to specify several variants of shared-key and public-key encryption, signature,
message authentication codes, hash functions, Diffie-Hellman key agreement, simply by
giving the appropriate equivalenceL ≈p R to the prover. Other game transformations
are syntactic transformations, used in order to be able to apply an assumption on a cryp-
tographic primitive, or to simplify the game obtained after applying such an assumption.

In order to prove protocols, these game transformations are organized using a proof
strategy based on advice: when a transformation fails, it suggests other transformations
that should be applied before, in order to enable the desired transformation. Thanks to
this strategy, protocols can often be proved in a fully automatic way. For delicate cases,
CryptoVerif has an interactive mode, in which the user can manually specify the trans-
formations to apply. It is usually sufficient to specify a few transformations coming from
the security assumptions of primitives, by indicating the concerned cryptographic prim-
itive and the concerned secret key if any; the prover infers the intermediate syntactic
transformations by the advice strategy. This mode is helpful for proving some public-key
protocols, in which several security assumptions on primitives can be applied, but only
one leads to a proof of the protocol. Importantly, CryptoVerif is always sound: whatever
indications the user gives, when the prover shows a security property of the protocol, the
property indeed holds assuming the given assumptions on the cryptographic primitives.

CryptoVerif has been implemented in Ocaml (29800 lines of code for version 1.12
of CryptoVerif) and is available athttp://www.cryptoverif.ens.fr/.

Outline The next section presents the process calculus for representing games. Sec-
tion 2 describes the game transformations that serve for proving protocols. Section 3
gives criteria for proving secrecy properties of protocols. Section 4 explains how the
prover chooses which transformation to apply at each point. Section 5 presents applica-
tions of CryptoVerif and Section 6 concludes.

Notations We recall the following standard notations. We denote by{M1/x1, . . . ,
Mm/xm} the substitution that replacesxj with Mj for eachj ≤ m. The cardinal of a set

or multisetS is denoted by|S|. If S is a finite set,x
R
←S chooses a random element uni-

formly in S and assigns it tox. If A is a probabilistic algorithm,x ← A(x1, . . . , xm) de-
notes the experiment of choosing random coinsr and assigning tox the result of running
A(x1, . . . , xm) with coinsr. Otherwise,x ← M is a simple assignment statement.



M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition
!i≤nQ replicationn times
newChannel c;Q channel restriction
c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P input

P ::= output process
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q output
new x[i1, . . . , im] : T ;P random number
let x[i1, . . . , im] : T = M in P assignment
if defined(M1, . . . ,Ml) ∧M then P else P ′ conditional
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P array lookup
event e(M1, . . . ,Ml);P event

Figure 1. Syntax of the process calculus

1. A Calculus for Games

1.1. Syntax and Informal Semantics

CryptoVerif represents games in the syntax of Figure 1. This calculus assumes a count-
able set of channel names, denoted byc. It uses parameters, denoted byn, which are
integers that bound the number of executions of processes. It also uses types, denoted by
T , which are subsets ofbitstring⊥ = bitstring ∪ {⊥} wherebitstring is the set of all
bitstrings and⊥ is a special symbol. Letfixed-lengthtypes be types that consist of the set
of all bitstrings of a certain length. Particular types are predefined:bool = {true, false},
wherefalse is 0 andtrue is 1; bitstring ; bitstring⊥; [1, n] wheren is a parameter. (We
consider integers as bitstrings without leading zeroes.)

The calculus also uses function symbolsf . Each function symbol comes with a
type declarationf : T1 × . . . × Tm → T , and represents an efficiently computable,
deterministic function that maps each tuple inT1×. . .×Tm to an element ofT . Particular
functions are predefined, and some of them use the infix notation:M = N for the
equality test,M �= N for the inequality test (both taking two values of the same typeT
and returning a value of typebool ), M ∨ N for the boolean or,M ∧ N for the boolean
and,¬M for the boolean negation (taking and returning values of typebool ).

In this calculus, terms represent computations on bitstrings. The replication in-
dex i is an integer which serves in distinguishing different copies of a replicated pro-
cess!i≤n. (Replication indices are typically used as array indices.) The variable ac-
cessx[M1, . . . ,Mm] returns the content of the cell of indicesM1, . . . ,Mm of them-
dimensional array variablex. We usex, y, z, u as variable names. The function applica-
tion f(M1, . . . ,Mm) returns the result of applying functionf toM1, . . . ,Mm.



The calculus distinguishes two kinds of processes: input processesQ are ready to
receive a message on a channel; output processesP output a message on a channel after
executing some internal computations. The input process 0 does nothing;Q | Q′ is the
parallel composition ofQ andQ′; !i≤nQ representsn copies ofQ in parallel, each with
a different value ofi ∈ [1, n]; newChannel c;Q creates a new private channelc and
executesQ; the semantics of the inputc[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P will
be explained below together with the semantics of the output.

The output processnew x[i1, . . . , im] : T ;P chooses a new random number uni-
formly in T , stores it inx[i1, . . . , im], and executesP . (The typeT must be a fixed-
length type, because probabilistic Turing machines can choose random numbers uni-
formly only in such types.) Function symbols represent deterministic functions, so all
random numbers must be chosen bynew x[i1, . . . , im] : T . Deterministic functions make
automatic syntactic manipulations easier: we can duplicate a term without changing its
value. The processlet x[i1, . . . , im] : T = M in P stores the bitstring value ofM (which
must be inT ) in x[i1, . . . , im] and executesP . The processevent e(M1, . . . ,Ml);P
executes the evente(M1, . . . ,Ml), then runsP . This event records that a certain pro-
gram point has been reached with certain values ofM1, . . . ,Ml, but otherwise does not
affect the execution of the process. Next, we explain the processfind (

⊕m
j=1 uj1 [̃i] ≤

nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P ,

where ĩ denotes a tuplei1, . . . , im′ . The order and array indices on tuples are taken
component-wise, so for instance,uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
can be further

abbreviatedũj [̃i] ≤ ñj . A simple example is the following:find u ≤ n suchthat

defined(x[u]) ∧ x[u] = a then P ′ else P tries to find an indexu such thatx[u] is de-
fined andx[u] = a, and when such au is found, it executesP ′ with that value ofu;
otherwise, it executesP . In other words, thisfind construct looks for the valuea in the
arrayx, and whena is found, it stores inu an index such thatx[u] = a. Therefore, the
find construct allows us to access arrays, which is key for our purpose. More generally,
find u1 [̃i] ≤ n1, . . . , um [̃i] ≤ nm suchthat defined(M1, . . . ,Ml) ∧ M then P ′ else P
tries to find values ofu1, . . . , um for which M1, . . . ,Ml are defined andM is true.
In case of success, it executesP ′. In case of failure, it executesP . This is further
generalized tom branches:find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat

defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P tries to find a branchj in [1,m] such
that there are values ofuj1, . . . , ujmj

for which Mj1, . . . ,Mjlj are defined andMj is
true. In case of success, it executesPj . In case of failure for all branches, it executesP .
More formally, it evaluates the conditionsdefined(Mj1, . . . ,Mjlj ) ∧Mj for eachj and

each value ofuj1 [̃i], . . . , ujmj
[̃i] in [1, nj1]× . . .× [1, njmj

]. If none of these conditions
is true, it executesP . Otherwise, it chooses randomly with uniform2 probability onej
and one value ofuj1 [̃i], . . . , ujmj

[̃i] such that the corresponding condition istrue and
executesPj . The conditionalif defined(M1, . . . ,Ml) ∧M then P else P ′ executesP if
M1, . . . ,Ml are defined andM evaluates totrue. Otherwise, it executesP ′. This con-
ditional is equivalent tofind suchthat defined(M1, . . . ,Ml) ∧ M then P else P ′. The

2A probabilistic Turing machine can choose a random number uniformly in a set of cardinalm only when
m is a power of 2. Whenm is not a power of 2, there exist approximate algorithms: for example, in order to
obtain a random integer in[0,m − 1], we can choose a random integerr uniformly among[0, 2k − 1] for a
certaink large enough and returnr mod m. The distribution can be made as close as we wish to the uniform
distribution by choosingk large enough.



conjunctdefined(M1, . . . ,Ml) can be omitted whenl = 0 andM can be omitted when
it is true.

