
A Model-Driven Approach for the Formal Verification of
Storm-Based Streaming Applications

Francesco Marconi
Politecnico di Milano

Milan, Italy
francesco.marconi@polimi.it

Marcello M. Bersani
Politecnico di Milano

Milan, Italy
marcellomaria.bersani@polimi.it

Matteo Rossi
Politecnico di Milano

Milan, Italy
matteo.rossi@polimi.it

ABSTRACT
Data-intensive applications (DIAs) based on so-called Big
Data technologies are nowadays a common solution adopted
by IT companies to face their growing computational needs.
The need for highly reliable applications able to handle huge
amounts of data and the availability of infrastructures for
distributed computing rapidly led industries to develop frame-
works for streaming and big-data processing, like Apache
Storm and Spark. The definition of methodologies and prin-
ciples for good software design is, therefore, fundamental
to support the development of DIAs. This paper presents
an approach for non-functional analysis of DIAs through D-
VerT, a tool for the architectural assessment of Storm appli-
cations. The verification is based on a translation of Storm
topologies into the CLTLoc metric temporal logic. It allows
the designer of a Storm application to check for the exis-
tence of components that cannot process their workload in
a timely manner, typically due to an incorrect design of the
topology.

CCS Concepts
•Theory of computation → Verification by model check-
ing; •Software and its engineering→Model-driven soft-
ware engineering;

Keywords
Formal Verification; Apache Storm; MDE; Data-intensive
Applications; Temporal Logic

1. INTRODUCTION
Data-intensive applications (DIAs) are computational sys-
tems that process, in a relative small amount of time, huge
amounts of diversified information usually produced by data
sources with high throughput. Some of the most popu-
lar companies nowadays—e. g., Twitter (www.twitter.com),
Groupon (www.groupon.com), Spotify (www.spotify.com),
etc.—make large use of DIAs to process data gathered from
millions of users.
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DIAs constitute a significant asset for the production of
large-scale software, and have been drawing the attention
of both academia and industry. The creation of frameworks
that support designers over the entire life-cycle (design, de-
velopment, testing, deployment, maintenance) of DIAs is of
crucial importance, and constitutes a key research challenge
in this area. Topics such as techniques and tools for qual-
ity assessment, architecture enhancement, agile delivery and
continuous testing of DIAs are targeted by ongoing research
projects like, for instance, the DICE European project [8].

The design approach envisioned by DICE is founded on
model-driven principles and can be summarized as follows.
The design of an application is decomposed into three dis-
tinct and consecutive phases, each one associated with a
profiled UML diagram. Each phase focuses on a specific
aspect of the design and represents a refinement of the pre-
vious one that has to be validated before starting the new
refinement step. If design flaws are detected, designers can
either change the current model, or modify the one built
in the previous step, then redo the refinement. The design
process starts from a conceptual model of the application,
called Platform-Independent Model (PIM); this is refined, in
the second step, into the so-called Platform-Specific Model
(PSM), which provides the architectural schema of the ap-
plication based on a specific (data-intensive) technology; fi-
nally, in the last step, the architectural model is refined to
obtain a deployment model.

Nowadays, the frameworks promoting the development of
DIA can be considered mature technologies. This fact is
witnessed by the spread and the popularity of streaming and
data-mining industrial applications in the IT market. After
decades of research and industrial development, however,
most of the frameworks lack tools for the analysis of the
applications at design time. Nonetheless, they commonly
are equipped with monitoring platforms that allow design-
ers to manually inspect the running applications by means
of statistics based on metrics measuring the processing time,
the latency of the application, the throughput of the nodes
and so on. We approach the assessment of DIAs by apply-
ing formal verification to the architectural models described
through (metric) temporal logic. The goal of the analysis is
to determine, at design time and through automated tech-
niques, whether the behavior entailed by the architecture
of the application conforms to specific properties over time.
The properties that an application should satisfy typically
depend on the technology adopted to implement the appli-
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cation. For instance, we employed a logic-based modeling
technique for the analysis of DIA in [14] and in [13].

Most of the available data-intensive frameworks allow de-
signers to specify the architecture of DIAs as a directed
graph whose nodes are computational resources which carry
out specific operations. The semantics underlying a graph,
which reflects the runtime behavior of the application, is de-
termined by the target technology (e. g., the same graph has
two different interpretations in case we adopt a streaming
or a batch technology). In this paper, we consider Apache
Storm [1], a popular technology for stream-based applica-
tions. The architecture of a Storm application is defined by
means of a topology—i. e., a directed graph—where nodes
are of two kinds: computational nodes, which implement
the logic of the application by elaborating information and
producing an outcome; and input nodes, which bring infor-
mation into the application from its environment.

