1,477 research outputs found

    A unified framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 111-117).This thesis describes the design of an active safety framework that performs trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. The vehicle navigation task is formulated as a constrained optimal control problem with the constraints bounding a navigable region of the environment derived from forward -looking sensors. First, a constrained model predictive controller is designed to iteratively plan an optimal or "best-case" vehicle trajectory through the constrained corridor. This "best-case" scenario is then used to establish the minimum threat posed to the vehicle given its current state and driver inputs. Based on this threat assessment, the level of controller intervention required to prevent departure from the navigable corridor is calculated and driver/controller inputs are scaled accordingly. This approach minimizes controller intervention while ensuring that the vehicle does not depart from a navigable corridor. It also provides a unified architecture into which various vehicle models, actuation modes, trajectory-planning objectives, driver preferences, and levels of autonomy can be seamlessly integrated without changing the underlying controller structure. Simulated and experimental results are presented to demonstrate the framework's ability to incorporate multiple threat metrics and configurable intervention laws while sharing control with a human driver. Various maneuvers are tested, including lane-keeping, hazard avoidance, and multiple hazard avoidance and show that this framework capable of maintaining vehicle stability while semi-autonomously avoiding road hazards and conceding significant control to the human driver.by Sterling J. Anderson.S.M

    Shared control strategies for automated vehicles

    Get PDF
    188 p.Los vehículos automatizados (AVs) han surgido como una solución tecnológica para compensar las deficiencias de la conducción manual. Sin embargo, esta tecnología aún no está lo suficientemente madura para reemplazar completamente al conductor, ya que esto plantea problemas técnicos, sociales y legales. Sin embargo, los accidentes siguen ocurriendo y se necesitan nuevas soluciones tecnológicas para mejorar la seguridad vial. En este contexto, el enfoque de control compartido, en el que el conductor permanece en el bucle de control y, junto con la automatización, forma un equipo bien coordinado que colabora continuamente en los niveles táctico y de control de la tarea de conducción, es una solución prometedora para mejorar el rendimiento de la conducción manual aprovechando los últimos avances en tecnología de conducción automatizada. Esta estrategia tiene como objetivo promover el desarrollo de sistemas de asistencia al conductor más avanzados y con mayor grade de cooperatición en comparación con los disponibles en los vehículos comerciales. En este sentido, los vehículos automatizados serán los supervisores que necesitan los conductores, y no al revés. La presente tesis aborda en profundidad el tema del control compartido en vehículos automatizados, tanto desde una perspectiva teórica como práctica. En primer lugar, se proporciona una revisión exhaustiva del estado del arte para brindar una descripción general de los conceptos y aplicaciones en los que los investigadores han estado trabajando durante lasúltimas dos décadas. Luego, se adopta un enfoque práctico mediante el desarrollo de un controlador para ayudar al conductor en el control lateral del vehículo. Este controlador y su sistema de toma de decisiones asociado (Módulo de Arbitraje) se integrarán en el marco general de conducción automatizada y se validarán en una plataforma de simulación con conductores reales. Finalmente, el controlador desarrollado se aplica a dos sistemas. El primero para asistir a un conductor distraído y el otro en la implementación de una función de seguridad para realizar maniobras de adelantamiento en carreteras de doble sentido. Al finalizar, se presentan las conclusiones más relevantes y las perspectivas de investigación futuras para el control compartido en la conducción automatizada

    Constraint-based navigation for safe, shared control of ground vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 138-147).Human error in machine operation is common and costly. This thesis introduces, develops, and experimentally demonstrates a new paradigm for shared-adaptive control of human-machine systems that mitigates the effects of human error without removing humans from the control loop. Motivated by observed human proclivity toward navigation in fields of safe travel rather than along specific trajectories, the planning and control framework developed in this thesis is rooted in the design and enforcement of constraints rather than the more traditional use of reference paths. Two constraint-planning methods are introduced. The first uses a constrained Delaunay triangulation of the environment to identify, cumulatively evaluate, and succinctly circumscribe the paths belonging to a particular homotopy with a set of semi autonomously enforceable constraints on the vehicle's position. The second identifies a desired homotopy by planning - and then laterally expanding - the optimal path that traverses it. Simulated results show both of these constraint-planning methods capable of improving the performance of one or multiple agents traversing an environment with obstacles. A method for predicting the threat posed to the vehicle given the current driver action, present state of the environment, and modeled vehicle dynamics is also presented. This threat assessment method, and the shared control approach it facilitates, are shown in simulation to prevent constraint violation or vehicular loss of control with minimal control intervention. Visual and haptic driver feedback mechanisms facilitated by this constraint-based control and threat-based intervention are also introduced. Finally, a large-scale, repeated measures study is presented to evaluate this control framework's effect on the performance, confidence, and cognitive workload of 20 drivers teleoperating an unmanned ground vehicle through an outdoor obstacle course. In 1,200 trials, the constraint-based framework developed in this thesis is shown to increase vehicle velocity by 26% while reducing the occurrence of collisions by 78%, improving driver reaction time to a secondary task by 8.7%, and increasing overall user confidence and sense of control by 44% and 12%, respectively. These performance improvements were realized with the autonomous controller usurping less than 43% of available vehicle control authority, on average.by Sterling J. Anderson.Ph.D