Finally, let us explain the outputc[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q. A channelc[M1,
. . . ,Ml] consists of both a channel namec and a tuple of termsM1, . . . ,Ml. Chan-
nel namesc can be declared private bynewChannel c; the adversary can never have
access to channelc[M1, . . . ,Ml] when c is private. (This is useful in the proofs, al-
though all channels of protocols are often public.) TermsM1, . . . ,Ml are intuitively
analogous to IP addresses and ports, which are numbers that the adversary may guess.
A semantic configuration always consists of a single output process (the process cur-
rently being executed) and several input processes. When the output process executes
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q, one looks for an input on channelc[M ′

l . . . ,M
′
l ], where

M ′
1, . . . ,M

′
l evaluate to the same bitstrings asM1, . . . ,Ml, and with the same arityk, in

the available input processes. If no such input process is found, the process blocks. Oth-
erwise, one such input processc[M ′

1, . . . ,M
′
l ](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P is chosen

randomly with uniform probability. The communication is then executed: for eachj ≤ k,
the output messageNj is evaluated and stored inxj [̃i] if it is in Tj (otherwise the process
blocks). Finally, the output processP that follows the input is executed. The input pro-
cessQ that follows the output is stored in the available input processes for future execu-
tion. The syntax requires an output to be followed by an input process, as in [43]. If one
needs to output several messages consecutively, one can simply insert fictitious inputs
between the outputs. The adversary can then schedule the outputs by sending messages
to these inputs.

Using different channels for each input and output allows the adversary to control
the network. For instance, we may write!i≤nc[i](x[i] : T ) . . . c′[i]〈M〉 . . . The adversary
can then decide which copy of the replicated process receives its message, simply by
sending it onc[i] for the appropriate value ofi.

An else branch offind or if may be omitted when it iselse yield〈〉; 0. (Note that
“else 0” would not be syntactically correct.) Similarly,yield〈〉; 0 may be omitted after
an event or a restriction. A trailing 0 after an output may be omitted.

Thecurrent replication indicesat a certain program point in a process arei1, . . . , im
where the replications above the considered program point are!i1≤n1 . . . !im≤nm . We
often abbreviatex[i1, . . . , im] by x wheni1, . . . , im are the current replication indices,
but it should be kept in mind that this is only an abbreviation. Variablesx defined under
a replication must be arrays with indices the current replication indices at the definition
of x: for example,!i1≤n1 . . . !im≤nm let x[i1, . . . , im] : T = M in . . . More formally, we
require the following invariant:

Invariant 1 (Single definition) The processQ0 satisfies Invariant 1 if and only if

1. in every definition ofx[i1, . . . , im] in Q0, the indicesi1, . . . , im of x are the
current replication indices at that definition, and

2. two different definitions of the same variablex in Q0 are in different branches of
afind (or if).

Invariant 1 guarantees that each variable is assigned at most once for each value of its
indices. (Indeed, item 2 shows that only one definition of each variable can be executed
for given indices in each trace.)



Invariant 2 (Defined variables) The processQ0 satisfies Invariant 2 if and only if every
occurrence of a variable accessx[M1, . . . ,Mm] in Q0 is either

• syntactically under the definition ofx[M1, . . . ,Mm] (in which caseM1, . . . ,Mm

are in fact the current replication indices at the definition ofx);
• or in adefined condition in afind process;

• or in M ′
j or Pj in a process of the formfind (

⊕m′′

j=1 ũj [̃i] ≤ ñj suchthat

defined(M ′
j1, . . . ,M

′
jlj

) ∧ M ′
j then Pj) else P where for somek ≤ lj ,

x[M1, . . . ,Mm] is a subterm ofM ′
jk.

Invariant 2 guarantees that variables can be accessed only when they have been initial-
ized. It checks that the definition of the variable access is either in scope (first item) or
checked by afind (last item).

We use a type system, detailed in [23, Appendix A], to check that bitstrings of the
proper type are given to each function and that array indices are used correctly.

Invariant 3 (Typing) The processQ0 satisfies Invariant 3 if and only if it is well-typed.

We require the adversary to be well-typed. This requirement does not restrict its com-
puting power, because it can always define type-cast functionsf : T → T ′ to bypass
the type system. Similarly, the type system does not restrict the class of protocols that
we consider, since the protocol may contain type-cast functions. The type system just
makes explicit which set of bitstrings may appear at each point of the protocol. The
three invariants are checked by the prover for the initial game and preserved by all game
transformations.

The formal semantics is defined by a probabilistic reduction relation [23, Ap-
pendix B]. Our semantics is such that all processes can be simulated by probabilistic
Turing machines, and conversely.

We say that a functionf : T1 × . . .× Tm → T is poly-injectivewhen it is injective
and its inverses are efficiently computable, that is, there exist functionsf−1

j : T → Tj

(1 ≤ j ≤ m) such thatf−1
j (f(x1, . . . , xm)) = xj andf−1

j is efficiently computable.
Whenf is poly-injective, we define a pattern matching constructlet f(x1, . . . , xm) =
M in P else Q as an abbreviation forlet y : T = M in let x1 : T1 = f−1

1 (y) in . . .
let xm : Tm = f−1

m (y) in if f(x1, . . . , xm) = y then P else Q. We naturally generalize
this construct tolet N = M in P else Q whereN is built from poly-injective functions
and variables.

We denote byvar(Q) the set of variables that occur inQ.

1.2. Example

Let us introduce two cryptographic primitives that we use below.

Definition 1 Let Tmr, Tmk, andTms be types that correspond intuitively to random
seeds, keys, and message authentication codes, respectively;Tmr is a fixed-length type.
A message authentication code schemeMAC [17] consists of three function symbols:

• mkgen : Tmr → Tmk is the key generation algorithm taking as argument a
random bitstring and returning a key. (Usually,mkgen is a randomized algorithm;
here, since we separate the choice of random numbers from computation,mkgen
takes an additional argument representing the random coins.)



• mac : bitstring × Tmk → Tms is the MAC algorithm taking as arguments a
message and a key, and returning the corresponding tag. (We assume here that
mac is deterministic; we could easily encode a randomizedmac by adding an
additional argument as formkgen.)

• verify : bitstring × Tmk × Tms → bool is a verification algorithm such that
verify(m, k, t) = true if and only if t is a valid MAC of messagem under keyk.
(Sincemac is deterministic,verify(m, k, t) is typicallymac(m, k) = t.)

We have∀m ∈ bitstring ,∀r ∈ Tmr,verify(m,mkgen(r),mac(m,mkgen(r))) = true.
The advantage of an adversary against unforgeability under chosen message attacks

(UF-CMA) is

Succ
uf−cma
MAC (t, qm, qv, l) = max

A
Pr

⎡
⎢⎣
r

R
←Tmr; k ← mkgen(r);

(m, s) ← Amac(.,k),verify(.,k,.) : verify(m, k, s)
∧m was never queried to the oraclemac(., k)

⎤
⎥⎦

where the adversaryA is any probabilistic Turing machine that runs in time at mostt,
callsmac(., k) at mostqm times with messages of length at mostl, and callsverify(., k, .)
at mostqv times with messages of length at mostl.