Various are the resources on the web that point out crite-
ria guiding the design of Storm topologies, such as [4]. In
most of the cases, the designers can follow guidelines [16, 4]
that facilitate the analysis of the application by using the
statistics that are available from the monitoring platform.
To the best of the authors’ knowledge, however, there are
no formal techniques for the analysis of temporal properties
at design-time.

This paper presents a different perspective. First, the model-
driven approach fostered by the DICE workflow is conducted
by means of a simple application, which is developed through
an iterative refinement process. The complete verification
workflow of the architectural model is carried out according
to the concepts included in the DICE UML profile [10] and
the validation of the topology is done through the analysis
performed by D-VerT [2], the DICE tool that allows the veri-
fication of Storm topologies at design-time. We also focus on
all the necessary transformations needed for translating the
UML diagram of the architecture of the DIA into a formula
of the CLTLoc metric temporal logic [7], which is solved
by D-VerT to validate the Storm architecture represented
by the UML model. Finally, we presents the verification
tool, which is the component implementing the transforma-
tions. Furthermore, we introduce an industrial use case that
is provided by one of the partner in the DICE consortium
and we use it to validate our verification approach. We set
up an experiment to compare the result obtained with D-
VerT and the behavior of the application at runtime. The
real application has been abstracted by means of a topology
characterized by the same non-functional properties, which
has been implemented using stub components that mimic
the behavior of the nodes of the real application. Then,
through the monitoring platform, the topology has been an-
alyzed and the resulting behavior has been compared with
the D-VerT outcome.

The paper is structured as follows: Section 2 presents some
background notions on Apache Storm and briefly recaps our
approach to the modeling of Storm topologies with temporal
logic introduced in [14]. Section 3 introduces the methodol-
ogy for the verification of Storm topologies based on formal
validation of refined UML models. Section 4 describes the
structure of D-VerT and the transformations needed for en-
abling the verification of architectural models. Section 5

Figure 1: Example of Storm topology.

shows the application of the methodology through and ex-
ample of Storm application which, at the end, undergoes
verification with D-VerT. Section 6 presents another use case
for the tool and addresses the validation of the verification
results by monitoring the topology. Section 7 briefly dis-
cusses some related works, and Sect. 8 concludes.

2. BACKGROUND

2.1 Apache Storm
Apache Storm [1] is a stream processing system, developed
and open sourced by Twitter in 2012, allowing real-time pro-
cessing of large-scale streaming data on horizontally scalable
systems through a parallel and distributed computation.

The computational model of Storm applications is the Storm
topology, i. e., a directed graph whose nodes realize the op-
erations performed over the data flowing through the ap-
plication and whose edges indicate how such operations are
combined. Data is encoded into streams that are infinite
sequences of structured messages, also named tuples, which
are processed by the application.

A topology node set consists of spouts and bolts (in the fol-
lowing also referred to as topology components). Spouts are
stream sources which usually get data from external systems,
such as queuing brokers (e. g., Kafka, RabbitMQ, Kestrel),
or from other data sources (e. g., Twitter Streaming APIs),
whereas bolts transform the incoming data streams into new
output streams to be processed by the connected bolts. Con-
nections are statically defined at design time by the subscrip-
tion of the bolts to other spouts or bolts. Fig. 1 shows an
example of Storm topology that will be used in Sect. 5.

Storm is capable of guaranteeing the so-called“at least once”
message processing. Reliable spouts keep track of all the tu-
ples they emit, and if one of them fails to be processed by
the entire topology within a certain timeout, then the spout
re-emits it into the topology. When message processing is
“best-effort”, instead, (unreliable) spouts emit each tuple
only once, without checking for the successful completion of
the processing. Bolts usually perform operations, such as fil-
tering, join, functions, database interaction, which are com-
bined through the topology to perform complex transforma-
tions. The Java interfaces defining a bolt include the exe-

cute() method that implements its functionality; it reads
the input tuples, processes the data, and emits (via the
emit() method) the transformed tuples on the output streams.
When the spouts are reliable, bolts have to acknowledge the
successful or failed processing of each tuple at the end of the



execution.