    Human-Machine Interface Development For Modifying Driver Lane Change Behavior In Manual, Automated, And Shared Control Automated Driving

    Get PDF
    Rear-end crashes are common on U.S. roads. Driver assistance and automated driving technologies can reduce rear-end crashes (among other crash types as well). Braking is assumed for forward collision warning (FCW) and automatic emergency braking (AEB) systems. Braking is also used for adaptive cruise control (ACC) and in automated driving systems more generally. However, steering may be advised in an emergency if the adjacent lane is clear and braking is unlikely to avoid a collision. Steering around an obstacle when feasible also eliminates the risk of becoming the new forward collision hazard. Driver assist technology like emergency steer assist (ESA) and Level 2 or Level 3 automated driving systems might facilitate manual emergency lane changes but may require the driver to manually initiate the maneuver, something which drivers are often reluctant to do. An Human-Machine Interface (HMI) might advise the driver of a steerable path when feasible in forward collision hazard situations. Such an HMI might also advise a driver of normal lane change opportunities that can reduce travel time, increase fuel efficiency, or simply enhance the driving experience by promoting `flow.\u27 This dissertation investigated the propensity of drivers to brake only versus steer in both manual and automated driving situations that end in a high-intensity forward collision hazard. A audio-visual Field of Safe Travel (FOST) cluster display and haptic steering wheel HMI were developed to advise drivers in both discretionary and emergency situations of a lane change opportunity. The HMI was tested in a moving base simulator in manual driving, in fully autonomous driving, and in shared-control autonomous driving during a simulated highway commute that ended in an high-intensity forward collision hazard situation. Results indicated that a) driver response was affected by the nature of the automated driving (faster response in hands-on shared control versus hands-off fully autonomous driving); b) exposure to the HMI in normal lane changes both familiarized the driver with the HMI and introduced a mental set that steering was also a possibility rather than braking only; c) but that drivers used their direct vision to determine their response in the emergency event. A methodological issue related to mental set was also uncovered and resolved through screening studies. The final study brought the dissertation full-circle, comparing hands-off fully automated driving to hands-on shared control automated driving in the context of either providing some or no exposure to the developed LCA system concept. Results of the final study indicated that shared control lies somewhere between that of manual driving and hands-off fully automate driving. Benefits were also shown to exist for the LCA system concept irrespective of whether the discrete haptic profiles are included or not. The discrete haptic profiles did not statistically reliably increase response times to the FC hazard event, although they do show a trend toward decreasing response variability. This finding solidified the fact that by implementing a system for benign driving that aids in establishing a mental set to steer around an obstacle may actually be beneficial for rear-end crash scenarios. This dissertation’s contributions include a) audio-visual FOST display concepts; b) discrete haptic steering display concepts; c) a paired-comparisons scaling for urgency for haptic displays applied while driving; d) a new ``mirage scenario\u27\u27 methodology for eliciting subjective assessments in the context of a forward collision hazard, briefly presented then removed, without risk of simulator sickness, and e) a methodological lesson for others who wish to investigate semi-automated and automated driving interventions and must manage driver mental set carefully

    Federated Learning for Connected and Automated Vehicles: A Survey of Existing Approaches and Challenges

    Full text link
    Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles (CAV), including perception, planning, and control. However, its reliance on vehicular data for model training presents significant challenges related to in-vehicle user privacy and communication overhead generated by massive data volumes. Federated learning (FL) is a decentralized ML approach that enables multiple vehicles to collaboratively develop models, broadening learning from various driving environments, enhancing overall performance, and simultaneously securing local vehicle data privacy and security. This survey paper presents a review of the advancements made in the application of FL for CAV (FL4CAV). First, centralized and decentralized frameworks of FL are analyzed, highlighting their key characteristics and methodologies. Second, diverse data sources, models, and data security techniques relevant to FL in CAVs are reviewed, emphasizing their significance in ensuring privacy and confidentiality. Third, specific and important applications of FL are explored, providing insight into the base models and datasets employed for each application. Finally, existing challenges for FL4CAV are listed and potential directions for future work are discussed to further enhance the effectiveness and efficiency of FL in the context of CAV

    Model-Based Threat Assessment in Semi-Autonomous Vehicles with Model Parameter Uncertainties

    Get PDF
    In this paper, we consider model-based threat assessment methods which rely on vehicle and driver mathematical models and are based on reachability analysis tools and set invariance theory. We focus on the parametric uncertainties of the driver mathematical model and show how these can be accounted for in the threat assessment. The novelty of the proposed methods lies in the inclusion of the driver model uncertainties in the threat assessment problem formulation and in their validation through experimental data. We show how different ways of accounting for the model uncertainties impact the capabilities and the effectiveness of the proposed algorithms in detecting hazardous driving situations
    corecore