
Noname manuscript No.
(will be inserted by the editor)

A UML Profile for the Design, Quality Assessment
and Deployment of Data-intensive Applications

D. Perez-Palacin · J. Merseguer · J.I.
Requeno · M. Guerriero · E. Di Nitto ·
D.A. Tamburri

Received: date / Accepted: date

Abstract Big Data or Data-Intensive applications (DIAs) seek to mine, ma-
nipulate, extract or otherwise exploit the potential intelligence hidden behind
Big Data. However, several practitioner surveys remark that DIAs potential is
still untapped because of very difficult and costly design, quality assessment,
and continuous refinement. To address the above shortcoming, we propose the
use of a UML domain-specific modelling language or profile specifically tailored
to support the design, assessment, and continuous deployment of DIAs. This
article illustrates our DIA-specific profile and outlines its usage in the context
of DIA performance engineering and deployment. For DIA performance engi-
neering, we rely on the Apache Hadoop technology, while for DIA deployment,
we leverage the TOSCA language. We conclude that the proposed profile offers
a powerful language for data-intensive software and systems modelling, quality
evaluation and automated deployment of DIAs on private or public clouds.

Keywords UML · Profile · Data Intensive Applications · Software Design ·
Big Data · Performance Assessment · Model-Driven Deployment · Apache
Hadoop · TOSCA language

D. Perez-Palacin
Department of Computer Science, Linnaeus University (Sweden)
E-mail: diego.perez@lnu.se

J. Merseguer and J.I. Requeno
Departamento de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza (Spain)
E-mail: {jmerse, nrequeno}@unizar.es

M. Guerriero, D.A. Tamburri · E. Di Nitto
Dipartimento di Elettronica, Informazione e Bioingegnieria, Politecnico di Milano (Italy)
E-mail: {michele.guerriero, elisabetta.dinitto, damianandrew.tamburri}@polimi.it

2 D. Perez-Palacin et al.

1 Introduction

The development of data-intensive applications [11] is a branch of data-intensive
computing, an emerging computing paradigm connected to data-intensive sci-
ence [5], which is recognised as a fourth scientific paradigm combining the
previous three, namely empirical science, theoretical science, and computa-
tional science. Data-intensive applications (DIAs) leverage tools and technolo-
gies that handle Big Data. However, a research at Capgemini [15] shows that
only 13% of organizations have achieved full-scale production for their DIA
implementations on Big Data. The reason for this is mainly related to the
technical difficulty of developing effective DIAs, able to actually cope with
the volume, velocity and variety of the data to be handled. Hence, there is
a need for creating languages, methodologies and tools that help increasing
productivity in the development of DIAs by assisting and guiding developers
in the adoption and usage of the many frameworks and architectural concepts
introduced by this new field.

The aim of this paper is to propose a domain-specific modeling language
(DSML) to assist DIA developers in various aspects of the design and the
assessment of DIAs. Our DSML is defined as a UML profile [38], in agreement
with Selic who in [51] states that profiles can be used to define expressive
DSMLs.

The objective of the proposed UML profile is three-fold. First, it provides
guidance for an initial design of the DIA architecture by identifying its main
elements and the roles that they play. Second, the profile enables the quan-
titative assessment of the DIA, with particular focus on performance and re-
liability. Third, the profile enables the automated deployment of the DIA in
public or private clouds.

Inspired by the OMG Model-Driven Architecture [65], the profile is then
conceived at three abstraction levels, that correspond to our view of how the
development of the DIA should evolve for addressing our three objectives.
The first level is called DPIM (DIA Platform Independent Model) and al-
lows designers to define the main architecture of a DIA thus addressing the
aforementioned first objective of the profile. The second level, which we call
DTSM (DIA Technology Specific Model), includes the specifics of the technol-
ogy used to develop the DIA, e.g., Apache Hadoop or Apache Storm. Quality
assessment, which is our second objective, is carried out at DTSM level since
performance and reliability are greatly impacted by the peculiarities of the
underlying platforms. Finally, the third level, which we call DDSM (DIA De-
ployment Specific Model), allows the automatic deployment of the DIA and
the frameworks it exploits in the specific cloud environments that users have
selected. Table 1 provides a summary of the mentioned abstraction levels and
of their goals.

Our profile enhances the state of the art on DIA development and offers
the following benefits.

– Single language. Being a UML profile, our DIA DSML encompasses the
three abstraction levels using a single language. Hence, the DIA profile can

A UML profile for DIA development. 3

Acronym Description Goal
DPIM DIA Platform Independent Model Architecture description
DTSM DIA Technology Specific Model Quality assessment
DDSM DIA Deployment Specific Model Cloud deployment

Table 1 DIA profile abstraction levels

be initially used by DIA developers to better understand the architecture of
the application. Then, in a continuous and iterative manner and following
the three abstraction levels, the same software models are subsequently
reused, i.e., for design, assessment and deployment.

– The profile disengages developers from knowing details of quality assess-
ment, i.e., performance and reliability assessment. The profile pinpoints the
UML model-elements where quality-related information needs to be spec-
ified, e.g., duration of MapReduce operations or definition of performance
metrics. At this regard, it promotes quality assessment of the DIA during
the design of its functionalities. As an example, the simulation tool [61] uses
the DIA profile and automatically computes quality metrics. Such tool has
been used, in Section 8, for validating the profile from the perspective of
its ability to support performance and reliability assessment.

