1,613 research outputs found

    ISAR: Ein Autorensystem für Interaktive Tische

    Get PDF
    Developing augmented reality systems involves several challenges, that prevent end users and experts from non-technical domains, such as education, to experiment with this technology. In this research we introduce ISAR, an authoring system for augmented reality tabletops targeting users from non-technical domains. ISAR allows non-technical users to create their own interactive tabletop applications and experiment with the use of this technology in domains such as educations, industrial training, and medical rehabilitation.Die Entwicklung von Augmented-Reality-Systemen ist mit mehreren Herausforderungen verbunden, die Endbenutzer und Experten aus nicht-technischen Bereichen, wie z.B. dem Bildungswesen, daran hindern, mit dieser Technologie zu experimentieren. In dieser Forschung stellen wir ISAR vor, ein Autorensystem für Augmented-Reality-Tabletops, das sich an Benutzer aus nicht-technischen Bereichen richtet. ISAR ermöglicht es nicht-technischen Anwendern, ihre eigenen interaktiven Tabletop-Anwendungen zu erstellen und mit dem Einsatz dieser Technologie in Bereichen wie Bildung, industrieller Ausbildung und medizinischer Rehabilitation zu experimentieren

    Augmented reality in support of Industry 4.0—Implementation challenges and success factors

    Get PDF
    Industrial augmented reality (AR) is an integral part of Industry 4.0 concepts, as it enables workers to access digital information and overlay that information with the physical world. While not being broadly adopted in some applications, the compound annual growth rate of the industrial AR market is projected to grow rapidly. Hence, it is important to understand the issues arising from implementation of AR in industry. This study identifies critical success factors and challenges for industrial AR implementation projects, based on an industry survey. The broadly used technology, organisation, environment (TOE) framework is used as a theoretical basis for the quantitative part of the questionnaire. A complementary qualitative part is used to underpin and extend the findings. It is found that, while technological aspects are of importance, organisational issues are more relevant for industry, which has not been reflected to the same extent in literature.University of Cambridg

    Study of Augmented Reality based manufacturing for further integration of quality control 4.0: a systematic literature review

    Get PDF
    Augmented Reality (AR) has gradually become a mainstream technology enabling Industry 4.0 and its maturity has also grown over time. AR has been applied to support different processes on the shop-floor level, such as assembly, maintenance, etc. As various processes in manufacturing require high quality and near-zero error rates to ensure the demands and safety of end-users, AR can also equip operators with immersive interfaces to enhance productivity, accuracy and autonomy in the quality sector. However, there is currently no systematic review paper about AR technology enhancing the quality sector. The purpose of this paper is to conduct a systematic literature review (SLR) to conclude about the emerging interest in using AR as an assisting technology for the quality sector in an industry 4.0 context. Five research questions (RQs), with a set of selection criteria, are predefined to support the objectives of this SLR. In addition, different research databases are used for the paper identification phase following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology to find the answers for the predefined RQs. It is found that, in spite of staying behind the assembly and maintenance sector in terms of AR-based solutions, there is a tendency towards interest in developing and implementing AR-assisted quality applications. There are three main categories of current AR-based solutions for quality sector, which are AR-based apps as a virtual Lean tool, AR-assisted metrology and AR-based solutions for in-line quality control. In this SLR, an AR architecture layer framework has been improved to classify articles into different layers which are finally integrated into a systematic design and development methodology for the development of long-term AR-based solutions for the quality sector in the future

    Adopting augmented reality in the age of industrial digitalisation

    Get PDF
    Industrial augmented reality (IAR) is one of the key pillars of the industrial digitalisation concepts, which connects workers with the physical world through overlaying digital information. Augmented reality (AR) market is increasing but still its adoption levels are low in industry. While companies strive to learn and adopt AR, there are chances that they fail in such endeavours due to lack of understanding key challenges and success factors in this space. This study identifies critical success factors and challenges for IAR implementation projects based on field experiments. The broadly used technology, organisation, environment (TOE) framework was used as a theoretical basis for the study, while 22 experiments were conducted for validation. It is found that, while technological aspects are of importance, organisational issues are more relevant for industry, which has not been reflected to the same extent in the literature.No funding source. 22 experiments were conducted with in-kind support (employee time and company access) from Beckhoff Automation, Herman Miller and fluiconnecto as well as University of Cambridge students (see Table 1)