Succ
uf−cma
MAC (t, qm, qv, l) is the probability that an adversary forges a MAC, that is,

returns a pair(m, s) wheres is a correct MAC form, without having queried the MAC
oraclemac(., k) onm. Intuitively, when the MAC is secure, this probability is small: the
adversary has little chance of forging a MAC. Hence, the MAC guarantees the integrity
of the MACed message because one cannot compute the MAC without the secret key.

Two frameworks exist for expressing security properties. In the asymptotic frame-
work, used in [22, 23], the length of keys is determined by a security parameterη, and
a MAC is UF-CMA whenSuccuf−cma

MAC (t, qm, qv, l) is a negligible function ofη whent
is polynomial inη. (f(η) is negligiblewhen for all polynomialsq, there existsηo ∈ N

such that for allη > η0, f(η) ≤ 1
q(η) .) The assumption that functions are efficiently

computable means that they are computable in time polynomial inη and in the length of
their arguments. The goal is to show that the probability of success of an attack against
the protocol is negligible, assuming the parametersn are polynomial inη and the net-
work messages are of length polynomial inη. In contrast, in the exact security frame-
work, on which we focus in this course, one computes the probability of success of an
attack against the protocol as a function of the probability of breaking the primitives such
asSuccuf−cma

MAC (t, qm, qv, l), of the runtime of functions, of the parametersn, and of the
length of messages, thus providing a more precise security result. Intuitively, the prob-
ability Succ

uf−cma
MAC (t, qm, qv, l) is assumed to be small (otherwise, the computed proba-

bility of attack will be large), but no formal assumption on this probability is needed to
establish the security theorem.

Definition 2 Let Tr and T ′
r be fixed-length types representing random coins; letTk

andTe be types for keys and ciphertexts respectively. A symmetric encryption scheme
SE [17] consists of three function symbols:

• kgen : Tr → Tk is the key generation algorithm taking as argument random coins
and returning a key,



• enc : bitstring × Tk × T ′
r → Te is the encryption algorithm taking as arguments

the cleartext, the key, and random coins, and returning the ciphertext,
• dec : Te × Tk → bitstring⊥ is the decryption algorithm taking as arguments

the ciphertext and the key, and returning either the cleartext when decryption
succeeds or⊥ when decryption fails,

such that∀m ∈ bitstring , ∀r ∈ Tr, ∀r
′ ∈ T ′

r, dec(enc(m, kgen(r), r′), kgen(r)) = m.
Let LR(x, y, b) = x if b = 0 andLR(x, y, b) = y if b = 1, defined only whenx

andy are bitstrings of the same length. The advantage of an adversary against indistin-
guishability under chosen plaintext attacks (IND-CPA) is

Succ
ind−cpa
SE (t, qe, l) = max

A
2Pr

[
b

R
←{0, 1}; r

R
←Tr; k ← kgen(r);

b′ ← Ar′
R
←T ′

r;enc(LR(.,.,b),k,r′) : b′ = b

]
− 1

whereA is any probabilistic Turing machine that runs in time at mostt and calls

r′
R
←T ′

r; enc(LR(., ., b), k, r′) at mostqe times on messages of length at mostl.

Given two bitstringsa0 and a1 of the same length, the left-right encryption ora-

cle r′
R
←T ′

r; enc(LR(., ., b), k, r′) returnsr′
R
←T ′

r; enc(LR(a0, a1, b), k, r
′), that is, en-

cryptsa0 whenb = 0 anda1 whenb = 1. Succind−cpa
SE (t, qe, l) is the probability that

the adversary distinguishes the encryption of the messagesa0 given as first arguments to
the left-right encryption oracle from the encryption of the messagesa1 given as second
arguments. Intuitively, when the encryption scheme is IND-CPA secure, this probability
is small: the ciphertext gives almost no information what the cleartext is (one cannot
determine whether it isa0 or a1 without having the secret key).

Example 1 Let us consider the following trivial protocol:

A → B : e,mac(e, xmk) wheree = enc(x′
k, xk, x

′
r)

andx′
r, x

′
k are fresh random numbers

A andB are assumed to share a keyxk for a symmetric encryption scheme and a keyxmk

for a message authentication code.A creates a fresh keyx′
k and sends it encrypted under

xk to B. A MAC is appended to the message, in order to guarantee integrity. In other
words, the protocol sends the keyx′

k encrypted using an encrypt-then-MAC scheme [17].
The goal of the protocol is thatx′

k should be a secret key shared betweenA andB. This
protocol can be modeled in our calculus by the following processQ0:

Q0 = start(); new xr : Tr; let xk : Tk = kgen(xr) in

new xmr : Tmr; let xmk : Tmk = mkgen(xmr) in c〈〉; (QA | QB)

QA = !i≤ncA[i](); new x′
k : Tk; new x′

r : T ′
r;

let xm : bitstring = enc(k2b(x′
k), xk, x

′
r) in cA[i]〈xm,mac(xm, xmk)〉

QB = !i
′≤ncB [i

′](x′
m, xma); if verify(x

′
m, xmk, xma) then

let i⊥(k2b(x
′′
k)) = dec(x′

m, xk) in cB [i′]〈〉



WhenQ0 receives a message on channelstart, it begins execution: it generates the keys
xk andxmk by choosing random coinsxr andxr′ and applying the appropriate key
generation algorithms. Then it yields control to the adversary, by outputting on channel
c. After this output,n copies of processes forA andB are ready to be executed, when
the adversary outputs on channelscA[i] or cB [i] respectively. In a session that runs as
expected, the adversary first sends a message oncA[i]. ThenQA creates a fresh keyx′

k

(Tk is assumed to be a fixed-length type), encrypts it underxk with random coinsx′
r,

computes the MAC underxmk of the ciphertext, and sends the ciphertext and the MAC
on cA[i]. The functionk2b : Tk → bitstring is the natural injectionk2b(x) = x; it is
needed only for type conversion. The adversary is then expected to forward this message
on cB [i]. WhenQB receives this message, it verifies the MAC, decrypts, and stores the
obtained key inx′′

k . (The functioni⊥ : bitstring → bitstring⊥ is the natural injection; it
is useful to check that decryption succeeded.) This keyx′′

k should be secret.
The adversary is responsible for forwarding messages fromA to B. It can send

messages in unexpected ways in order to mount an attack.
This very small example is sufficient to illustrate the main features of CryptoVerif.

Section 5 presents results obtained on more realistic protocols.

1.3. Observational Equivalence

Let us now formally define game indistinguishability, which we name observational
equivalence by analogy with that notion in the Dolev-Yao model. A context is a process
containing a hole[ ]. An evaluation contextC is a context built from[ ], newChannel c;C,
Q | C, andC | Q. We use an evaluation context to represent the adversary. We denote
by C[Q] the process obtained by replacing the hole[ ] in the contextC with the process
Q. The executed events can be used to distinguish games, so we introduce an additional
algorithm, adistinguisherD that takes as input a sequence of eventsE and returnstrue
or false. An example of distinguisher isDe defined byDe(E) = true if and only if
e ∈ E : this distinguisher detects the execution of evente. More generally, distinguish-
ers can detect various properties of the sequence of eventsE executed by the game. We
denote byPr[Q � D] the probability thatQ executes a sequence of eventsE such that
D(E) returnstrue.

Definition 3 (Observational equivalence)Let Q andQ′ be two processes andV a set
of variables. Assume thatQ andQ′ satisfy Invariants 1, 2, and 3 and the variables ofV
are defined inQ andQ′, with the same types.