– The profile disengages developers from knowing details on the complex
tasks for continuously deploying the DIA. In fact, the DIA profile defines
the essential layer required for simple UML diagrams to be turned into
fully deployable cloud infrastructure blueprints. This is achieved by devel-
oping model-to-model (M2M) and model-to-text (M2T) transformations,
that transform DDSM level diagrams into deployment scripts written in
TOSCA1. As an example, the DICER [64] tool implements this deployabil-
ity feature, having as input, models annotated with the DIA profile. The
DICER tool has been used, in Section 9, for assessing the ability of the
profile to actually support TOSCA-based deployment.

The rest of the paper is organised as follows. Section 2 motivates and
defines the approach followed for defining the profile. Sections 3, 4 and 5
address the definition of the profile, one section per abstraction level, DPIM,
DTSM and DDSM, respectively. Section 6 summarises the way the profile
can be used in practice and experiments that help to validate the profile.
Section 7 introduces the goals of the evaluation. Sections 8 and 9 present the
actual profile validation from the point of view of performance engineering
and automated deployment. Section 10 explores the related work. Section 11
concludes the paper.

1 TOSCA is a language to specify deployable blueprints in line with the emerging
Infrastructure-as-Code (IasC) paradigm [14].

4 D. Perez-Palacin et al.

2 Motivations and Approach

2.1 DIAs and DIA frameworks

A DIA is a software application acquiring data from some data sources, ma-
nipulating such data and producing some output into some kind of data sink.
The complexity of such applications is in the potentially high number of data
sources from which to acquire data, the potentially low quality of such data,
the typically high frequency with which they are generated, the complexity
of the computation to be executed, the characteristics of data sinks and the
presence of time constraints for the production of the manipulated data. Ad-
dressing such aspects all together is certainly challenging and requires very
experienced teams able to design and develop the system in an appropriate
way, assess the quality of the defined solution, which is, typically, highly dis-
tributed and parallelized, fine tune it, deploy it on the appropriate resources
and continuously monitor and improve it.

Fortunately, thanks to the large interest around DIAs, various frameworks
and architectural models have been developed and provide support to the ar-
chitectural definition of the DIA and to its implementation, see for instance [57,
58,55,54]. However, still there are many aspects that require attention and that
are not fully addressed by the state of the art (see Section 10 for details).

First of all, there is no modeling language that today specifically sup-
ports the design of DIAs. Of course, it is possible to use UML, possibly in
combination with a formalized set of stereotypes, such as the ones offered by
MARTE2 [41,52] and DAM3 [7,6]. However, this does not allow to express in a
simple and direct way particular DIA concepts, nor it accounts for the specific
characteristics of current big data frameworks as execution environments for
DIAs.

Second, DIAs must be highly performant, scalable and reliable to ensure
they can process potentially very large quantities of data. As such, we see the
need for an integrated modeling language and toolset that supports developers
in modeling and assessing DIA quality of service by exploring the effects of
the adoption of different DIA technologies.

Third, deployment of DIAs based on complex distributed frameworks is
complex per se. Also, different deployment solutions have different impacts on
the non-functional characteristics featured by the DIA. As such, the combi-
nation of a modeling and code generation approach to support users in this
phase would help.

2.2 Approach overview

In the context defined above, the aim of our work is to give to DIA development
teams a design language and a toolset that allows them to accomplish the

2 Modeling and Analysis of Real-Time Embedded Systems
3 Dependability Analysis and Modeling

A UML profile for DIA development. 5

activities highlighted in Figure 1. More specifically, thanks to the UML profile-
based language we propose, our user will be able to define, at the conceptual
level we call DPIM, the high level structure of a DIA in terms of data sources
and sinks and computational components. He/she will be able at this point
to run a preliminary QoS analysis to start identifying potential bottlenecks
and critical components for the DIA. After refining and reiterating on these
activities as needed, the user move to the next level of abstraction, the DTSM,
and will identify the specific technologies to be adopted for the DIA. For
instance, he/she will select one of the technologies for data sources, say Apache
Spark [57], a system to support parallel execution of computations in batch
and streaming mode, as the framework for executing the computations, and
will map the high level components to these elements. At this point he/she will
be able to perform a technology-specific QoS analysis that will either convince
him/her of the advantages of the envisaged solution or solicit a change in the
defined components. After having finalized this step, he/she will exploit the
features of the next conceptual level, the DDSM, and will be able to create
the deployment model for the resulting system and generate automatically
the corresponding blueprint ready for deploying all needed technologies and
application level components.

Define the high-level DIA
structure

Map all components on
specific technologies

Define the deployment
model

Perform preliminary
QoS Analysis

Perform technology-
specific QoS Analysis

Generate the deployment
blueprint

satisfactory?[no]

[yes]

satisfactory?[no]

[yes]

Fig. 1 Overview of the proposed approach

The proposed approach is then based on the definition of a proper DIA pro-
file, which offers to its users all linguistic structures to define the relevant in-

6 D. Perez-Palacin et al.

formation associated to a DIA and its underlying technologies, complemented
with an analysis tool and a deployment blueprint generator.