Storm is designed to be executed on distributed clusters and
leverage their computational power. A deployed topology
is composed of one master node and several worker nodes.
Each worker node instantiates one or more worker processes
to enable the execution of the functionalities implemented
by spouts and bolts belonging to the same topology. Each
worker process runs a JVM and spawns therein one or more
executors (i.e. threads). Executors run one or more tasks
which, in turn, execute either a spout or a bolt.

Running a topology requires the definition of a number of
parameters, among which:

• the number of executors running in parallel each com-
ponent, either spout or bolt (i.e., the parallelism asso-
ciated with the execution of the component) and

• the total number of tasks over those executors.

Since each executor corresponds to a single thread, multiple
tasks run serially on the same executor, though the default
option is one task per executor.

Communication among workers and executors is managed
through a multi-level queuing system. Each executor has
its own input queue and output queue. Tuples are read
from the input queue by the thread handling the spout/bolt
logic; afterwards, when they are emitted, they are put into
the output queue and later moved to the worker’s trans-
fer queue by means of a send thread running within the
executor. Every worker runs a Receive thread and a Send
thread. The former listens for incoming tuples appended in
a worker’s receive queue and, based on the received message
and the nodes configuration, forwards them to the appro-
priate executors’ input queue; the latter, instead, gets the
tuples from the executors’ output queue, puts them in a
worker’s transfer queue, and forwards them either to other
workers or to other executors in the same worker. Fig. 2
depicts the internal structure of a worker queueing system
and shows the executor input and output queues.

Figure 2: Queueing system of a worker process.

A common issue of distributed applications is caused by bot-
tleneck nodes. In Storm applications, this criticality can
take place when some executors of the topology work “at
capacity”. This term refers to a metric of great interest for
software engineers as the designers consider the capacity of

bolts to evaluate the topology performance before the de-
ployment of the application. The capacity of a bolt [1] is
calculated by the Storm monitoring service and it is defined
as the percentage of the time that the bolt expends in pro-
cessing the incoming tuples, with respect to a given time
interval where the estimation is calculated. This value can
be calculated for every bolt of the topology by means of
Formula (1), using the following metric values:

nexecuted : it is the total number of incoming tuples that
have been processed by a bolt in the last T millisecs.

latency : it is the average time that a tuple spent in the
execute() method of the bolt in the last T millisecs.

Tcapacity : total time to consider for estimating the capacity
of the bolt, that is by default set to 10 minutes.

The capacity of a bolt is then defined as:

nexecuted · latency

Tcapacity
(1)

A bolt with capacity close to 1 spends most of the time in
processing the input, being characterized by a very small
idleness. As remarked in various technical on-line resources
about Storm performance, high capacity values should be
prevented by adopting countermeasures that diminish the
values when they are close to 1. In such a situation, a topol-
ogy might fail the processing of the incoming data as the
receive queue of the executors, running a node working “at
capacity”, might grow in size and reach the maximum limit.
Therefore, new tuples that cannot be appended in the queue
are irremediably lost, unless the expensive reliable process-
ing is activated. The common practice to address this issue
is to increase the parallelism of the bolts (i.e., the number of
executors assigned to it) or the number of tasks that are in-
stantiated in their executors. More refined actions can also
be realized and usually employ accurate information that
are collected by profiling the application [16].

2.2 Modeling Storm topologies
Our verification approach is founded on a temporal logic
model that represents the computation of Storm topologies.
In particular, the model is designed to discover unwanted
behaviors of running topologies. To this end, it is specifically
devised to be representative of the application runtime.

The definition of the model required first the identification
of malfunctions of the application that software engineers
designing Storm topologies consider to be critical at run-
time. We identified some of the aspects that might cause
such malfunctions and we focused on one of them, which
is related to the bottleneck analysis of nodes mentioned in
Sect. 2.1. Therefore, we defined our model in order to allow
the analysis of the existence of bolts that would saturate
their capacity as they cannot process the incoming stream
of tuples on time, thus causing a monotonic growth of the
size of their queues. The model of a topology captures how
the timing parameters of its components—such as the de-
lays between two consecutive spout events inputting tuples
in the topology and the processing time of tuples for each
bolt—affect the size of the bolts’ queue.



The relevant aspects of the computation, such as the func-
tionality that is implemented in every method execute(),
are reflected in the modeling by means of an appropriate
behavioral abstraction. For instance, emitting a tuple and
storing it into a queue is modeled through an emit event
that increments the size of the target queue. The behavior
of the relevant features and parameters of spouts and bolts
is extracted by reverse-engineering the Java interfaces of the
Storm API.

