8,432 research outputs found

    From IF to BI: a tale of dependence and separation

    Full text link
    We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Vaananen, and their compositional semantics due to Hodges. We show how Hodges' semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by the semantics is the logic of Bunched Implications due to Pym and O'Hearn, which combines intuitionistic and multiplicative connectives. This introduces several new connectives not previously considered in logics of informational dependence, but which we show play a very natural role, most notably intuitionistic implication. As regards the quantifiers, we show that their interpretation in the Hodges semantics is forced, in that they are the image under the general construction of the usual Tarski semantics; this implies that they are adjoints to substitution, and hence uniquely determined. As for the dependence predicate, we show that this is definable from a simpler predicate, of constancy or dependence on nothing. This makes essential use of the intuitionistic implication. The Armstrong axioms for functional dependence are then recovered as a standard set of axioms for intuitionistic implication. We also prove a full abstraction result in the style of Hodges, in which the intuitionistic implication plays a very natural r\^ole.Comment: 28 pages, journal versio

    An Effective Fixpoint Semantics for Linear Logic Programs

    Full text link
    In this paper we investigate the theoretical foundation of a new bottom-up semantics for linear logic programs, and more precisely for the fragment of LinLog that consists of the language LO enriched with the constant 1. We use constraints to symbolically and finitely represent possibly infinite collections of provable goals. We define a fixpoint semantics based on a new operator in the style of Tp working over constraints. An application of the fixpoint operator can be computed algorithmically. As sufficient conditions for termination, we show that the fixpoint computation is guaranteed to converge for propositional LO. To our knowledge, this is the first attempt to define an effective fixpoint semantics for linear logic programs. As an application of our framework, we also present a formal investigation of the relations between LO and Disjunctive Logic Programming. Using an approach based on abstract interpretation, we show that DLP fixpoint semantics can be viewed as an abstraction of our semantics for LO. We prove that the resulting abstraction is correct and complete for an interesting class of LO programs encoding Petri Nets.Comment: 39 pages, 5 figures. To appear in Theory and Practice of Logic Programmin

    A Labelled Analytic Theorem Proving Environment for Categorial Grammar

    Full text link
    We present a system for the investigation of computational properties of categorial grammar parsing based on a labelled analytic tableaux theorem prover. This proof method allows us to take a modular approach, in which the basic grammar can be kept constant, while a range of categorial calculi can be captured by assigning different properties to the labelling algebra. The theorem proving strategy is particularly well suited to the treatment of categorial grammar, because it allows us to distribute the computational cost between the algorithm which deals with the grammatical types and the algebraic checker which constrains the derivation.Comment: 11 pages, LaTeX2e, uses examples.sty and a4wide.st

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    From coinductive proofs to exact real arithmetic: theory and applications

    Full text link
    Based on a new coinductive characterization of continuous functions we extract certified programs for exact real number computation from constructive proofs. The extracted programs construct and combine exact real number algorithms with respect to the binary signed digit representation of real numbers. The data type corresponding to the coinductive definition of continuous functions consists of finitely branching non-wellfounded trees describing when the algorithm writes and reads digits. We discuss several examples including the extraction of programs for polynomials up to degree two and the definite integral of continuous maps

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Proof-theoretic investigations into integrated logical and functional programming

    Get PDF
    This thesis is a proof-theoretic investigation of logic programming based on hereditary Harrop logic (as in lambdaProlog). After studying various proof systems for the first-order hereditary Harrop logic, we define the proof-theoretic semantics of a logic LFPL, intended as the basis of logic programming with functions, which extends higher-order hereditary Harrop logic by providing definition mechanisms for functions in such a way that the logical specification of the function rather than the function may be used in proof search. In Chap. 3, we define, for the first-order hereditary Harrop fragment of LJ, the class of uniform linear focused (ULF) proofs (suitable for goal-directed search with backchaining and unification) and show that the ULF-proofs are in 1-1 correspondence with the expanded normal deductions, in Prawitz's sense. We give a system of proof-term annotations for LJ-proofs (where proof-terms uniquely represent proofs). We define a rewriting system on proof-terms (where rules represent a subset of Kleene's permutations in LJ) and show that: its irreducible proof- terms are those representing ULF-proofs; it is weakly normalising. We also show that the composition of Prawitz's mappings between LJ and NJ, restricted to ULF-proofs, is the identity. We take the view of logic programming where: a program P is a set of formulae; a goal G is a formula; and the different means of achieving G w.r.t. P correspond to the expanded normal deductions of G from the assumptions in P (rather than the traditional view, whereby the different means of goal-achievement correspond to the different answer substitutions). LFPL is defined in Chap. 4, by means of a sequent calculus. As in LeFun, it extends logic programming with functions and provides mechanisms for defining names for functions, maintaining proof search as the computation mechanism (contrary to languages such as ALF, Babel, Curry and Escher, based on equational logic, where the computation mechanism is some form of rewriting). LFPL also allows definitions for declaring logical properties of functions, called definitions of dependent type. Such definitions are of the form: (f,x) =def(A, w) : EX:RF, where f is a name for A and x is a name for w, a proof-term witnessing that the formula [A/x]F holds (i.e. A meets the specification Ex:rF). When searching for proofs, it may suffice to use the formula [A/x]F rather than A itself. We present an interpretation of LFPL into NNlambdanorm, a natural deduction system for hereditary Harrop logic with lambda-terms. The means of goal-achievement in LFPL are interpreted in NNlambdanorm essentially by cut-elimination, followed by an interpretation of cut-free sequent calculus proofs as normal deductions. We show that the use of definitions of dependent type may speed up proof search because the equivalent proofs using no such definitions may be much longer and because normalisation may be done lazily, since not all parts of the proof need to be exhibited. We sketch two methods for implementing LFPL, based on goal-directed proof search, differing in the mechanism for selecting definitions of dependent type on which to backchain. We discuss techniques for handling the redundancy arising from the equivalence of each proof using such a definition to one using no such definitions

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way
    corecore