This paper develops and significantly extends the work presented in [23],
where we described the preliminary version of the profile. In [44] we have mod-
eled, still at the DPIM level, an industrial application focusing on tax fraud
detection. In this case, we had to model the main part of the application as
a black box as we did not have, at that time, the proper linguistic tools to
describe its internals. This experience has allowed us to identify some of the
initial requirements for the profile. A fullfledged example of DTSM modeling
and related analysis is, instead, presented in [47,29] where we have shown how
the profile is suitable for capturing the characteristics of Apache Storm [58]
applications. Finally, [22] focuses on DDSM modeling and on the generation
of the corresponding blueprint. All in all, main contributions of this paper are
the presentation of the complete and consolidated DIA profile that takes into
account the main characteristics of DIAs and of the most used technologies
adopted for their development, as well as the definition of the methodological
steps followed to develop such profile and also methodological step for practi-
tioners to develop models at DTSM and DDSM levels. We also show, through
examples, how it can be used within the context of the workflow of Figure 1.

2.3 Approach for the design and validation of the DIA profile

Our goal is to produce a technically correct high-quality UML profile. Hence,
we followed design principles and guidelines proposed by Selic [51] and La-
garde [38], which define the state of the art in UML profile construction. We
then adopted a systematic and iterative approach applied in three main steps:
i) definition of a DIA domain model, ii) design of the DIA profile and iii) DIA
profile validation. Figure 2 sketches this workflow.

Design of the DIA profile DIA profile validation

all modeling needs
satisfied?

[no]

Definition of a DIA
domain model

Sects. 7, 8 and 9, App.E

[yes]

Subsects. 3.2, 4.2 and 5.2Subsects. 3.1, 4.1 and 5.1

Fig. 2 Workflow for defining the DIA profile

Definition of a DIA domain model. We started studying the concepts behind
the three aforementioned abstraction levels summarized in Table 1. The idea
was to initially create an independent domain model for each level, that should
exactly and only represent those needs for addressing the goal of the corre-
sponding level.

A UML profile for DIA development. 7

– For the DPIM level, we revised the work in [13] for representing archi-
tecture concepts and the works surveyed by [11] for the concepts in DIA.
Subsection 3.1 reports our work in this sub-step.

– For the DTSM level, we studied and then conceptualized five of the most
well-known DIA technologies: Apache Spark [57], Apache Storm [58], Apache
Hadoop [55], Apache Cassandra [54] and Apache Tez [59]. In several re-
finement stages we isolated the core concepts reused by many of these
technologies. Being quality assessment the main target of this level, we
envisioned the opportunity of reusing other UML profiles already defined
in the literature for this purpose. In particular, we leveraged on MARTE
and DAM UML profiles, well established in literature and practice. Sub-
section 4.1 reports our work in this sub-step.

– For the DDSM level, we relied on our previous experience developing the
MODACloudsML [20] language for cloud infrastructure deployment. This
language provided us with the fundamental concepts for cloud infrastruc-
ture provisioning required in this level of abstraction. In addition to the
details offered by MODACloudsML, we studied the particular needs on
deployment for each of the aforementioned technologies supported by the
DIA profile. Finally, we merged all these concepts to define the DDSM
domain model. Subsection 5.1 reports our work in this sub-step.

Iteratively, while we were constructing and reviewing the domain mod-
els, we advanced on the understanding of their relationships. Figure 3 shows
that we achieved a simple integration result, where DTSM is supported by
the definition of concepts in the DPIM, while the DDSM elaborates over the
definitions on the two previous ones.

Fig. 3 DIA domain model relationships

Design of the DIA profile. Once a domain model has been defined, then the
process of mapping it to a UML profile can be carried out, this step is known
as the design of the profile. A UML profile is made of a library4, that defines

4 The DIA library is described in the technical Appendix B.

8 D. Perez-Palacin et al.

data types, and a set of UML extensions. The UML extensions provide the
domain expert with a set of stereotypes (and their corresponding tags) to be
applied at model specification level. Hence, the usage of the stereotypes will
represent the DIA view in a concrete UML model.

For designing each of the three profiles, DPIM, DTSM and DDSM, we have
followed suggestions and patterns proposed in [38]. This way we have identified
a small yet sufficient set of stereotypes to be actually used in practical modeling
situations. This is an iterative process that comprises three steps.

In a first step, each class in the domain model is candidate for becoming
a stereotype. Classes are examined, together with its attributes, associations
and constraints, and are characterized as abstract, firm, uncertain or paramet-
ric. This criterion aims to clearly characterize the role of each concept in the
domain model. Abstract classes refer to accessory concepts then they do not
map into stereotypes. Firm classes can be either transformed into stereotypes
or datatypes. Uncertain classes sort indeterminate concepts, and parametric
classes categorize concepts that can change depending on the problem do-
main. In a second step, for the DPIM and DTSM levels, we also need to
decide whether each stereotype should inherit from some MARTE or DAM
stereotype or not. Such inheritance is useful to enable the possibility of ex-
ploiting and extending the analysis and simulation tools specifically developed
for the MARTE and DAM profiles. In a third step, for each stereotype, we
need to search in the UML standard for suitable extensions, i.e., the actual
UML meta-classes to be extended by the stereotype, as suggested in [51]. For
those stereotypes, that in the second step were decided to be inherited from
MARTE or DAM, the UML meta-classes that extend the parents also will
extend the children.