Furthermore, some suitable assumptions are considered to
generate models that can be practically managed by state-
of-the-art formal verification tools in a reasonable amount
of time.

• Deployment details, such as the number of worker nodes
and the features of the (possibly) underlying cluster
are abstracted away; topologies are assumed to run on
a single worker process and each executor runs a single
task, which is the default Storm configuration of the
runtime.

• Each bolt has a single receive queue for all its paral-
lel instances and no sending queue, while the workers’
queues are not represented (single-worker scenario).
For generality, all queues have unbounded size and the
current number of tuples in a queue is represented by
means of a positive integer value.

• The contents of tuples is not modeled and, since tuples
are all assumed to have the same size, the size of queues
is represented by the number of tuples they contain.

• The external sources of information abstracted by the
spouts are not represented, since they are outside of
the perimeter of the application. So, their queues are
not represented.

• For each component, the duration of each operation
or the permanence in a given state has a minimum and
a maximum time.

The computation of Storm topologies is captured through a
set of formulae written in the CLTLoc metric temporal logic
[7] augmented with counters, which are used to represent the
size of bolts’ queues during the computation. CLTLoc [7] is a
decidable extension of LTL where formulae are defined over
a finite set of atomic propositions and a set of dense variables
over R≥0 representing clocks. For instance, a possible atomic
formula over clock x is x < 4. Similarly to TA, a clock x
measures the time elapsed since the last reset, that occurs
when x = 0. The interpretation of clocks is defined through
a clock valuation assigning, for every time position N, a real
value to each clock x in the formula. The semantics of time
adopted is strict, namely the value of a clock must strictly
increase in two adjacent time positions, unless it is reset.

The complete description of the formal model of a topol-
ogy can be found in [5]. It consists of four parts, which
represent: (i) the evolution of the state of the nodes; (ii)
the behavior of the queues; (iii) timing constraints; (iv) fail-
ures. [14], instead, presents some of the technical details of
the adopted decision procedure, which is validated through
some experimental results.

The behavior of a bolt is the most relevant part of the topol-
ogy model. A bolt can alternatively be in one of the follow-
ing states: process, idle or failure. If a bolt is idle and its
queue is not empty, then it can start processing the tuples
stored therein. The Storm supervisor is responsible for the
activation of the threads running the method execute() on
a selected tuple. In our model, this is represented through an
instantaneous take action that models the action of remov-
ing tuples from the bolt’s queue and marks the beginning of
the processing. The execution of method execute() is rep-
resented by the state execute, which is part of macro-state
process, together with the actions take, that delimits the be-
ginning of the processing phase, and emit that occurs at the
end of it. In our model, we indicate the latency of a bolt
with α. Once the execution is completed, the bolt emits
output tuples with an instantaneous action corresponding
to the emit state. Bolts may fail and failures may occur at
any moment; upon a bolt failure, the system goes to the fail
state. If no failure occurs, after an emit a bolt goes to idle,
where it stays until it reads new tuples.

To give a flavor of the formal model underlying our verifi-
cation approach, we introduce a few examples of CLTLoc
formulae. Formulae (2)-(3) capture how the number of ele-
ments in the queue of bolt j (qj) is updated whenever tu-
ples are enqueued (addj) or dequeued (takej). They use
N-valued discrete counters to represent the amounts of tu-
ples exchanged in the topology. For instance, qi is the size
of queue of bolt j. Term Xqi represents the value of qi
in the next position of time. Every time the component
j emits (emitj holds), the queues of all bolts subscribing
to j—i. e., those which are targets of arcs outgoing from j
in the topology—receive remitj tuples—i. e., the variables qi
representing the occupancy level of those queues are incre-
mented by remitj . When multiple components subscribed
by a bolt emit tuples simultaneously, the increment on its
queue is equal to the sum of all the tuples emitted (the value
of raddj in Formulae (2)-(3)). Dually, when takej holds, the
occupancy level qj is decremented by rprocessj (number of tu-
ples read by bolt j). Proposition addj is true when at least
one of the components subscribed by j is emitting, whereas
startFailj is true in the first instant of a failure state.

addj ∧ ¬takej ∧ ¬startFailj ⇒ (Xqj = qj + raddj ) (2)

takej ⇒ (Xqj = qj + raddj − rprocessj ) (3)

