8 research outputs found

    A Unified Optimization Approach for Sparse Tensor Operations on GPUs

    Full text link
    Sparse tensors appear in many large-scale applications with multidimensional and sparse data. While multidimensional sparse data often need to be processed on manycore processors, attempts to develop highly-optimized GPU-based implementations of sparse tensor operations are rare. The irregular computation patterns and sparsity structures as well as the large memory footprints of sparse tensor operations make such implementations challenging. We leverage the fact that sparse tensor operations share similar computation patterns to propose a unified tensor representation called F-COO. Combined with GPU-specific optimizations, F-COO provides highly-optimized implementations of sparse tensor computations on GPUs. The performance of the proposed unified approach is demonstrated for tensor-based kernels such as the Sparse Matricized Tensor- Times-Khatri-Rao Product (SpMTTKRP) and the Sparse Tensor- Times-Matrix Multiply (SpTTM) and is used in tensor decomposition algorithms. Compared to state-of-the-art work we improve the performance of SpTTM and SpMTTKRP up to 3.7 and 30.6 times respectively on NVIDIA Titan-X GPUs. We implement a CANDECOMP/PARAFAC (CP) decomposition and achieve up to 14.9 times speedup using the unified method over state-of-the-art libraries on NVIDIA Titan-X GPUs

    Multiplication of medium-density matrices using TensorFlow on multicore CPUs

    Get PDF
    Matrix multiplication is an essential part of many applications, such as linear algebra, image processing and machine learning. One platform used in such applications is TensorFlow, which is a machine learning library whose structure is based on dataflow programming paradigm. In this work, a method for multiplication of medium-density matrices on multicore CPUs using TensorFlow platform is proposed. This method, called tbt_matmul, utilizes TensorFlow built-in methods tf.matmul and tf.sparse_matmul. By partitioning each input matrix into four smaller sub-matrices, called tiles, and applying an appropriate multiplication method to each pair depending on their density, the proposed method outperforms the built-in methods for matrices of medium density and matrices of significantly uneven distribution of non-zeros

    Format Abstraction for Sparse Tensor Algebra Compilers

    Full text link
    This paper shows how to build a sparse tensor algebra compiler that is agnostic to tensor formats (data layouts). We develop an interface that describes formats in terms of their capabilities and properties, and show how to build a modular code generator where new formats can be added as plugins. We then describe six implementations of the interface that compose to form the dense, CSR/CSF, COO, DIA, ELL, and HASH tensor formats and countless variants thereof. With these implementations at hand, our code generator can generate code to compute any tensor algebra expression on any combination of the aforementioned formats. To demonstrate our technique, we have implemented it in the taco tensor algebra compiler. Our modular code generator design makes it simple to add support for new tensor formats, and the performance of the generated code is competitive with hand-optimized implementations. Furthermore, by extending taco to support a wider range of formats specialized for different application and data characteristics, we can improve end-user application performance. For example, if input data is provided in the COO format, our technique allows computing a single matrix-vector multiplication directly with the data in COO, which is up to 3.6×\times faster than by first converting the data to CSR.Comment: Presented at OOPSLA 201

    Automatic Generation of Efficient Sparse Tensor Format Conversion Routines

    Full text link
    This paper shows how to generate code that efficiently converts sparse tensors between disparate storage formats (data layouts) such as CSR, DIA, ELL, and many others. We decompose sparse tensor conversion into three logical phases: coordinate remapping, analysis, and assembly. We then develop a language that precisely describes how different formats group together and order a tensor's nonzeros in memory. This lets a compiler emit code that performs complex remappings of nonzeros when converting between formats. We also develop a query language that can extract statistics about sparse tensors, and we show how to emit efficient analysis code that computes such queries. Finally, we define an abstract interface that captures how data structures for storing a tensor can be efficiently assembled given specific statistics about the tensor. Disparate formats can implement this common interface, thus letting a compiler emit optimized sparse tensor conversion code for arbitrary combinations of many formats without hard-coding for any specific combination. Our evaluation shows that the technique generates sparse tensor conversion routines with performance between 1.00 and 2.01×\times that of hand-optimized versions in SPARSKIT and Intel MKL, two popular sparse linear algebra libraries. And by emitting code that avoids materializing temporaries, which both libraries need for many combinations of source and target formats, our technique outperforms those libraries by 1.78 to 4.01×\times for CSC/COO to DIA/ELL conversion.Comment: Presented at PLDI 202

    Performance Optimization With An Integrated View Of Compiler And Application Knowledge

    Get PDF
    Compiler optimization is a long-standing research field that enhances program performance with a set of rigorous code analyses and transformations. Traditional compiler optimization focuses on general programs or program structures without considering too much high-level application operations or data structure knowledge. In this thesis, we claim that an integrated view of the application and compiler is helpful to further improve program performance. Particularly, we study integrated optimization opportunities for three kinds of applications: irregular tree-based query processing systems such as B+ tree, security enhancement such as buffer overflow protection, and tensor/matrix-based linear algebra computation. The performance of B+ tree query processing is important for many applications, such as file systems and databases. Latch-free B+ tree query processing is efficient since the queries are processed in batches without locks. To avoid long latency, the batch size can not be very large. However, modern processors provide opportunities to process larger batches parallel with acceptable latency. From studying real-world data, we find that there are many redundant and unnecessary queries especially when the real-world data is highly skewed. We develop a query sequence transformation framework Qtrans to reduce the redundancies in queries by applying classic dataflow analysis to queries. To further confirm the effectiveness, we integrate Qtrans into an existing BSP-based B+ tree query processing system, PALM tree. The evaluations show that the throughput can be improved up to 16X. Heap overflows are still the most common vulnerabilities in C/C++ programs. Common approaches incur high overhead since it checks every memory access. By analyzing dozens of bugs, we find that all heap overflows are related to arrays. We only need to check array-related memory accesses. We propose Prober to efficiently detect and prevent heap overflows. It contains Prober-Static to identify the array-related allocations and Prober-Dynamic to protect objects at runtime. In this thesis, our contributions lie on the Prober-Static side. The key challenge is to correctly identify the array-related allocations. We propose a hybrid method. Some objects can be identified as array-related (or not) by static analysis. For the remaining ones, we instrument the basic allocation type size statically and then determine the real allocation size at runtime. The evaluations show Prober-Static is effective. Tensor algebra is widely used in many applications, such as machine learning and data analytics. Tensors representing real-world data are usually large and sparse. There are many sparse tensor storage formats, and the kernels are different with varied formats. These different kernels make performance optimization for sparse tensor algebra challenging. We propose a tensor algebra domain-specific language and a compiler to automatically generate kernels for sparse tensor algebra computations, called SPACe. This compiler supports a wide range of sparse tensor formats. To further improve the performance, we integrate the data reordering into SPACe to improve data locality. The evaluations show that the code generated by SPACe outperforms state-of-the-art sparse tensor algebra compilers
    corecore