DIA profile validation. The final step was to conduct an exhaustive validation
of each of the profiles. Validation of initial versions of the DPIM, DTSM and
DDSM profiles has been performed by modeling the architecture of two in-
dustrial case studies as it was explained at the end of Section 2.2. A complete
validation is reported in this paper in Sections 8 and 9 with reference to the
WikiStats [69] problem example. This is a DIA computing simple statistics on
contents published on Wikimedia. Finally, a validation in terms of the usability
of the profile is carried out in Appendix E.

3 DIA profile definition: DPIM

3.1 DPIM domain model

The domain model for this level of abstraction stems from several sources.
Firstly, we carefully reviewed the abstract concepts required for modeling,
at the highest level of abstraction possible, two widely known middleware for
data intensive computing, namely Apache Hadoop [55] and Apache Storm [58].

A UML profile for DIA development. 9

Secondly, we reviewed and systematically compared our solution with do-
main models of data-intensive middleware available from related work [10,50].
Thirdly, we enhanced such model by reviewing literature, surveyed by [11],
specifically dedicated to modeling concepts of DIA. Fourthly, we augmented
the model and fitted it with necessary architecture properties following the
typical architecture description and definitions in [13]. Consequently, we com-
pounded our first solution draft gathering missing constructs and concepts
from several sources of the related work and from our experience with partic-
ular DIA technologies.

As a result of applying the above process iteratively, we obtained a quasi-
final version of the DPIM domain model. Obviously, the validation of the
profile has allowed us to discover a few modeling issues that we have fixed in
an iterative process, as indicated in Figure 2. Also, our experience with other
new technologies, e.g., Apache Spark [57] or Apache Tez [59], has contributed
to a small improvement of the model. Figure 4 depicts the final version of the
DPIM domain model. The DPIM provides the following constructs:

– DIA - this simply represents a generic DIA, which is essentially a set of
DIAElements. Since the DPIM provides the highest level of abstraction, at
this level it is possible to specify the existence of multiple DIAs.

– DIAElement - these are generic component nodes which represent the ar-
chitecture elements of the DIA, to be further specified into simple or com-
posite nodes.

– ComputationNode - it is basically responsible for carrying out computa-
tional tasks like map, or reduce in MapReduce. An important attribute
of ComputationNode is procType. It indicates the processing type, i.e.,
batch, stream or interactive. Moreover, the ComputationNode is associated
to CommunicationChannel to represent communication channels, e.g., of
publication and subscription roles in the application;

– SourceNode - it provides data for processing, then it is the entry point of
data into the application. In other words, the SourceNode represents the
source of data which are coming into the application in order to being
processed. The attribute sourceType further specifies the characteristics of
source. The ultimate goal of a DIA is to process the data that have high
volume and velocity;

– StorageNode - it is the third key element in the DPIM domain model. As
its name may suggest the StorageNode represents the element which is
responsible for storing the data, either for long term or not. The concept
of StorageNode in DPIM mainly corresponds to the database, in some case
it could be filesystem also;

– CommunicationChannel - these represent the connectors (e.g., interfaces,
specific compute nodes, etc.) or connecting middleware (e.g., specific DIA
for communication and brokering such as Apache Kafka [56]) that DIA use
for message queuing and transferring; explicit modelling of these elements
is needed since they may weigh heavily on the architectural properties
and characteristics for the DIA. The CommunicationChannel is then a

10 D. Perez-Palacin et al.

representation of governance and data integration, which mainly includes
the technologies responsible for transferring the data, like message broker
systems;

– DataSpecification - these represent the explicit data models (if any) being
manipulated across the DIA by any of its components; a data specifica-
tion is required to express more advanced and data-specific architecture
properties such as privacy-by-design [39].

The DPIM domain model supports the modelling and analysis of component-
based architecture models for DIAs. To further evaluate the completeness of
this model, we exploited Formal Concept Analysis (FCA) [70] on the original
Apache Hadoop and Apache Storm middleware. The exhaustive explanation
of how FCA works and how it can be used for domain analysis is beyond the
scope of this paper but, more specifically, the FCA-based analysis entails sys-
tematically isolating and reporting all concepts and relations identified for a
domain, using appropriate domain descriptions. Concept analysis takes place
by labelling the source files (in our case over 50 pages of Apache Storm and
Apache Hadoop technical documentation) and reporting the results of the la-
belling exercise in a MxN sized table, where M is the set of concepts and N is
the set of attributes found. To use the afore-mentioned analysis for evaluation
of our domain model we compared the FCA tables resulting from the analysis
recapped previously, with our final resulting DPIM domain model. A satisfac-
tory mapping reports a 1 to 1 matching between the two models. Then, as a
result of this FCA evaluation process, we established that the model in Fig. 4
contained necessary and sufficient constructs to specify full-fledged, industrial
strength DIAs.