    Collaborative Work Enabled by Immersive Environments

    Get PDF

    Harmonize: a shared environment for extended immersive entertainment

    Get PDF
    Virtual reality (VR) and augmented reality (AR) applications are very diffuse nowadays. Moreover, recent technology innovations led to the diffusion of commercial head-mounted displays (HMDs) for immersive VR: users can enjoy entertainment activities that fill their visual fields, experiencing the sensation of physical presence in these virtual immersive environments (IEs). Even if AR and VR are mostly used separately, they can be effectively combined to provide a multi-user shared environment (SE), where two or more users perform some specific tasks in a cooperative or competitive way, providing a wider set of interactions and use cases compared to immersive VR alone. However, due to the differences between the two technologies, it is difficult to develop SEs offering a similar experience for both AR and VR users. This paper presents Harmonize, a novel framework to deploy applications based on SEs with a comparable experience for both AR and VR users. Moreover, the framework is hardware-independent and it has been designed to be as much extendable to novel hardware as possible. An immersive game has been designed to test and to evaluate the validity of the proposed framework. The assessment of the system through the System Usability Scale (SUS) questionnaire and the Game Experience Questionnaire (GEQ) shows a positive evaluation

    Exploring multimedia and interactive technologies

    Get PDF
    The goal of multimedia design strategies and innovation is to produce meaningful learning environments that relate to and build upon what the learner already knows and what the learner seeks. The multimedia tools used to achieve knowledge transfer should activate recall or prior knowledge and help the learner alter and encode new structures. Traditionally, multimedia has been localized to specific delivery systems and demographics based on the government, industry, or academic concentration. The presenter will explore the introduction of immersive telecommunications technologies, constructivist learning methodologies, and adult learning models to standardize networking and multimedia-based services and products capable of adapting to wired and wireless environments, different devices and conditions on a global scale

    AUGMENTED REALITY AND MOBILE SYSTEMS FOR HEAVY EQUIPMENT OPERATORS IN SURFACE MINING

    Get PDF
    U.S. federal laws mandate that mining companies ensure a safe workplace, implement approved training programs, and promptly report work-related injuries. The mining industry\u27s commitment to innovation reflects a history of adopting advancements to enhance environmental sustainability, workplace safety, and overall productivity, while simultaneously reducing operational costs. This thesis proposes the integration of Augmented Reality (AR) technology and digital applications to enhance the surface mining industry, presenting two innovative solutions: an AR Training System and an Operational Digital System. These business solutions have been developed and applied at a surface mine in the southwest of the US, having the potential to improve the mining industry by enhancing safety, training, operational efficiency, and data-driven decision-making, which comprehends a significant step toward a more sustainable, effective, and technologically driven mining sector, contributing to the industry\u27s evolution and growth. The AR Training System leverages Microsoft´s Power Platform and HoloLens 2 capacities to provide operators with immersive and step-by-step training guides in real working conditions for Dozers, Motor Graders, and End Dump trucks. These AR guides combine 3D models, videos, photos, and interactive elements overlapping mining equipment to enhance learning and safety. The system also offers an efficient approach to data collection during operator training, which has the potential to modify the training guides based on user performance. On the other hand, the Operational Digital System addresses the industry\u27s operational challenges. It streamlines the pre-operation inspection process, tracks equipment status, and accelerates defect identification, shift timing, delays, and loaded tonnage. The system offers a holistic approach to mining operation optimization, facilitating data sharing and management among different departments, enhancing collaboration, and expediting maintenance processes

    RealitySketch: Embedding Responsive Graphics and Visualizations in AR through Dynamic Sketching

    Full text link
    We present RealitySketch, an augmented reality interface for sketching interactive graphics and visualizations. In recent years, an increasing number of AR sketching tools enable users to draw and embed sketches in the real world. However, with the current tools, sketched contents are inherently static, floating in mid air without responding to the real world. This paper introduces a new way to embed dynamic and responsive graphics in the real world. In RealitySketch, the user draws graphical elements on a mobile AR screen and binds them with physical objects in real-time and improvisational ways, so that the sketched elements dynamically move with the corresponding physical motion. The user can also quickly visualize and analyze real-world phenomena through responsive graph plots or interactive visualizations. This paper contributes to a set of interaction techniques that enable capturing, parameterizing, and visualizing real-world motion without pre-defined programs and configurations. Finally, we demonstrate our tool with several application scenarios, including physics education, sports training, and in-situ tangible interfaces.Comment: UIST 202
    corecore