524 research outputs found

    An infrastructure for experience centered agile prototyping of ambient intelligence

    Get PDF
    Ubiquitous computing poses new usability challenges that cut across design and development. We are particularly interested in "spaces" enhanced with sensors, public displays and personal devices. How can prototypes be used to explore the user's mobility and interaction, both explicitly and implicitly, to access services within these environments? Because of the potential cost of development and design failure, the characteristics of such systems must be explored using early versions of the system that could disrupt if used in the target environment. Being able to evaluate these systems early in the process is crucial to their successful development. This paper reports on an effort to develop a framework for the rapid prototyping and analysis of ambient intelligence systems

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Improving Situational Awareness for First Responders via Mobile Computing

    Get PDF
    This project looks to improve first responder incident command, and an appropriately managed flow of situational awareness using mobile computing techniques. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802. II network. Responders can also wireless share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of the emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercises at NASA Ames

    Visualization Based on Geographic Information in Augmented Reality

    Get PDF

    The Effects of Object Shape, Fidelity, Color, and Luminance on Depth Perception in Handheld Mobile Augmented Reality

    Full text link
    Depth perception of objects can greatly affect a user's experience of an augmented reality (AR) application. Many AR applications require depth matching of real and virtual objects and have the possibility to be influenced by depth cues. Color and luminance are depth cues that have been traditionally studied in two-dimensional (2D) objects. However, there is little research investigating how the properties of three-dimensional (3D) virtual objects interact with color and luminance to affect depth perception, despite the substantial use of 3D objects in visual applications. In this paper, we present the results of a paired comparison experiment that investigates the effects of object shape, fidelity, color, and luminance on depth perception of 3D objects in handheld mobile AR. The results of our study indicate that bright colors are perceived as nearer than dark colors for a high-fidelity, simple 3D object, regardless of hue. Additionally, bright red is perceived as nearer than any other color. These effects were not observed for a low-fidelity version of the simple object or for a more-complex 3D object. High-fidelity objects had more perceptual differences than low-fidelity objects, indicating that fidelity interacts with color and luminance to affect depth perception. These findings reveal how the properties of 3D models influence the effects of color and luminance on depth perception in handheld mobile AR and can help developers select colors for their applications.Comment: 9 pages, In proceedings of IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 202

    The aptness of tangible user interfaces for explaining abstract computer network principles

    Get PDF
    The technological deployment of Tangible User Interfaces (TUI) with their intrinsic ability to interlink the physical and digital domains, have steadily gained interest within the educational sector. As a concrete example of Reality Based Interaction, such digital manipulatives have been successfully implemented in the past years to introduce scientific and engineering concepts at earlier stages throughout the educational cycle. With difference to literature, this research investigates the suitability and effectiveness of implementing a TUI system to enhance the learning experience in a higher education environment. The proposal targets the understanding of advanced computer networking principles by the deployment of an interactive table-top system. Beyond the mere simulation and modelling of networking topologies, the design presents students the ability to directly interact with and visualise the protocol execution, hence augmenting their ability to understand the abstract nature of such algorithms. Following deployment of the proposed innovate prototype within the delivery of a university undergraduate programme, the quantitative effectiveness of this novel methodology will be assessed from both a teaching and learning perspective on its ability to convey the abstract notions of computer network principles

    Digital Twins for Industry 4.0 in the 6G Era

    Full text link
    Having the Fifth Generation (5G) mobile communication system recently rolled out in many countries, the wireless community is now setting its eyes on the next era of Sixth Generation (6G). Inheriting from 5G its focus on industrial use cases, 6G is envisaged to become the infrastructural backbone of future intelligent industry. Especially, a combination of 6G and the emerging technologies of Digital Twins (DT) will give impetus to the next evolution of Industry 4.0 (I4.0) systems. This article provides a survey in the research area of 6G-empowered industrial DT system. With a novel vision of 6G industrial DT ecosystem, this survey discusses the ambitions and potential applications of industrial DT in the 6G era, identifying the emerging challenges as well as the key enabling technologies. The introduced ecosystem is supposed to bridge the gaps between humans, machines, and the data infrastructure, and therewith enable numerous novel application scenarios.Comment: Accepted for publication in IEEE Open Journal of Vehicular Technolog

    Model-Driven Development of Interactive Multimedia Applications

    Get PDF
    The development of highly interactive multimedia applications is still a challenging and complex task. In addition to the application logic, multimedia applications typically provide a sophisticated user interface with integrated media objects. As a consequence, the development process involves different experts for software design, user interface design, and media design. There is still a lack of concepts for a systematic development which integrates these aspects. This thesis provides a model-driven development approach addressing this problem. Therefore it introduces the Multimedia Modeling Language (MML), a visual modeling language supporting a design phase in multimedia application development. The language is oriented on well-established software engineering concepts, like UML 2, and integrates concepts from the areas of multimedia development and model-based user interface development. MML allows the generation of code skeletons from the models. Thereby, the core idea is to generate code skeletons which can be directly processed in multimedia authoring tools. In this way, the strengths of both are combined: Authoring tools are used to perform the creative development tasks while models are used to design the overall application structure and to enable a well-coordinated development process. This is demonstrated using the professional authoring tool Adobe Flash. MML is supported by modeling and code generation tools which have been used to validate the approach over several years in various student projects and teaching courses. Additional prototypes have been developed to demonstrate, e.g., the ability to generate code for different target platforms. Finally, it is discussed how models can contribute in general to a better integration of well-structured software development and creative visual design
    corecore