Also as part of the DPIM level validation, we realized the need for assessing
the QoS properties of the Posidonia Operations case-study [8], with particular
reference to the scalability of the system. So, we decided to use the MARTE-
DAM profiles for such QoS assessment. However, instead of applying these
profiles directly to our UML models, we decided to follow the standard ap-
proach of combining the DPIM domain model with the MARTE-DAM domain
models. Hence, our DPIM model could be integrated with MARTE-DAM by
inheriting the appropriate concepts (i.e., meta-classes) from the latter. Con-
sequently, we revisited our domain model in Figure 4 and searched in the
MARTE-DAM domain models for those relevant meta-classes that could be
reused at the light of our DIA concepts. Table 2 summarizes our work of fit-
ting the DIA DPIM concepts with those of MARTE and DAM. In the end, all
DPIM concepts (left part) inherit some MARTE concept because DAM con-
cepts in turn inherit MARTE concepts. The criteria for reusing was to find in
MARTE those concepts offering the semantics we needed for DPIM concepts.

Finally, it is worth to indicate that regarding the initial version of the
DPIM domain model published in [23], this final one disregards QoSRequired-
Property meta-class, rearranges the associations of DataSpecification, revises
some inheritances from MARTE and eliminates technology-specific properties.

A UML profile for DIA development. 11

Fig. 4 DPIM domain model

12 D. Perez-Palacin et al.

DPIM concept Parent MARTE-DAM concept

ComputationNode MARTE::GRM::ResourceCore::ComputingResource
StorageNode MARTE::GRM::ResourceCore::StorageResource
SourceNode DAM::System::Core::Component

CommunicationChannel DAM::System::Core::Connector
DataSpecification n.a.

Table 2 Inheritance relationships among DIA concepts and MARTE-DAM concepts

3.2 UML DPIM profile

Figure 5 proposes UML extensions, i.e., stereotypes and tags, to conform the
DPIM profile. It has been obtained by applying the three steps recalled in
Subsection 2.3 (paragraph Design of the DIA profile).

For the first step, StorageNode, SourceNode, CommunicationChannel and
ComputationNode are transformed into DpimStorageNode, DpimSourceNode,
DpimChannel and DpimComputationNode stereotypes, respectively. The latter
is further specialized, so to introduce filtering ratios and for distinguishing non-
filtering nodes. DataSpecification is transformed into DiaDataSpecification

datatype5, which is useful for the provide and respondsTo tags, that aim to
represent the association between DataSource and DataSpecification. Finally,
abstract classes in the DPIM domain model do not map into stereotypes.

For the second step, we identified in MARTE and DAM, at the light
of the work in Table 2, the stereotypes to inherit6. The three stereotypes
(DpimComputationNode, DpimStorageNode, DpimSourceNode) which inherit
MARTE::Resource allow complete definition, from the performance evaluation
point of view, of DIAElements as resources; while the DaConnector inheri-
tance also introduces properties such as error propagation to characterise de-
pendability properties of DIA communication channels. Moreover, for enabling
scenario-based QoS assessment, as proposed by MARTE, we introduced from
scratch the DpimScenario as inheritance from DAM::DaService, although this
stereotype does not introduce additional information, we consider important
to distinguish kinds of scenarios for analysis at different abstraction levels. Pre-
vious choices introduce capabilities for defining QoS properties, from MARTE
and DAM, which is very important since it enables to apply MARTE NFPs
and VSL expressions, as explained in Appendix A.

For the third step, we did not need extra work. Due to all new DPIM
stereotypes inherit a stereotype of MARTE or DAM, then the UML meta-
classes that apply to the latter also apply to the former.

Finally, regarding the initial version published in [23], the profile intro-
duces new stereotypes (DpimVisualizationNode and DpimFilterNode) and
rearranges the inheritance tree corresponding to DpimComputationNode.

5 See Appendix B for details on datatypes.
6 In Figure 5, stereotypes with dark grey background have been taken from MARTE and

the light grey ones from DAM.

A UML profile for DIA development. 13

Fig. 5 DPIM UML Profile

14 D. Perez-Palacin et al.

4 DIA profile definition: DTSM

As already mentioned, the DTSM domain model gathers those concepts, be-
longing to concrete DIA technologies, related to the structure, relationships,
and parameters of DIA elements for the quality analysis purpose. Therefore,
the consequent DTSM profile is focused on the quality assessment of DIA,
considering particular technologies.

We have conceived the DTSM level, both the domain model and the profile,
into packages. Each package is dedicated to the modeling of each technology,
except a Core package that is extended by all others. Figure 6 represents this
structure of packages. The DIA technologies currently supported by our profile
are Apache Spark [57], Apache Storm [58], Apache Hadoop [55], Apache Cas-
sandra [54] and Apache Tez [59]. For space reasons, here we just develop the
Apache Hadoop case, as a representative one, and we also offer an overview
of the Core package. The technical definition of each domain model and con-
sequent profile, for the rest of technologies, can be found in [60] and in [63],
respectively.

Fig. 6 Package view of the DTSM level

4.1 DTSM domain model

4.1.1 Core package

This package gathers common concepts in the modelling of DIA technologies.
In particular, those to represent a workflow of operations, the computational
resources used by the DIA, and the influx and outflux of data. During our ex-
ploration of DIA technologies, we have found that, in most of the technologies,
the operations to execute are typically expressed as a workflow in the form of
a directed graph, which is actually a directed acyclic graph (DAG). Therefore,

A UML profile for DIA development. 15

Fig. 7 UML extensions for DTSM Core

the DTSM Core must allow to represent DAG of operations. Each node of the
DAG represents an operation of the DIA, over the data, at a certain abstrac-
tion level. The DAG is executed upon a set of computational resources. We
can define already at the computational level the type of data that the DIA
consumes and the type of data that produces. We can also define the number

16 D. Perez-Palacin et al.

of cores and nodes of these computation resources. The concept of data covers
the specification of the type of data used by the DIA, its arrival to the work-
flow, and the transformations and eventual storage, of new data produced by
the execution of the operations. Since this Core package has been created and
refined while finding and extracting common concepts in the DIA technolo-
gies, the result is that both, the domain model and profile, represent same
concepts, and thus the stereotypes of the profile, which is shown in Figure 7,
correspond to classes in the Core domain model.

