3,220 research outputs found

    A UML Profile for the Design, Quality Assessment and Deployment of Data-intensive Applications

    Get PDF
    Big Data or Data-Intensive applications (DIAs) seek to mine, manipulate, extract or otherwise exploit the potential intelligence hidden behind Big Data. However, several practitioner surveys remark that DIAs potential is still untapped because of very difficult and costly design, quality assessment and continuous refinement. To address the above shortcoming, we propose the use of a UML domain-specific modeling language or profile specifically tailored to support the design, assessment and continuous deployment of DIAs. This article illustrates our DIA-specific profile and outlines its usage in the context of DIA performance engineering and deployment. For DIA performance engineering, we rely on the Apache Hadoop technology, while for DIA deployment, we leverage the TOSCA language. We conclude that the proposed profile offers a powerful language for data-intensive software and systems modeling, quality evaluation and automated deployment of DIAs on private or public clouds

    Model-driven Engineering IDE for Quality Assessment of Data-intensive Applications

    Full text link
    This article introduces a model-driven engineering (MDE) integrated development environment (IDE) for Data-Intensive Cloud Applications (DIA) with iterative quality enhancements. As part of the H2020 DICE project (ICT-9-2014, id 644869), a framework is being constructed and it is composed of a set of tools developed to support a new MDE methodology. One of these tools is the IDE which acts as the front-end of the methodology and plays a pivotal role in integrating the other tools of the framework. The IDE enables designers to produce from the architectural structure of the general application along with their properties and QoS/QoD annotations up to the deployment model. Administrators, quality assurance engineers or software architects may also run and examine the output of the design and analysis tools in addition to the designer in order to assess the DIA quality in an iterative process

    Towards a UML Profile for Data Intensive Applications

    Get PDF
    Data intensive applications that leverage Big Data technologies are rapidly gaining market trend. However, their design and quality assurance are far from satisfying software engineers needs. In fact, a CapGemini research shows that only 13% of organizations have achieved full-scale production for their Big Data implementations. We aim at addressing an early design and a quality evaluation of data intensive applications, being our goal to help software engineers on assessing quality metrics, such as the response time of the application. We address this goal by means of a quality analysis tool-chain. At the core of the tool, we are developing a Profile that converts the Unified Modeling Language into a domain specific modeling language for quality evaluation of data intensive applications

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Quantitative Analysis of Apache Storm Applications: The NewsAsset Case Study

    Get PDF
    The development of Information Systems today faces the era of Big Data. Large volumes of information need to be processed in real-time, for example, for Facebook or Twitter analysis. This paper addresses the redesign of NewsAsset, a commercial product that helps journalists by providing services, which analyzes millions of media items from the social network in real-time. Technologies like Apache Storm can help enormously in this context. We have quantitatively analyzed the new design of NewsAsset to assess whether the introduction of Apache Storm can meet the demanding performance requirements of this media product. Our assessment approach, guided by the Unified Modeling Language (UML), takes advantage, for performance analysis, of the software designs already used for development. In addition, we converted UML into a domain-specific modeling language (DSML) for Apache Storm, thus creating a profile for Storm. Later, we transformed said DSML into an appropriate language for performance evaluation, specifically, stochastic Petri nets. The assessment ended with a successful software design that certainly met the scalability requirements of NewsAsset

    Automated Functional Testing based on the Navigation of Web Applications

    Full text link
    Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i) UML models; ii) Selenium scripts; iii) XML files. We have implemented our approach in an open-source testing framework named Automatic Testing Platform. The validation of this work has been carried out by means of a case study, in which the target is a real invoice management system developed using a model-driven approach.Comment: In Proceedings WWV 2011, arXiv:1108.208

    A Model-Driven Approach for the Formal Verification of Storm-Based Streaming Applications

    Get PDF
    Data-intensive applications (DIAs) based on so-called Big Data technologies are nowadays a common solution adopted by IT companies to face their growing computational needs. The need for highly reliable applications able to handle huge amounts of data and the availability of infrastructures for distributed computing rapidly led industries to develop frameworks for streaming and big-data processing, like Apache Storm and Spark. The definition of methodologies and principles for good software design is, therefore, fundamental to support the development of DIAs. This paper presents an approach for non-functional analysis of DIAs through D-VerT, a tool for the architectural assessment of Storm applications. The verification is based on a translation of Storm topologies into the CLTLoc metric temporal logic. It allows the designer of a Storm application to check for the existence of components that cannot process their workload in a timely manner, typically due to an incorrect design of the topology

    Online Enquiry System for Transportation

    Get PDF
    Our project named ONLINE ENQUIRY SYSTEM FOR TRANSPORTATION deals with the enquiry about transportation for buses, trains, flights. Generally we search for buses or trains or flights in different individual sites. Our system can search buses, trains, flights in single application. Users can search the details from departure to the destination in particular date. It displays the information such as cost, number of seats, journey time, class, distance, transportation number and transportation name and also it displays the routes between the departure and destination
    corecore