19,318 research outputs found

    Multi-layer virtual transport network design

    Full text link
    Service overlay networks and network virtualization enable multiple overlay/virtual networks to run over a common physical network infrastructure. They are widely used to overcome deficiencies of the Internet (e.g., resiliency, security and QoS guarantees). However, most overlay/virtual networks are used for routing/tunneling purposes, and not for providing scoped transport flows (involving all mechanisms such as error and flow control, resource allocation, etc.), which can allow better network resource allocation and utilization. Most importantly, the design of overlay/virtual networks is mostly single-layered, and lacks dynamic scope management, which is important for application and network management. In response to these limitations, we propose a multi-layer approach to Virtual Transport Network (VTN) design. This design is a key part of VTN-based network management, where network management is done via managing various VTNs over different scopes (i.e., ranges of operation). Our simulation and experimental results show that our multi-layer approach to VTN design can achieve better performance compared to the traditional single-layer design used for overlay/virtual networks.This work has been partly supported by National Science Foundation awards: CNS-0963974 and CNS-1346688

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Analyze Large Multidimensional Datasets Using Algebraic Topology

    Get PDF
    This paper presents an efficient algorithm to extract knowledge from high-dimensionality, high- complexity datasets using algebraic topology, namely simplicial complexes. Based on concept of isomorphism of relations, our method turn a relational table into a geometric object (a simplicial complex is a polyhedron). So, conceptually association rule searching is turned into a geometric traversal problem. By leveraging on the core concepts behind Simplicial Complex, we use a new technique (in computer science) that improves the performance over existing methods and uses far less memory. It was designed and developed with a strong emphasis on scalability, reliability, and extensibility. This paper also investigate the possibility of Hadoop integration and the challenges that come with the framework

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    An Energy Driven Architecture for Wireless Sensor Networks

    Full text link
    Most wireless sensor networks operate with very limited energy sources-their batteries, and hence their usefulness in real life applications is severely constrained. The challenging issues are how to optimize the use of their energy or to harvest their own energy in order to lengthen their lives for wider classes of application. Tackling these important issues requires a robust architecture that takes into account the energy consumption level of functional constituents and their interdependency. Without such architecture, it would be difficult to formulate and optimize the overall energy consumption of a wireless sensor network. Unlike most current researches that focus on a single energy constituent of WSNs independent from and regardless of other constituents, this paper presents an Energy Driven Architecture (EDA) as a new architecture and indicates a novel approach for minimising the total energy consumption of a WS

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks
    • …
    corecore