4.1.2 Apache Hadoop specific domain model

This section details the concepts we have defined to represent the characteris-
tics of an Apache Hadoop based system that are relevant for quality analysis.

A software platform that offers a MapReduce [19] engine based on Apache
Hadoop can be used by multiple Users. The allocation and utilization of com-
puting resources of the platform is governed by a single resource manager,
YARN7 resource manager, and a YARN Node manager, for each Node in the
platform. A Node executes containerized Hadoop Operations, each operation in
a separated container. Hadoop Operations can be Map or Reduce operations.
The MapReduce application of a user comprises: the operation to execute
during the Map phase and the operation to execute during the Reduce phase.
The Map operation is fed with an input Dataset, and the execution of the
Hadoop application produces an output Dataset. Figure 8 presents in a do-
main model these concepts and their relationships, then conceptualising the
Apache Hadoop platform structure.

The domain model in Figure 8 also includes those concepts, from the DPIM
and MARTE domain models, that we selected to be reused. They are depicted
in grey. The whole platform is represented as a Hadoop Scenario, which is
an extension of the MARTE::GQAM Workload::BehaviorScenario concept.
A Hadoop Scenario is then composed of Users, YARN resource Manager,
Nodes, and HadoopOperations. Each User uses the platform with a given
workload, which is defined by the MARTE::GQAM Workload::WorkloadEvent
concept, through the pattern attribute, that allows to define different kinds of
workloads. The MapReduce application of a user executes numMaps times
its HadoopMap operation and numReduces times its HadoopReduce opera-
tion, while each Hadoop operation has a maximum parallelism (i.e, number
of mappers or number of reducers that can execute in parallel). The user has
also priority over a subset of resources of the platform, the so called reserve-
dResources of a User. HadoopOperations are computational steps as defined
by MARTE::GQAM Workload::Step, then characterized by a hostDemand. A
Node is a ComputingResource as defined in MARTE::GRM::ResourceTypes,
the attribute resMult represents the number of cores of the Node. Each Node
is managed by a YARN node manager. In our domain model, it is interesting
to represent periodic health checks, in order to asses for how long the platform

7 Yet Another Resource Negotiator

A UML profile for DIA development. 17

Fig. 8 DTSM domain model for Apache Hadoop

18 D. Perez-Palacin et al.

can be “out of full control” since some Node has failed but the health check
has not been performed yet.

4.2 UML DTSM profile

For designing the DTSM profile, we have applied the steps in Subsection 2.3
(paragraph Design of the DIA profile).

The Core package defines common technological concepts that each par-
ticular technology will assume or refine. Subsection 4.2.1 presents the UML
extensions offered by the Core. Subsection 4.2.2 presents those proposed for
Apache Hadoop specifically. Both extensions together define a complete set
of stereotypes to model quality aspects within UML diagrams for Apache
Hadoop.

4.2.1 Core package

Figure 7 presents the UML extensions of the Core package. They model the
technological concepts that we have found in common in the DIA technologies
we have explored. Section 4.1.1 described the rational of the decisions to ex-
tract common concepts in DIA technologies, and hence to obtain these UML
extensions; we have been able to generalize three macro-concepts shared in
DIA technologies: the modeling of their workflow of operations, the modeling
of the characteristics of the data consumed and produced by the DIA, and
the modeling of the computing resources where the DIA is installed. The Core
defines principles to model:

– Workflow of operations: Stereotypes DtsmCoreDirectAcyclicGraph,
DtsmCoreDAGNode, and DtsmCoreOperation allow to model these concepts.
Typically, DAGS are represented in UML by Activity Diagrams (AD), and
thus stereotype DtsmCoreDirectAcyclicGraph is applied to UML Activity
metaclass. Then, DAG nodes will be the actions and activities of the UML
AD, this is congruent with their inheritance from GaStep of MARTE, which
enables DAG nodes as computational steps.

– Management of data influx/outflux: Stereotypes DtsmCoreDataSource,
DtsmCoreStorageNode, DtsmCoreData and DtsmCoreDAGSourceNode al-
low to model the presence of data, their storage, and the incoming flow
of data to the workflow of operations.

– Computing resources: Stereotype DtsmCoreComputationNode inherits
from DpimComputationNode the principles of computation nodes for DIA.
Moreover, it adds tags to link with the DAGs that it executes and the
definition of data that it supports.

4.2.2 Apache Hadoop specific profile

Figure 9 depicts the stereotypes specific for Hadoop:

A UML profile for DIA development. 19

Fig. 9 UML extensions for modeling DIA based on Apache Hadoop

– DtsmHadoopScenario is a stereotype that extends MARTE::GQAM::GaScenario.
So, it can define the job scheduling policy in Hadoop (fifo, fair and capac-
ity schedulers currently) according to the YARN Resource Manager. As for
the DPIM, the scenario concept is also needed to carry out scenario-based
QoS assessment.

