This paper proposes a single-shot approach for recognising clothing
categories from 2.5D features. We propose two visual features, BSP (B-Spline
Patch) and TSD (Topology Spatial Distances) for this task. The local BSP
features are encoded by LLC (Locality-constrained Linear Coding) and fused with
three different global features. Our visual feature is robust to deformable
shapes and our approach is able to recognise the category of unknown clothing
in unconstrained and random configurations. We integrated the category
recognition pipeline with a stereo vision system, clothing instance detection,
and dual-arm manipulators to achieve an autonomous sorting system. To verify
the performance of our proposed method, we build a high-resolution RGBD
clothing dataset of 50 clothing items of 5 categories sampled in random
configurations (a total of 2,100 clothing samples). Experimental results show
that our approach is able to reach 83.2\% accuracy while classifying clothing
items which were previously unseen during training. This advances beyond the
previous state-of-the-art by 36.2\%. Finally, we evaluate the proposed approach
in an autonomous robot sorting system, in which the robot recognises a clothing
item from an unconstrained pile, grasps it, and sorts it into a box according
to its category. Our proposed sorting system achieves reasonable sorting
success rates with single-shot perception.Comment: 9 pages, accepted by IROS201