An evaluation context is said to beacceptablefor Q with public variablesV if and
only if var(C) ∩ var(Q) ⊆ V andC[Q] satisfies Invariants 1, 2, and 3.

We say thatQ andQ′ areobservationally equivalentup to probabilityp with public
variablesV , writtenQ ≈V

p Q′, when for all evaluation contextsC acceptable forQ and
Q′ with public variablesV , for all distinguishersD, |Pr[C[Q] � D] − Pr[C[Q′] �
D]| ≤ p(C,D).

This definition formalizes that algorithmsC andD distinguishQ andQ′ with prob-
ability at mostp(C,D). The probabilityp typically depends on the runtime ofC andD,
but may also depend on other parameters, such as the number of messages sent byC to
each replicated process. That is whyp takes as argumentsC andD themselves.



The unusual requirement on variables ofC comes from the presence of arrays and
of the associatedfind construct which givesC direct access to variables ofQ andQ′: the
contextC is allowed to access variables ofQ andQ′ only when they are inV . (In more
standard settings, the calculus does not have constructs that allow the context to access
variables ofQ andQ′.) WhenV is empty, we writeQ ≈p Q′ instead ofQ ≈V

p Q′.
The following result is not difficult to prove:

Lemma 1 1. Reflexivity:Q ≈V
0 Q.

2. Symmetry: ifQ ≈V
p Q′, thenQ′ ≈V

p Q.
3. Transitivity: ifQ ≈V

p Q′ andQ′ ≈V
p′ Q′′, thenQ ≈V

p+p′ Q′′.
4. If Q ≈V

p Q′ andC is an evaluation context acceptable forQ andQ′ with public

variablesV , thenC[Q] ≈V ′

p′ C[Q′], wherep′(C ′, D) = p(C ′[C], D) andV ′ ⊆
V ∪ var(C).

Proofs by sequences of games consist of a sequence of observationally equivalent games
Q0 ≈V

p1
Q1 ≈V

p2
. . . ≈V

pn
Qn. By transitivity,Q0 ≈V

p1+...+pn
Qn, so by definition of

observational equivalence,Pr[C[Q0] � D] ≤ Pr[C[Qn] � D]+(p1+. . .+pn)(C,D).

2. Game Transformations

In this section, we describe the game transformations that allow us to transform the pro-
cess that represents the initial protocol into a process on which the desired security prop-
erty can be proved directly, by criteria given in Section 3. These transformations are pa-
rameterized by the setV of variables that the context can access. As we shall see in Sec-
tion 3,V contains variables that we would like to prove secret. (The context will contain
test queries that access these variables.) These transformations transform a processQ0

into a processQ′
0 such thatQ0 ≈V

p Q′
0; CryptoVerif evaluates the probabilityp.

2.1. Syntactic Transformations

RemoveAssign(x): Whenx is defined by an assignmentlet x[i1, . . . , il] : T = M in P
and x does not occur inM (non-cyclic assignment), we replacex with its value.
Whenx has several definitions, we simply replacex[i1, . . . , il] with M in P . (For ac-
cesses tox guarded byfind, we do not know which definition ofx is actually used.)
When x has a single definition, we replace everywhere in the gamex[M1, . . . ,Ml]
with M{M1/i1, . . . ,Ml/il}. We additionally update thedefined conditions offind
to preserve Invariant 2 and to make sure that, if a condition offind guarantees that
x[M1, . . . ,Ml] is defined in the initial game, then so does the corresponding condition of
find in the transformed game. Whenx ∈ V , its definition is kept unchanged. Otherwise,
whenx is not referred to at all after the transformation, we remove the definition ofx.
Whenx is referred to only at the root ofdefined tests, we replace its definition with a
constant. (The definition point ofx is important, but not its value.)

Example 2 In the process of Example 1, the transformationRemoveAssign(xmk)
substitutesmkgen(xmr) for xmk in the whole process and removes the assignment
let xmk : Tmk = mkgen(xmr). After substitution,mac(xm, xmk) becomesmac(xm,
mkgen(xmr)) andverify(x′

m, xmk, xma) becomesverify(x′
m,mkgen(xmr), xma), thus

exhibiting terms required in Section 2.2. The situation is similar forRemoveAssign(xk).



SArename(x): The transformationSArename (single assignment rename) aims at re-
naming variables so that each variable has a single definition in the game; this is use-
ful for distinguishing cases depending on which definition ofx has setx[̃i]. This trans-
formation can be applied only whenx /∈ V . When x hasm > 1 definitions, we
rename each definition ofx to a different variablex1, . . . , xm. Termsx[̃i] under a
definition of xj [̃i] are then replaced withxj [̃i]. Each branch of findFB = ũ[̃i] ≤

ñ suchthat defined(M1, . . . ,Ml)∧M then P wherex[M̃ ] is a subterm of someMk for
k ≤ l is replaced withm branchesFB{xj [M̃ ]/x[M̃ ]} for 1 ≤ j ≤ m.
Simplify : The prover uses a simplification algorithm, based on an equational prover,
using an algorithm similar to the Knuth-Bendix completion [40]. This equational prover
uses:

• User-defined equations, of the form∀x1 : T1, . . . ,∀xm : Tm,M which mean
that for all values ofx1 in T1, . . . ,xm in Tm, M evaluates totrue. For example,
considering MAC and encryption schemes as in Definitions 1 and 2 respectively,
we have:

∀r : Tmr, ∀m : bitstring , verify(m,mkgen(r),mac(m,mkgen(r))) = true
(mac)

∀m : bitstring ; ∀r : Tr, ∀r
′ : T ′

r, dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m)
(enc)

We express the poly-injectivity of the functionk2b of Example 1 by

∀x : Tk, ∀y : Tk, (k2b(x) = k2b(y)) = (x = y)

∀x : Tk, k2b
−1(k2b(x)) = x

(k2b)

wherek2b−1 is a function symbol that denotes the inverse ofk2b. We have sim-
ilar formulas fori⊥.

• Equations that come from the process. For example, in the processif M then P
else P ′, we haveM = true in P andM = false in P ′.

• The low probability of collision between random values. For example, whenx
is defined bynew x : T under replications bounded byn1, . . . , nm, x[M1, . . . ,
Mm] = x[M ′

1, . . . ,M
′
m] impliesM1 = M ′

1, . . . ,Mm = M ′
m up to probability

p = (n1...nm)2

2|T | (probability that two distinct cells of the arrayx are equal). This
transformation is performed when the typeT is large, which means that|T | is
large enough so that the probabilityp can be considered small.
Similarly, when 1)x is defined bynew x : T andT is a large type, 2) for each
value ofM1, there is at most one value ofx (or of a part ofx of a large type) that
can yield that value ofM1, and 3)M2 does not depend onx, thenM1 �= M2 up
to a small probability. The fact thatM2 does not depend onx is proved using a
dependency analysis.

The prover combines these properties to simplify terms, and uses simplified forms of
terms to simplify processes. For example, ifM simplifies totrue, thenif M then P else

P ′ simplifies toP . Similarly, a branch offind is removed when the associated condition
simplifies tofalse.



Details on the simplification procedure can be found in [23, Appendix C]. The
asymptotic version of the following proposition is proved in [23, Appendix E.1].

Proposition 1 LetQ0 be a process that satisfies Invariants 1, 2, and 3 andQ′
0 the process

obtained fromQ0 by one of the transformations above. ThenQ′
0 satisfies Invariants 1,

2, and 3, andQ0 ≈V
p Q′

0, wherep = 0 for the transformationsRemoveAssign and
SArename, andp is the probability of eliminated collisions forSimplify.