– Host applies to computation nodes, and so it extends the
DTSM::Core::DtsmCoreComputationNode. As new, it introduces the num-
ber of reserved cores in the node by each user, numReservedCores. Hence,
the type of this attribute is a list of NFP Integer elements, being the size
of the list equal to the number of users. It will be applied to UML::Node el-
ements in Deployment Diagrams representing the resource view to be used
in the QoS analysis.

– DtsmHadoopMap and DtsmHadoopReduce represent the actual Map and Re-
duce operations, and hence they extend the Core::DtsmCoreOperation

stereotype. They allow to define the expected number of Map and Reduce
operations for each user, numMaps and numReduces, respectively. The max-
imum number of Map or Reduce operations that a user can execute concur-
rently is defined by the parallelism attribute. Thus, user i has a number
of Map (resp. Reduce) operations equal to numMaps[i] (resp. numReduces[i]),
of which at most parallelism operations can execute concurrently. Since
Core::DtsmCoreOperation also extends MARTE::GQAM::GaStep, it thus al-
lows to define the expected time of the Map and Reduce task of each user

20 D. Perez-Palacin et al.

through its hostDemand attribute. These two operations could be merged
into a single DtsmHadoopOperation operation and using an attribute to
differentiate between Map or Reduce. That solution would also be correct
and would have the same modelling power. Therefore, the rationale for
proposing an stereotype for each operation is that it helps visualising that
the model is logical (e.g., there are not only Reduce operations, or only Map
operations); it simplifies the transformation to analyzable models because
the transformation patterns can be defined at the stereotype level, rather
than looking at the value of an attribute to decide the transformation rule
to apply.

The representation of the users workload in Figure 8 can be directly mod-
elled using multiple MARTE GaWorkloadEvent, one for each user in the sys-
tem. However, the modelling power MARTE GaWorkloadEvent is higher than
the necessities for modelling the users workload, since it allows modelling
periodic, aperiodic, sporadic, burst, irregular, closed, and open

arrival patterns, but we only need the closed. Therefore, we must add a
constraint to allow only the definition of closed arrival patterns, being its
population attribute set to the number of jobs of a user and its extDelay set
to the think time between the completion of a job and its next execution.

5 DIA profile definition: DDSM

While at the DTSM level the interest focused on those elements of the tech-
nology relevant for the quality assessment of DIAs, for instance, the concepts
of Map and Reduce in Hadoop, at the DDSM level the interest is in modeling
the specific infrastructure components that are to be deployed and configured
for the DIA to execute. For instance, Hadoop MapReduce applications run
in an Hadoop cluster, which consists of the Hadoop Distributed File System
(HDFS), which is the underlying scalable data storage, and a computational
resources manager such as YARN (Yet Another Resource Negotiator). It is
worth noting that, all technologies of interest are distributed systems running
on top of clusters of computational resources, e.g. virtual machines (VMs)
within a Cloud infrastructure.

In the following, as we did for the DPIM and DTSM levels, we present the
DDSM domain model (Subsec. 5.1) and the DDSM profile (Subsec. 5.2). More-
over, Section 9 describes an automatic deployment mechanism that leverages
the DDSM profile.

5.1 DDSM domain model

From the general observations, given above, and considering that almost ev-
ery platform adopts either a master/slave or a peer-to-peer architecture, in
the DDSM domain model we start by identifying two basic deployment ab-
stractions:

A UML profile for DIA development. 21

Fig. 10 DDSM domain model

22 D. Perez-Palacin et al.

(i) a PeerToPeerPlatform represents a distributed component which operates
according to the peer-to-peer architecture and consists of a cluster of peer
nodes;

(ii) a MasterSlavePlatform operates according to the master-slave architectural
style and is composed of a master node and a cluster of slave nodes.

We then define a set of technology-specific deployment concepts, one for each
technology supported (currently Storm, Hadoop, Cassandra, Zookeeper and
Spark). Each technology element extends one of the two abstract concepts
presented above and captures technology-specific configurations as well as any
dependency on other platforms and components. See these concepts in Fig-
ure 10.

As previously stated, Big Data frameworks and applications typically run
on top of Cloud infrastructures, composed of execution containers (e.g., Virtual
Machines - VM), storage and network systems. To support modelling of such
aspects we rely on MODACloudsML [3,20], a modelling language for the design
of multi-Cloud applications, and we slightly extended it in our DDSM model-
ing approach. MODACloudsML provides the concept of Component that can
be either an InternalComponent, which is deployed and managed by applica-
tion providers, in our case, Big Data frameworks providers and DIAs providers,
or an ExternalComponent, which is offered by third parties – typically, a cloud
Provider. A Virtual Machine (VM) is a type of ExternalComponent and can
be characterized by a set of parameters which specify its size in terms of
RAM, cores and disk memory. A VM can mount a specific OS and require a
private key in order to be accessed. An InternalComponent can rely on the
services or execution platforms offered by another Component by defining a
RequiredPort/RequiredExecutionPlatform respectively, which can be manda-
torily required or not. Components can offer a service or an execution environ-
ment by exposing a ProvidedPort/ProvidedExecutionPlatform. The concept
of Relationship (ExecutionBinding) is then used to bind a RequiredPort (Re-
quiredExecutionPlatform) with a ProvidedPort (ProvidedExecutionPlatform).