To measure the duration of each state and to impose timing
constraints between events, we use a set of dense-time CLT-
Loc clock variables for each component of the topology. For
example, Formula (4) imposes that when emit occurs, the
duration of the current processing phase is between α − ε
and α+ ε, where ε� α is a positive constant that captures
possible (small) variations in the duration of the processing.

process ∧ emit ⇒ (tphase ≥ α− ε) ∧ (tphase ≤ α+ ε) (4)

The formal model includes a number of parameters, such as
α introduced above, capturing the features of the topology,
which can be configured at design time. In addition to α,
other parameters are, for bolts, a coefficient σ expressing the
kind of operation performed by the bolt in terms of quantity
of output tuples emitted given an input tuple, and also the
minimum and maximum time to failure. Spouts, instead,



Figure 3: Iterative refinement process supported
by the DICE framework.

are characterized by the average number of tuples emitted
per time unit. Both spouts and bolts are also characterized
by their level of parallelism, corresponding to the number of
executors for the component.

3. ANALYSIS OF STORM TOPOLOGIES
D-VerT allows designers to validate temporal aspects of DIAs
by means of a logic-based formal verification approach out-
lined in Section 2.2. The implementation of D-VerT cur-
rently supports the analysis of Storm topologies and Spark
execution DAGs [6], but it can be easily extended to deal
with other big-data technologies if and when their compu-
tational model is formalized through CLTLoc formulae.

D-VerT is part of a more complex design process which con-
forms to the principles of model-driven software engineering
pursued by the DICE methodology. As illustrated in Fig. 3,
the designer defines the application by means of domain-
specific models with an iterative approach consisting of three
steps: (i) application design, (ii) design evaluation and (iii)
monitoring of a running deployed application. D-VerT is sit-
uated at the second level of the design workflow and enables
the refinement of the architectural design of the application
depending on the outcome of the formal analysis. The input
of D-VerT is an annotated UML (class) diagram which spec-
ifies the architecture, i.e., the topology, of the application.
In case of an incorrect timing design, the outcome of D-VerT
consists of a possible execution of the topology causing an
undesired accumulation of tuples in some bolts. In such a
case, the designer can refine the application architecture by
changing the values of some parameters of the UML dia-
gram and then redo the evaluation until (possibly) all flaws
affecting the model are removed. A different scenario, which
also entails a design refinement, might occur when some pa-
rameter values that are measured on a running application
differ from the values used for verification at design time. In
such a situation, monitored data obtained from the deployed
application can be exploited to update the model, which can
then be newly verified.

Relying on UML profiles for modeling is a common practice
in model-driven development as it allows for the creation of
domain-specific languages by extending or restricting UML
to fit a specific domain. A UML Profile is made of a set
of stereotypes, tags, constraints and meta-models that allow
the designer to represent artifacts in a specific domain. A

Figure 4: The main steps of D-VerT workflow.

stereotype is a meta-concept which is used to categorize an
element in a model (for example, container) with specific
notions belonging to a domain.

As shown in Fig. 4, at the starting point of the workflow the
user creates an annotated UML model describing the rele-
vant technological aspects of the architecture of a DIA. The
UML model includes suitable design abstractions, captur-
ing specific data-intensive technologies—Storm in our case—
that are adopted for implementing the architecture of an
application. The diagram, called DICE Technology Spe-
cific Model (DTSM), is at the PSM level (see Sect. 1) in
the model-driven approach pursued by DICE. Specifically,
in a DTSM diagram, a stereotype classifies an element of
an application with aspects related to a specific technology.
A DTSM diagram includes generic concepts that fit many
data-intensive frameworks, such as ComputationNode, Stor-
ageNode or SourceNode, and specific ones, depending on the
selected technology. In the case of Storm, the relevant fea-
tures and aspects defining a Storm topology constitute the
meta-model for designing Storm applications. Some of them,
that are used in Sect. 4, are Topology, Spout, Bolt and
TopologyConfigurations. For a comprehensive description
of the concepts available in DTSM diagrams see [10].

DTSM diagrams for Storm include all the values of the pa-
rameters that are useful to carry out the analysis of a topol-
ogy. As depicted in Fig. 4, verification of DTSM models is
done through the automatic translation of the diagrams into
a set of CLTLoc formulae, which are then analyzed by the
Zot bounded satisfiability checker [3] using the technique
presented in [14]. More precisely, Zot is fed the CLTLoc for-
mulae capturing the application under design and the prop-
erty to be checked concerning the unbounded growth of the
queues of interest.