2.2. Applying the Security Assumptions on Primitives

The security of cryptographic primitives is defined using observational equivalences
given as axioms. Importantly, this formalism allows us to specify many different primi-
tives in a generic way. Such equivalences are then used by the prover in order to trans-
form a game into another, observationally equivalent game, as explained below.

The primitives are specified using equivalences of the form(G1, . . . , Gm) ≈p

(G′
1, . . . , G

′
m) whereG is defined by the following grammar, withl ≥ 0 andm ≥ 1:

G ::= group of oracles
!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm) replication, restrictions
O(x1 : T1, . . . , xl : Tl) := OP oracle

OP ::= oracle processes
M term
new x[̃i] : T ;OP random number
let x[̃i] : T = M in OP assignment
find (

⊕m
j=1 ũj [̃i] ≤ ñj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then OP j) else OP array lookup

Intuitively, O(x1 : T1, . . . , xl : Tl) := OP represents an oracleO that takes as argu-
ment valuesx1, . . . , xl of typesT1, . . . , Tl respectively and returns a result computed
by OP . The observational equivalence(G1, . . . , Gm) ≈p (G′

1, . . . , G
′
m) expresses that

the adversary has probability at mostp of distinguishing oracles in the left-hand side
from corresponding oracles in the right-hand side. Formally, oracles can be encoded as
processes that input their arguments and output their result on a channel, as detailed
in [23]. Denoting by[[(G1, . . . , Gm)]] the encoding of(G1, . . . , Gm) as a process, the
observational equivalence(G1, . . . , Gm) ≈p (G′

1, . . . , G
′
m) is then an abbreviation for

[[(G1, . . . , Gm)]] ≈p [[(G′
1, . . . , G

′
m)]].

For example, the security of a MAC (Definition 1) is represented by the equivalence
L ≈pmac

R where:

L = !i
′′≤n′′

new r : Tmr; (

!i≤nOmac(x : bitstring) := mac(x,mkgen(r)),

!i
′≤n′

Overify(m : bitstring ,ma : Tms) := verify(m,mkgen(r),ma))



R = !i
′′≤n′′

new r : Tmr; (

!i≤nOmac(x : bitstring) := mac′(x,mkgen′(r)),

!i
′≤n′

Overify(m : bitstring ,ma : Tms) :=

find u ≤ n suchthat defined(x[u]) ∧ (m = x[u])

∧ verify′(m,mkgen′(r),ma) then true else false)

pmac(C,D) = n′′
Succ

uf−cma
MAC (tC + (n′′ − 1)(time(mkgen) + n time(mac,maxl(x))

+ n′ time(verify,maxl(m)), n, n′,max(maxl(x),maxl(m)))

(maceq)

wheremac′, verify′, andmkgen′ are function symbols with the same types asmac,
verify, andmkgen respectively. (We use different function symbols on the left- and right-
hand sides, just to prevent a repeated application of the transformation induced by this
equivalence. Since we add these function symbols, we also add the equation

∀r : Tmr, ∀m : bitstring , verify′(m,mkgen′(r),mac′(m,mkgen′(r))) = true
(mac′)

which restates (mac) for mac′, verify′, and mkgen′.) Intuitively, the equivalence
L ≈pmac

R leaves MAC computations unchanged (except for the use of primed function
symbols inR), and allows one to replace a MAC verificationverify(m,mkgen(r),ma)
with a lookup in the arrayx of messages whosemac has been computed with key
mkgen(r): if m is found in the arrayx andverify(m,mkgen(r),ma), we returntrue;
otherwise, the verification fails (up to negligible probability), so we returnfalse. (If the
verification succeeds withm not in the arrayx, then the adversary has forged a MAC.)
Obviously, the form ofL requires thatr is used only to compute or verify MACs, for
the equivalence to be correct. In the probabilitypmac(C,D), tC is the runtime of context
C; n′′ is the maximum number of considered MAC keys;n′ andn′′ are respectively the
maximum number of calls toOmac andOverify for each MAC key (n, n′, n′′ are in fact
functions ofC); time(f, l1, . . . , lk) is the maximum runtime off , called with arguments
of length at mostl1, . . . , lk (the lengthsl1, . . . , lk are omitted when the type of the ar-
gument already bounds its length);maxl(x) is the maximum length ofx. Formally, the
following result shows the correctness of our modeling. It is a fairly easy consequence
of Definition 1, and its asymptotic version is proved in [23, Appendix E.3].

Proposition 2 If (mkgen,mac, verify) is a UF-CMA message authentication code and
the symbolsmkgen′, mac′, andverify′ represent the same functions asmkgen, mac,
andverify respectively, then[[L]] ≈pmac

[[R]].

Similarly, if (kgen, enc, dec) is an IND-CPA symmetric encryption scheme (Defini-
tion 2), then we have the following equivalence:

!i
′≤n′

new r : Tr; !
i≤nOenc(x : bitstring) := new r′ : T ′

r; enc(x, kgen(r), r
′)

≈penc
!i

′≤n′

new r : Tr; !
i≤nOenc(x : bitstring) := new r′ : T ′

r; enc
′(Z(x), kgen′(r), r′)

(enceq)



wherepenc(C,D) = n′ Succ
ind−cpa
SE (tC + tD + (n′ − 1)(time(kgen) + n time(enc,

maxl(x)) + n time(Z,maxl(x))), n,maxl(x)), enc′ and kgen′ are function symbols
with the same types asenc andkgen respectively, andZ : bitstring → bitstring is the
function that returns a bitstring of the same length as its argument, consisting only of
zeroes. Using equations such as∀x : T,Z(T2b(x)) = ZT , we can prove thatZ(T2b(x))
does not depend onx whenx is of a fixed-length typeT andT2b : T → bitstring

is the natural injection. The representation of other primitives can be found in [23, Ap-
pendix D.3]. The equivalences that formalize the security assumptions on primitives are
designed and proved correct by hand from security assumptions in a more standard form,
as in the MAC example. Importantly, these manual proofs are done only once for each
primitive, and the obtained equivalence can be reused for proving many different proto-
cols automatically.

AssumingL ≈p R, Lemma 1 yieldsC[[[L]]] ≈V
p′ C[[[R]]] with p′(C ′, D) =

p(C ′[C], D), for all evaluation contextsC acceptable for[[L]] and [[R]] with no public
variables, so we can transform a processQ0 such thatQ0 ≈V

0 C[[[L]]] into a processQ′
0

such thatQ0 ≈V
0 C[[[L]]] ≈V

p′ C[[[R]]] ≈V
0 Q′

0. In order to check thatQ0 ≈V
0 C[[[L]]],

the prover uses syntactic conditions detailed in [23, Appendix D.1] and sketched in Ex-
ample 3 below. The following proposition shows the soundness of the transformation; its
asymptotic version is proved in [23, Appendix E.4].

