6,706 research outputs found

    Single-Shot Clothing Category Recognition in Free-Configurations with Application to Autonomous Clothes Sorting

    Get PDF
    This paper proposes a single-shot approach for recognising clothing categories from 2.5D features. We propose two visual features, BSP (B-Spline Patch) and TSD (Topology Spatial Distances) for this task. The local BSP features are encoded by LLC (Locality-constrained Linear Coding) and fused with three different global features. Our visual feature is robust to deformable shapes and our approach is able to recognise the category of unknown clothing in unconstrained and random configurations. We integrated the category recognition pipeline with a stereo vision system, clothing instance detection, and dual-arm manipulators to achieve an autonomous sorting system. To verify the performance of our proposed method, we build a high-resolution RGBD clothing dataset of 50 clothing items of 5 categories sampled in random configurations (a total of 2,100 clothing samples). Experimental results show that our approach is able to reach 83.2\% accuracy while classifying clothing items which were previously unseen during training. This advances beyond the previous state-of-the-art by 36.2\%. Finally, we evaluate the proposed approach in an autonomous robot sorting system, in which the robot recognises a clothing item from an unconstrained pile, grasps it, and sorts it into a box according to its category. Our proposed sorting system achieves reasonable sorting success rates with single-shot perception.Comment: 9 pages, accepted by IROS201

    On Sampling Based Algorithms for k-Means

    Get PDF

    Constrained K-means with General Pairwise and Cardinality Constraints

    Full text link
    In this work, we study constrained clustering, where constraints are utilized to guide the clustering process. In existing works, two categories of constraints have been widely explored, namely pairwise and cardinality constraints. Pairwise constraints enforce the cluster labels of two instances to be the same (must-link constraints) or different (cannot-link constraints). Cardinality constraints encourage cluster sizes to satisfy a user-specified distribution. However, most existing constrained clustering models can only utilize one category of constraints at a time. In this paper, we enforce the above two categories into a unified clustering model starting with the integer program formulation of the standard K-means. As these two categories provide useful information at different levels, utilizing both of them is expected to allow for better clustering performance. However, the optimization is difficult due to the binary and quadratic constraints in the proposed unified formulation. To alleviate this difficulty, we utilize two techniques: equivalently replacing the binary constraints by the intersection of two continuous constraints; the other is transforming the quadratic constraints into bi-linear constraints by introducing extra variables. Then we derive an equivalent continuous reformulation with simple constraints, which can be efficiently solved by Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experiments on both synthetic and real data demonstrate: (1) when utilizing a single category of constraint, the proposed model is superior to or competitive with state-of-the-art constrained clustering models, and (2) when utilizing both categories of constraints jointly, the proposed model shows better performance than the case of the single category
    • …
    corecore