The tool produces one of two responses: (i) a trace of the
modeled Storm topology—a counterexample—corresponding
to an execution of the application in which one of the queues
grows indefinitely—in this case, the set of formulae is satis-
fiable (SAT); or (ii) the notification that the set of formu-
lae is unsatisfiable (UNSAT). In the latter case, since the
language used to formalize Storm topologies is in general
undecidable, we cannot conclude definitively that there is
no execution of the application such that the queues grow
indefinitely, but only that, within the bounds chosen for the
search of counterexamples, none was found. Still, an UN-
SAT result increases our confidence that no major design
flaws are present in the architecture of the Storm topology
for what concerns its ability to process data in a timely man-
ner.



Figure 5: D-VerT workflow mapped onto the
client-server architecture of the tool.

4. TOOL DESCRIPTION
This section outlines the architecture of the D-VerT tool,
the transformation enabling the verification process and the
kind of analysis currently supported by the tool.

4.1 Tool Architecture
As shown in Fig. 5, D-VerT is structured as a client-server
application. The client component is an Eclipse plug-in, and
is part of the DICE IDE. It allows users to define the de-
sign of the DIA under development, then, after providing
some additional configuration information, to launch veri-
fication tasks and to retrieve their outcomes. The server
component consists in a RESTful web application written
in Python. The D-VerT server exposes APIs to launch veri-
fication tasks and to obtain information about their status.
To simplify the setup and deployment steps, the D-VerT
server is available as a Docker1 container. The client-server
architecture decouples the application design phase from the
rather computationally-intensive verification phase. Based
on the needs of the user, the D-VerT server can be instanti-
ated either on the local machine or on a remote server.

4.2 Topology creation
The design of a DIA is specified through the DICE IDE,
which is based on the Papyrus tool. As mentioned above,
Storm topologies are described as DICE-profiled UML Class
diagrams. Each computational node of the application is de-
fined by introducing a class tagged with a stereotype speci-
fying whether the node is a spout or a bolt. Depending on
the stereotype applied, the designer defines the values for all
the necessary parameters described in Sect. 2. Subscriptions
(i. e., connections) of bolts to other components are modeled
as associations between the corresponding classes.

4.3 Transformations
The verification process is made possible by a two-step trans-
formation applied on the DICE-profiled UML models to ob-
tain the corresponding set of CLTLoc formulae.

The first step of the transformation is performed in the D-
VerT client by the UML2JSON module, which extracts from
the DICE-profiled UML model all parameters that are rele-
vant for the verification. These parameters are then serial-
ized into a JSON object, which is used to invoke the server

1 https://hub.docker.com/r/deibpolimi/d-vert-server

component. The extraction of the relevant features is done
by suitably navigating the UML file. DIA components and
their parameters are detected thanks to their being anno-
tated with proper stereotypes from the DICE profile.

The second step takes place in the D-VerT server, which re-
ceives the request from the client, produces the correspond-
ing formal model and feeds it to the underlying Zot [3] tool.
More precisely, the JSON2MC module, based on the con-
tents of the JSON object included in the request, generates
the temporal logic model using a templating mechanism.

4.4 Analysis
In its current stage of development, D-VerT provides sup-
port for the analysis of the boundedness of bolts’ queues.
Through the run configuration dialog box of the tool (see
Fig. 6) the designer can specify the bolts of interest, the
depth of the search over which the verification has to be
performed (the“time bound”, which corresponds to the max-
imum length of the trace produced) and the Zot plug-in to
be used. The analysis allows for the detection of possible
runs of the system leading to an unbounded growth in the
size of at least one of the aforementioned bolts’ queues. This
corresponds to the presence in the topology of at least one
bolt that is not able to manage the incoming flow of mes-
sages in a timely manner. In this case the tool provides
as output to the user the trace witnessing the existence of
such a run of the system—i. e., the counterexample violating
the boundedness property. The trace is returned to the user
both in a textual format (i. e., the bare output of Zot) and in
a graphical format, in order to provide a more user-friendly
visual hint about the system execution. Figure 10 shows an
example of such output trace, returned by the tool for the
use case of Sect. 5. It represents the evolution of the num-
ber of tuples in the queue over time. The trace is composed
by a prefix and a suffix: the latter, highlighted by the gray
background, captures the growing trend of the queue size,
as it corresponds to a series of operations in the system that
can be repeated infinitely many times. When no trace is
detected, the result is UNSAT.