Proposition 3 LetQ0 be a process that satisfies Invariants 1, 2, and 3 andQ′
0 the process

obtained fromQ0 by the above transformation. ThenQ′
0 satisfies Invariants 1, 2, and 3

and, if [[L]] ≈p [[R]], thenQ0 ≈V
p′ Q′

0 wherep′(C ′, D) = p(C ′[C], D) and C is an
evaluation context such thatQ0 ≈V

0 C[[[L]]] ≈V
p′ C[[[R]]] ≈V

0 Q′
0.

Example 3 In order to treat Example 1, the prover is given as input the indication
that Tmr, Tr, T

′
r, and Tk are fixed-length types; the type declarations for the func-

tions mkgen,mkgen′ : Tmr → Tmk, mac,mac′ : bitstring × Tmk → Tms,
verify, verify′ : bitstring × Tmk × Tms → bool , kgen, kgen′ : Tr → Tk, enc, enc′ :
bitstring × Tk × T ′

r → Te, dec : Te × Tk → bitstring⊥, k2b : Tk → bitstring ,
i⊥ : bitstring → bitstring⊥, Z : bitstring → bitstring , and the constantZk : bitstring ;
the equations (mac), (mac′), (enc), and∀x : Tk,Z(k2b(x)) = Zk (which expresses that
all keys have the same length); the indication thatk2b andi⊥ are poly-injective (which
generates the equations (k2b) and similar equations fori⊥); equivalencesL ≈p R for
MAC (maceq) and encryption (enceq); and the processQ0 of Example 1. LetV = {x′′

k}.
The prover first appliesRemoveAssign(xmk) to the processQ0 of Example 1, as

described in Example 2, yieldingQ1. The process can then be transformed using the
security of the MAC. In the equivalenceL ≈pmac

R (maceq) that expresses the security
of the MAC,L is an abbreviation for the process:

[[L]] = !i
′′≤n′′

cmkgen[i
′′](); new r : Tmr; cmkgen[i′′]〈〉; (

!i≤ncmac[i
′′, i](x : bitstring); cmac[i′′, i]〈mac(x,mkgen(r))〉 |

!i
′≤n′

cverify[i
′′, i′](m : bitstring ,ma : Tms); cverify[i′′, i′]〈verify(m,mkgen(r),ma)〉)

The processQ1 can be written under the formC[[[L]]], Q1 ≈V
0 C[[[L]]], for the following

contextC:



C = newChannel cmkgen; newChannel cmac; newChannel cverify; ([ ] | start();

new xr : Tr; let xk : Tk = kgen(xr) in cmkgen[1]〈〉; cmkgen[1](); c〈〉; (QCA | QCB))

QCA = !i≤ncA[i](); new x′
k : Tk; new x′

r : T ′
r;

let xm : bitstring = enc(k2b(x′
k), xk, x

′
r) in

cmac[1, i]〈xm〉; cmac[1, i](xma); cA[i]〈xm, xma〉

QCB = !i
′≤ncB [i

′](x′
m, xma); cverify[1, i′]〈x

′
m, xma〉; cverify[1, i

′](b); if b then

let i⊥(k2b(x
′′
k)) = dec(x′

m, xk) in cB [i′]〈〉

Instead of generating the coinsxmr for the MAC key itself, this context sends a mes-
sage on channelcmkgen[1], which is received by[[L]], so that[[L]] generates these coins.
Similarly, instead of computing the MAC, the contextC sends the message to MAC
on channelcmac[1, i], so that[[L]] computes the MAC and sends it back oncmac[1, i].
Instead of verifying the MAC,C sends the message and the candidate MAC on chan-
nel cverify[1, i′], so that[[L]] verifies the MAC and sends the result back oncverify[1, i

′].
The channelscmkgen, cmac andcverify are declared private bynewChannel, so that the
adversary cannot directly access[[L]].

Informally, the conditions verified by CryptoVerif to prove thatQ1 ≈V
0 C[[[L]]] show

that there is a correspondence between the variables ofL and terms or variables ofQ1.
In the example,r[1] in L corresponds toxmr in Q1, x[1, a] to xm[a], m[1, a′] to x′

m[a′],
andma[1, a′] to xma[a

′]. This correspondence must be such that

• A variablex[ã] bound bynew x : T in L must correspond to a variablez[ã′′]
bound bynew z : T in Q1, and the relation that associatesz[ã′′] to x[ã′] must
be an injective function (so that independent random numbers inL correspond to
independent random numbers inQ1).

• An oracle argumentx[ã] in L must correspond to a term of the same type asx,
and when two terms correspond to the samex[ã], they must evaluate to the same
value.

• If L contains an oracleO(x1 : T1, . . . , xl : Tl) := M , the term obtained
by replacing the variables ofM with their corresponding terms or variables of
Q1 is a term ofQ1. The variablesz of Q1 corresponding to variablesx bound
by new x : T in L occur only in such terms, at occurrences corresponding
to occurrences ofx in L. These variablesz do not belong toV . In the exam-
ple, mac(x[1, a],mkgen(r[1])) in L corresponds tomac(xm[a],mkgen(xmr))
in Q1 andverify(m[1, a′],mkgen(r[1]),ma[1, a′]) corresponds toverify(x′

m[a′],
mkgen(xmr), xma[a

′]). The variablexmr does not occur anywhere else inQ1

andxmr /∈ V .

CryptoVerif then transformsQ1 into C[[[R]]], which after some syntactic reorgani-
zations yields the following processQ2:

Q2 = start(); new xr : Tr; let xk : Tk = kgen(xr) in new xmr : Tmr; c〈〉; (Q2A | Q2B)

Q2A = !i≤ncA[i](); new x′
k : Tk; new x′

r : T ′
r;

let xm : bitstring = enc(k2b(x′
k), xk, x

′
r) in cA[i]〈xm,mac′(xm,mkgen′(xmr))〉



Q2B = !i
′≤ncB [i

′](x′
m, xma);

find u ≤ n suchthat defined(xm[u]) ∧ x′
m = xm[u] ∧

verify′(x′
m,mkgen′(xmr), xma)

then (if true then let i⊥(k2b(x
′′
k)) = dec(x′

m, xk) in cB [i′]〈〉)

else (if false then let i⊥(k2b(x
′′
k)) = dec(x′

m, xk) in cB [i′]〈〉)

The initial definition ofxmr is removed and replaced with a new definition, which we still
call xmr. The termmac(xm,mkgen(xmr)) is replaced withmac′(xm,mkgen′(xmr)).
The termverify(x′

m,mkgen(xmr), xma) becomesfind u ≤ n suchthat defined(xm[u])
∧x′

m = xm[u]∧verify′(x′
m,mkgen′(xmr), xma) then true else false, which yieldsQ2B

after transformation of oracle processes into processes. The process looks up the message
x′
m in the arrayxm, which contains the messages whose MAC has been computed with

keymkgen(xmr). If the MAC of x′
m has never been computed, the verification always

fails (it returnsfalse) by the security assumption on the MAC. Otherwise, it returnstrue
whenverify′(x′

m,mkgen′(xmr), xma). By instantiating the probability formula given
in (maceq), Q1 ≈p′

mac
Q2 wherep′mac(C,D) = pmac(C[C ′], D) = Succ

uf−cma
MAC (tC +

time(kgen)+n time(enc, length(Tk))+n time(dec,maxl(x′
m)), n, n,max(maxl(x′

m),
maxl(xm))) since we use one MAC key (n′′ = 1), there are at mostn calls tomac
andverify for that key (n′ = n), and the runtime of the adversary against (maceq) is
tC[C′] = tC + time(kgen) + n time(enc, length(Tk)) + n time(dec,maxl(x′

m)).
Applying Simplify yields a gameQ3: Q2A is unchanged andQ2B becomes

Q3B = !i
′≤ncB [i

′](x′
m, xma);

find u ≤ n suchthat defined(xm[u], x′
k[u]) ∧ x′

m = xm[u] ∧

verify′(x′
m,mkgen′(xmr), xma) then

let x′′
k : Tk = x′

k[u] in cB [i′]〈〉

First, the testsif true then . . . andif false then . . . are simplified. The termdec(x′
m, xk)

is simplified knowingx′
m = xm[u] by thefind condition,xm[u] = enc(k2b(x′

k[u]), xk,
x′
r[u]) by the assignment that definesxm, xk = kgen(xr) by the assignment that defines

