1,166 research outputs found

    Polynomial expansion and sublinear separators

    Full text link
    Let C\mathcal{C} be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed 0<δ≤10<\delta\le 1, every nn-vertex graph of C\mathcal{C} has a balanced separator of order O(n1−δ)O(n^{1-\delta}), then any depth-kk minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most kk) of a graph in C\mathcal{C} has average degree O((k polylog k)1/δ)O\big((k \text{ polylog }k)^{1/\delta}\big). This confirms a conjecture of Dvo\v{r}\'ak and Norin.Comment: 6 pages, no figur

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Coresets for Clustering in Geometric Intersection Graphs

    Get PDF

    Search for the end of a path in the d-dimensional grid and in other graphs

    Get PDF
    We consider the worst-case query complexity of some variants of certain \cl{PPAD}-complete search problems. Suppose we are given a graph GG and a vertex s∈V(G)s \in V(G). We denote the directed graph obtained from GG by directing all edges in both directions by G′G'. DD is a directed subgraph of G′G' which is unknown to us, except that it consists of vertex-disjoint directed paths and cycles and one of the paths originates in ss. Our goal is to find an endvertex of a path by using as few queries as possible. A query specifies a vertex v∈V(G)v\in V(G), and the answer is the set of the edges of DD incident to vv, together with their directions. We also show lower bounds for the special case when DD consists of a single path. Our proofs use the theory of graph separators. Finally, we consider the case when the graph GG is a grid graph. In this case, using the connection with separators, we give asymptotically tight bounds as a function of the size of the grid, if the dimension of the grid is considered as fixed. In order to do this, we prove a separator theorem about grid graphs, which is interesting on its own right
    • …
    corecore