5. D-VERT WORKFLOW IN ACTION
In this section we illustrate the usage flow of D-VerT for the
iterative refinement of a Storm topology. The use case is
taken from the open source project StormCrawler.2 Suppose
we want to create a web crawler application to efficiently
fetch, parse and index web resources of our interest. Given
the dynamic nature of the web, this kind of task can be
formulated as a streaming problem, where the input consists
in a continuous stream of URLs that need to be processed by
the streaming application with low latency, and the output
is represented by the resulting indexes.

We start by modeling the application at the PIM level. In
this case, the model simply includes a source node, a com-
putation node and a storage node, as depicted in Fig. 7. We
decide to use a Kafka queue as source node, a Storm topol-
ogy as computation node and ElasticSearch as storage node.

Since we are interested in analyzing the Storm topology,

2https://github.com/DigitalPebble/storm-crawler

https://hub.docker.com/r/deibpolimi/d-vert-server
https://github.com/DigitalPebble/storm-crawler


Figure 6: Run configuration view.

Figure 7: PIM of the web crawler application.

we focus on the computation node and consider the source
node and the target storage node as “black boxes”. At the
PSM level we insert more technology-related aspects, such
as, in the case of Storm, the topology structure and a se-
ries of non-functional characteristics. Figure 8 shows the
PSM (DICE-profiled UML diagram) of the initial design of
the topology. The configuration parameters are represented
as UML comments for illustrative purposes. Notice that
associations between components have the opposite direc-
tion with respect to the data flow among them, since they
indicate the subscription of bolts to the associated compo-
nents’ streams. The diagram includes one spout in charge
of fetching the input flow of URLs from Kafka and three
bolts performing various steps of the web crawling process.
The partitioner bolt partitions the incoming URLs, while
the crawler bolt performs many operations such as resource
fetching, metadata parsing and content indexing. The status
bolt at the end of the chain indexes the URL, metadata and
its status to a specific “status” Elasticsearch index. Each
of these topology components can be executed by an arbi-
trary number of parallel threads, and is characterized by the

Kafka Queue
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STORM TOPOLOGY

ElasticSearch
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out

Figure 8: Initial PSM of the web crawler topology.

(average) execution time (time needed to perform its task)
and by the (average) number of tuples emitted with respect
to the number of tuples received as input. These aspects
are specified as parameters in the UML class diagram. The
formal analysis on the initial topology design helped us to
detect an unbounded increase in the queue of the crawler
bolt. This outcome from the tool led us to review the topol-
ogy structure, and to decide for the decomposition of the
crawler bolt in a series of bolts, each of them performing
a subtask of the original bolt (fetch, sitemap, parse and in-
dex). The refined version of the topology, shown in Fig. 9,
aims at lightening the load on the core crawling phase by
pipelining the main operations and by directly updating the
status bolt with partial results computed by the new bolts.

After the refactoring the tool revealed another unwanted
run of the system, this time showing a growing trend in the
queue of the status bolt (Fig. 10). This bolt, subscribing
to the streams of the four newly-created bolts, needs a fur-
ther refinement to avoid excessive loads in its input buffer.
By increasing the parallelism level of the status bolt to 4,
D-VerT was not able to detect any counterexample after
tens of hours of execution, and returned an UNSAT result.
Since, as already remarked, an UNSAT result would not be
a guarantee of absence of counterexamples, in this work we
focused on the detection of potential problems (SAT results)
and their validation, as described in Sect. 6. Execution times
for the verification vary significantly depending on the topol-
ogy configuration, ranging from the 50 seconds of the first
analysis (Fig. 8) to the many hours of the third analysis.3

3Experimental analysis carried out on commodity hardware
(MacBook Air running MacOSX 10.11.4. with Intel i7 1.7
GHz, 8 GB 1600 MHz DDR3 RAM; SMT solver used by Zot
was z3 v.4.5.0).
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Figure 9: Refinement of the web crawler Storm
topology PSM.

6. VALIDATION
In this section, we discuss the validation of our approach
with an additional use case that will be analyzed by the
D-VerT. The use case consists in a Storm application (We-
bAnalysis topology) which has been developed by an indus-
trial partner in the DICE project. The application, similarly
to the use case presented in Sect. 5, is designed to analyze a
series of web resources in order to find, extract and catego-
rize media items and articles. As shown in the PSM model
of the topology in Fig. 11, the input data is fetched from a
Redis4 in-memory database by the RedisSpout component
and, after a series of operations performed by the bolts of
the topology, media and articles are then indexed on an in-

4https://redis.io/

Figure 10: Graphical output trace of the status
bolt returned by D-VerT. The black solid line

represents the number of elements in the input
buffer.
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Figure 11: PSM model of the WebAnalysis
topology

stance of the open-source search platform Apache Solr5 by
the SolrBolt component.