xk, anddec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m) by (enc). So we havedec(x′
m,

xk) = dec(xm[u], xk) = dec(enc(k2b(x′
k[u]), xk, x

′
r[u]), xk) = i⊥(k2b(x

′
k[u])). By

injectivity of i⊥ andk2b, the assignment tox′′
k simply becomesx′′

k = x′
k[u], using the

equations∀x : bitstring , i−1
⊥ (i⊥(x)) = x and∀x : Tk, k2b

−1(k2b(x)) = x.
After applyingRemoveAssign(xk), which yieldsQ4, we use the security of encryp-

tion, yielding Q5: enc(k2b(x′
k), kgen(xr), x

′
r) becomesenc′(Z(k2b(x′

k)), kgen
′(xr),

x′
r). We haveQ4 ≈p′

enc
Q5 wherep′enc(C,D) = penc(C[C ′′], D) = Succ

ind−cpa
SE (tC +

tD + (n+ n2)time(mkgen) + n time(mac,maxl(m)) + n2 time(verify,maxl(m′)) +
n2 time(=bitstring ,maxl(m′),maxl(m)), n, length(Tk)). (The evaluation of the run-
time of the contextC ′′ is rather naive since we consider thatmkgen(xmr) is com-
puted once in each execution ofQ4A and once for eachfind test inQ4B , and simi-
larly verify is computed once for eachfind test inQ4B . By noticing that it is enough
to computemkgen(xmr) once, andverify once in each execution ofQ4B , one would



obtainSuccind−cpa
SE (tC + tD +time(mkgen)+n time(mac,maxl(m))+n time(verify,

maxl(m′)) + n2 time(= bitstring ,maxl(m′),maxl(m)), n, length(Tk)).) After Sim-
plify , enc′(Z(k2b(x′

k)), kgen
′(xr), x

′
r) becomesenc′(Zk, kgen

′(xr), x
′
r), using ∀x :

Tk,Z(k2b(x)) = Zk (which expresses that all keys have the same length).
So we obtain the following game:

Q6 = start(); new xr : Tr; new xmr : Tmr; c〈〉; (Q6A | Q6B)

Q6A = !i≤ncA[i](); new x′
k : Tk; new x′

r : T ′
r;

let xm : bitstring = enc′(Zk, kgen
′(xr), x

′
r) in cA[i]〈xm,mac′(xm,mkgen′(xmr))〉

Q6B = Q3B

By transitivity of≈ (Lemma 1),Q0 ≈V
p′

mac
+p′

enc

Q6 since the probability is 0 for steps
other than applying the security of MAC and encryption.

Using lists instead of arrays simplifies games transformations: we do not need to
add instructions that insert values in the list, since all variables are always implicitly
arrays. Moreover, if there are several occurrences ofmac(xi, k) with the same key in the
initial process, eachverify(mj , k,maj) is replaced with afind with one branch for each
occurrence ofmac. Therefore, the prover distinguishes automatically the cases in which
the verified MACmaj comes from each occurrence ofmac, that is, it distinguishes cases
depending on the value ofi such thatmj = xi. Typically, distinguishing these cases is
useful in the following steps of the proof of the protocol. (A similar situation arises for
other cryptographic primitives specified usingfind.)

3. Criteria for Proving Secrecy Properties

Let us now define syntactic criteria that allow us to prove secrecy properties of protocols.
The proofs of asymptotic versions of these results can be found in [23, Appendix E.5].

Definition 4 (One-session secrecy)Suppose that the variablex of typeT is defined in
Q under a single!i≤n.Q preserves the one-session secrecy ofx up to probabilityp when,
for all evaluation contextsC acceptable forQ | Qx without public variables that do not
containS, 2Pr[C[Q | Qx] � DS]− 1 ≤ p(C) whereDS(E) = (S ∈ E),

Qx = c0(); new b : bool; c0〈〉;

(c(u : [1, n]); if defined(x[u]) then if b then c〈x[u]〉 else new y : T ; c〈y〉

| c′(b′ : bool); if b = b′ then event S)

c0, c, c
′, b, b′, u, y, andS do not occur inQ.

Intuitively, the adversaryC distinguishes the value of each secretx[u] from a random
number with probability at mostp(C). The adversary performs a single test query on
x[u], modeled by sendingu on channelc in Qx. This test query returnsx[u] when the
random bitb is true and a random number otherwise. The adversary then tries to guessb,
by sending its guessb′ on channelc′. When the guess is correct, eventS is executed.



Proposition 4 (One-session secrecy)Consider a processQ such that there exists a set
of variablesS such that 1) the definitions ofx are either restrictionsnew x[̃i] : T and
x ∈ S, or assignmentslet x[̃i] : T = z[M1, . . . ,Ml] wherez is defined by restrictions
new z[i′1, . . . , i

′
l] : T , andz ∈ S, and 2) all accesses to variablesy ∈ S in Q are of the

form “ let y′ [̃i] : T ′ = y[M1, . . . ,Ml]” with y′ ∈ S. ThenQ preserves the one-session
secrecy ofx up to probability 0.

Intuitively, only the variables inS depend on the restriction that definesx; the sent mes-
sages and the control flow of the process are independent ofx, so the adversary obtains
no information onx. In the implementation, the setS is computed by fixpoint iteration,
starting fromx or z and adding variablesy′ defined by “let y′ [̃i] : T ′ = y[M1, . . . ,Ml]”
wheny ∈ S.

Definition 5 (Secrecy)Assume that the variablex of type T is defined inQ under a
single !i≤n. Q preserves the secrecy ofx up to probabilityp when, for all evalua-
tion contextsC acceptable forQ | Rx without public variables that do not containS,
2Pr[C[Q | Rx] � DS]− 1 ≤ p(C) whereDS(E) = (S ∈ E),

Rx = c0(); new b : bool; c0〈〉;

(!i≤n′

c(u : [1, n]); if defined(x[u]) then if b then c〈x[u]〉 else

find u′ ≤ n′
suchthat defined(y[u′], u[u′]) ∧ u[u′] = u then c〈y[u′]〉

else new y : T ; c〈y〉

| c′(b′ : bool); if b = b′ then event S)

c0, c, c
′, b, b′, u, u′, y, andS do not occur inQ, andn′ ≥ n.

Intuitively, the adversaryC distinguishes the secret arrayx from an array of independent
random numbers with probability at mostp(C). In this definition, the adversary can
perform several test queries, modeled byRx, which all return the value ofx if b is true
and a random number ifb is false. This corresponds to the “real-or-random” definition
of security [2]. (As shown in [2], this notion is stronger than the more standard approach
in which the adversary can perform a single test query and some reveal queries, which
always revealx[u].)

Proposition 5 (Secrecy)Assume thatQ satisfies the hypothesis of Proposition 4.
If T is a trace ofC[Q] for some evaluation contextC, we definedefRestrT (x[ã]),

the defining restriction ofx[ã] in traceT , as follows: ifx[ã] is defined bynew x[ã] : T
in T , defRestrT (x[ã]) = x[ã]; if x[ã] is defined bylet x[ã] : T = z[M1, . . . ,Ml],
defRestrT (x[ã]) = z[a′1, . . . , a

′
l] where, for allk ≤ l, Mk evaluates toa′k in the traceT

at the definition ofx[ã].
For all evaluation contextsC acceptable forQ with public variables{x}, let

p(C) = Pr[∃(T , ã, ã′), C[Q] reduces according toT ∧ ã �= ã′ ∧ defRestrT (x[ã]) =

defRestrT (x[ã′])]. ThenQ preserves the secrecy ofx up to probability2p.

The collisionsdefRestrT (x[ã]) = defRestrT (x[ã′]) are eliminated using the same equa-
tional prover as forSimplify in Section 2.1, which yields a bound onp(C). Intuitively,



whenã �= ã′, we havedefRestrT (x[ã]) �= defRestrT (x[ã′]) (except in cases of proba-
bility p(C)), sox[ã] andx[ã′] are defined by different restrictions, so they are indepen-
dent random numbers.

As we show in [22], secrecy composed with correspondence assertions [56] can be
used to prove security of a key exchange. (Correspondence assertions are properties of
the form “if some evente(M̃) has been executed then some eventsei(M̃i) for i ≤ m
have been executed”. The verification of correspondence assertions in CryptoVerif in
presented in [22].)

Lemma 2 If Q ≈
{x}
p Q′ andQ preserves the one-session secrecy ofx up to probability

p′ thenQ′ preserves the one-session secrecy ofx up to probabilityp′′(C) = p′(C) +
2p(C[[ ] | Qx], DS). A similar result holds for secrecy.

We can then apply the following technique. When we want to prove thatQ0 preserves
the (one-session) secrecy ofx, we transformQ0 by the transformations described in
Section 2 withV = {x}. By Propositions 1 and 3, we obtain a processQ′

0 such that
Q0 ≈V

p Q′
0. We use Propositions 4 or 5 to show thatQ′

0 preserves the (one-session)
secrecy ofx and finally conclude thatQ0 also preserves the (one-session) secrecy ofx
up to a certain probability by Lemma 2.

Example 4 After the transformations of Example 3, the only variable access tox′k in the
considered process islet x′′

k : Tk = x′
k[u] andx′′

k is not used in the considered process.
So by Proposition 4, the considered process preserves the one-session secrecy ofx′′k (with
S = {x′

k, x
′′
k}). By Lemma 2, the process of Example 1 also preserves the one-session

secrecy ofx′′
k up to probability2(p′mac+p′enc)(C[[ ] | Qx], DS). (The runtimes ofQx and

DS can be neglected inside this formula.) However, this process does not preserve the
secrecy ofx′′

k , because the adversary can force several sessions ofB to use the same key
x′′
k , by replaying the message sent byA. Accordingly, the hypothesis of Proposition 5 is

not satisfied.

The criteria given in this section might seem restrictive, but in fact, they should
be sufficient for all protocols, provided the previous transformation steps are powerful
enough to transform the protocol into a simpler protocol, on which these criteria can then
be applied.

4. Proof Strategy

Up to now, we have described the available game transformations. Next, we explain how
we organize these transformations in order to prove protocols.

At the beginning of the proof and after each successful cryptographic transformation
(that is, a transformation of Section 2.2), the prover executesSimplify and tests whether
the desired security properties are proved, as described in Section 3. If so, it stops.

In order to perform the cryptographic transformations and the other syntactic trans-
formations, our proof strategy relies of the idea of advice. Precisely, the prover tries to
execute each available cryptographic transformation in turn. When such a cryptographic
transformation fails, it returns some syntactic transformations that could make the de-
sired transformation work. (These are the advised transformations.) Then the prover tries



to perform these syntactic transformations. If they fail, they may also suggest other ad-
vised transformations, which are then executed. When the syntactic transformations fi-
nally succeed, we retry the desired cryptographic transformation, which may succeed or
fail, perhaps with new advised transformations, and so on.

Examples of advised transformations include:

• Assume that we try to execute a cryptographic transformation, and need to rec-
ognize a certain termM of L, but we find inQ0 only part ofM , the other parts
being variable accessesx[. . .] while we expect function applications. In this case,
we adviseRemoveAssign(x). For example, ifQ0 containsenc(M ′, xk, x

′
r) and

we look for enc(xm, kgen(xr), x
′
r), we adviseRemoveAssign(xk). If Q0 con-

tains let xk = mkgen(xr) and we look formac(xm,mkgen(xr)), we also ad-
vise RemoveAssign(xk). (The transformation of Example 2 is advised for this
reason.)

• When we try to executeRemoveAssign(x), x has several definitions, and there
are accesses to variablex guarded byfind in Q0, we adviseSArename(x).

• When we want to prove thatx is secret or one-session secret, we have an assign-
ment let x[̃i] : T = y[M̃ ] in P , and there is at least one assignment definingy,
we adviseRemoveAssign(y).
When we want to prove thatx is secret or one-session secret, we have an as-
signmentlet x[̃i] : T = y[M̃ ] in P , y is defined by restrictions,y has several
definitions, and some variable accesses toy are not of the formlet y′[ĩ′] : T =

y[M̃ ′] in P ′, we adviseSArename(y).

5. Experimental Results

CryptoVerif has been tested on a number of protocols given in the literature. We proved
secrecy of keys for the Otway-Rees and Yahalom protocols as well as original and
corrected versions of the Needham-Schroeder shared-key and public-key and Denning-
Sacco public-key protocols, as reported in [23]. We proved authentication properties for
these protocols as well as for original and corrected versions of the Woo-Lam shared-key
and public-key protocols [22]. The proof succeeded in most cases (it failed for only 3
properties that in fact hold). For some proofs, for public-key protocols, we needed to
provide manual indications of the game transformations to perform, mainly because sev-
eral game transformations are sometimes applicable, and the proof succeeds only for a
particular choice of the applied game transformation.

For each proof, the prover outputs the sequence of games it has built, a succinct ex-
planation of the transformation performed between consecutive games, and an indication
of whether the proof succeeded or failed. When the proof fails, the prover still outputs a
sequence of games, but the last game of this sequence does not show the desired property
and cannot be transformed further by the prover. Manual inspection of this game often
makes it possible to understand why the proof failed: because there is an attack (if there
is an attack on the last game), because of a limitation of the prover (if it should in fact
be able to prove the property or to transform the game further), for other reasons (such
as the protocol cannot be proved from the given assumptions; this situation may not lead
immediately to a practical attack in the computational model).



CryptoVerif can also be used for proving cryptographic schemes, such as the FDH
signature scheme [25]. It has been used for studying more complex protocols: the Ker-
beros protocol, with and without its public-key extension PKINIT [24], as well as parts
of the record protocol and of the handshake protocol of TLS [19].

6. Conclusion

CryptoVerif produces proofs by sequences of games, in the computational model. The
security assumptions on primitives are given as observational equivalences, which are
proved once for each primitive and can be reused for proving many different protocols.
The protocol or cryptographic scheme to prove is specified in a process calculus. Cryp-
toVerif provides the sequence of games that leads to the proof and a bound on the prob-
ability of success of an attack. The user is allowed, but does not have, to provide manual
indications on the game transformations to perform.

The essential idea of simulating proofs by sequences of games in an automatic tool
can be applied to any protocol or cryptographic scheme. However, CryptoVerif applies
in a fairly direct way the security assumptions on the primitives and cannot perform deep
mathematical reasoning. Therefore, it is best suited for proving security protocols that
use rather high-level primitives such as encryption and signatures. It is more limited for
proving the security of such primitives from lower-level primitives, since more subtle
mathematical arguments are often needed.

Future work includes adding support for more primitives, for example associativ-
ity for exclusive or and primitives with internal state. Improvements in the proof strat-
egy and the possibility to give more precise manual hints would also be useful. Future
case studies will certainly suggest additional extensions. In the long term, it would be
interesting to certify CryptoVerif, possibly to combine it with the Coq-based framework
CertiCrypt [15]. Grand challenges include the proof of protocol implementations in the
computational model, by analyzing them (as started in [19] for instance) or by generating
them from specifications, and taking into account side-channel attacks.
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