Our analysis spotted a potential problem in the input buffer
of the UrlCrawlDeciderBolt component, as D-VerT returned
a SAT result and provided an output trace showing an un-
bounded increase in the queue of the bolt (Fig. 12).

In order to validate the results, since the application code
is closed-source, we have designed a topology with the same
structure of the topology implementing the application and
which was able to simulate the temporal characteristics of
the WebAnalysis topology (in terms of α, σ, parallelism,
etc.). We ran the application on commodity hardware and,
during the execution, we collected all the relevant quality
information provided by the Storm platform, such as the
capacity of each bolt (introduced in Sect. 2.1), the complete

5http://lucene.apache.org/solr/

https://redis.io/
http://lucene.apache.org/solr/


Figure 12: Graphical output trace of the
UrlCrawlDeciderBolt returned by D-VerT

latency of the topology and the number of failed tuples due
to timeout. To measure the complete latency of the pro-
cessed tuples, we enabled the acking mechanisms available
in Storm. Through this mechanism, a tuple is marked as
failed after its complete latency exceeds the default thresh-
old of 30 seconds. In other words, if a tuple has not been
processed for more than 30 seconds then the tuple will be
discarded by the topology because it is not valid anymore.

The monitored values showed that capacity of UrlCrawlDe-
ciderBolt was constantly very close to 1, meaning that the
bolt was almost always busy in processing tuples. This be-
havior usually implies that the bolt is not able to manage
the incoming flow of data in a timely manner, negatively
affecting the latency of the entire topology. The presence
of a problem was confirmed by the evolution of the aver-
age complete latency measure, shown in Fig. 13 and Fig. 14.
Each point shown in the graphs is the value of the average
complete latency measured with respect to the last 10 min-
utes. The plot shows a steep increase in the first minutes of
execution, followed by a sharp drop after the average com-
plete latency goes beyond 20 seconds. The same fluctuating
trend is repeated later in time. This behavior appears to
be due to the timeout settings. When the average value of
complete latency gets close to 20 seconds, most of the tu-
ples accumulated in the topology are failed and discarded
due to timeout. After this massive disposal, the deconges-
tion of the input buffers allows the newly emitted tuples to
be completely processed by the topology in less time. How-
ever, because of the bottleneck in the topology, the average
complete latency keeps increasing and then follows the same
trend.

7. RELATED WORKS
Many research works in recent years investigated the usage
of MDE to support the design and the formal verification of
software and embedded systems. [11] presents a systematic
literature review on the formal verification of static software
models. Most of the works make use of UML models, of-
ten enriched with OCL constraints, and only a part of them
is fully supported by a tool implementing the model trans-
formations and the verification process. A number of other
works have used a model-driven approach for the formal
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Figure 13: Average complete latency of the tuples
emitted by RedisSpout of topology in Fig. 11 over

one hour.
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Figure 14: Average complete latency of the tuples
emitted by RedisSpout of topology in Fig. 11 over

four hours.

verification of behavioral models (see, e.g., [9, 12]), with-
out addressing the specificities of DIAs. To the best of our
knowledge, few works try to address the problem of the veri-
fication of DIAs, none of them adopting the MDE approach.
They mainly focus on the verification of properties that de-
pend exclusively on the framework by building ad-hoc mod-
els; for example, [15] verifies data locality, deadlock freedom
and non-termination properties for the Hadoop parallel ar-
chitecture, while [17] verifies the validity of communication
data flows of Hadoop MapReduce. Our work, on the other
hand, aims at allowing for the verification of properties that
depend on the application design.



8. CONCLUSION
In this paper we presented the model-driven approach to
the formal verification of Storm topologies supported by the
D-VerT tool. It allows designers to formally check whether,
given the features of the components of the topology, it is
possible for the queues of some bolts to grow indefinitely,
which entails that incoming tuples will not be processed in
a timely manner.

Future works will focus on enlarging the set of properties
that can be analyzed, on improving the efficiency of the veri-
fication technique and on performing an extensive validation
on cluster infrastructures.
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