We extended the original concept of VM in MODACloudsML by adding
the property instances, so to be able to model a cluster of homogeneous VMs.
This extension is fundamental in order to model distributed systems run-
ning on clusters of VMs. A generic InternalComponent that is connected, by
means of a triple of the type (ProvidedExecutionPlatform, ExecutionBinding,
RequiredExecutionPlatform) with a VM, will be actually deployed in as many
replicas as the number of available instances of that VM. Hence, this exten-
sion provides the right level of deployment abstraction, without having to deal
with the inherent complexity of deploying distributed systems. In fact, once
we have a simple way to model clusters of VMs hosting Big Data frameworks
and the DIAs built on top of them, they are no more than cloud applications
organized in various components that run within clusters of VMs. Thus, we
define our deployment abstractions as subclasses of the InternalComponent
concept. The MasterSlavePlatform concept requires a specialized association

A UML profile for DIA development. 23

requiresMasterVm to model the deployment of the master node separately
from that of the cluster of slave nodes.

The concept of DIAClient is defined as a specialized InternalComponent
and it submits to a Big Data framework the set of jobs defining the applica-
tion logic, called BigDataJob. The DIAClient can act in different ways while
submitting the BigDataJob, and the model allows to define specific scheduling
options. For instance the numberOfSubmission property indicates how many
times a job must be submitted, while the intervalBetweenSubmission indicates
the delay between job submissions. This can be useful when it is necessary to
model a recurring job, like for instance a job that have to be executed every 24
hours for a total of 30 times. Analogously, each BigDataJob is characterized
by a number of properties, such as the url from which the executable arti-
fact can be retrieved (artifactUrl property), the main class to be considered
when launching the job (mainClass property), plus additional job’s arguments
(applicationArguments property).

5.2 UML DDSM profile

For designing the DDSM profile, we have applied the steps in Subsection 2.3
(paragraph Design of the DIA profile). Here we note that the UML deployment
diagram [66] is the natural choice when dealing with the deployment of an
application. Hence, the DDSM profile needs to extend the UML deployment
diagram only, i.e., the proposed stereotypes will be applied to meta-classes
relevant to this diagram.

According to the methodology outlined in Subsection 2.3, here we define,
for each class in the domain model, if it maps to an abstract of a concrete
(or firm) stereotype, along with the UML meta-classes extended by each such
stereotype. Considering the previous grounds, not every class in the DDSM
domain model has become a new stereotype since some of the concepts are
already supported by UML. In particular, for all the concepts in the domain
model that are supposed to model relations and connections between compo-
nents, such as the abstract concepts of Port and ExecutionPlatform as well
as the concepts of Relationships and ExecutionBinding, we can identify cor-
responding concepts and modeling elements already defined by the UML de-
ployment diagram meta-model. More specifically, we identified the following
mapping:

– a triple of the type (ProvidedExecutionPlatform, ExecutionBinding, Re-
quiredExecutionPlatform) can be modeled in UML deployment diagrams
as a Deployment between a DeploymentTarget and an ExecutionEnviron-
ment,

– a triple of the type (ProvidedPort, Relationship, RequiredPort) can be mod-
eled in UML deployment diagrams as a CommunicationPath between two
DeploymentTargets.

Given these premises, the resulting DDSM profile is shown in Figure 11,
in which, for the sake of space only the technology-specific stereotypes related

24 D. Perez-Palacin et al.

Fig. 11 An extract of the DDSM UML profile

to Apache Hadoop are shown, with all the provided configuration parameters.
The meaning of each stereotype it that discussed in Section 5.1 while pre-
senting the domain model. In the following we just elaborate on the decisions
taken to design the DDSM profile itself.

First, we decided to define DdsmComponent, DdsmInternalComponent,
DdsmExternalComponent, DdsmPeerToPeerPlatform and DdsmMasterSlavePlatform

as abstract stereotypes, since, also in MODACloudsML, these concepts are
supposed to be generic and extensible by specific technologies.

DdsmVMsCluster, which has been derived from the VM concept of the do-
main model, extends the Device UML meta-class. In fact, a cluster of VMs

A UML profile for DIA development. 25

logically represents a single computational resource with processing capabil-
ities, upon which applications and services may be deployed for execution,
which is essentially the definition of the UML Device concept.

DIA execution engines (e.g. Hadoop YARN or Spark) extend the UML
ExecutionEnvironment meta-class. In fact, similarly to Operating Systems,
which provide an execution environment for standard programs and are typi-
cally modeled as sub-stereotypes of UML Execution Environment, DIA execu-
tion engines provide execution environments for Big Data jobs. All the other
technology-specific stereotypes, e.g., those relevant to represent Hadoop HDFS
or any other Big Data database/middleware, extend the UML Node meta-
class. In fact, they are essentially deployment targets, which can be allocated
on available Devices and may host Artifacts (for example a DdsmHdfsCluster

may contains a set of files).

The DdsmBigDataJob stereotype extends the UML Artifact meta-class,
since it corresponds to a DIA executable artifact (e.g. a Hadoop MapReduce
or a Spark application). The DdsmJobSubmission stereotype, derived from the
concept of ClientNode in the domain model, extends the UML Deployment
meta-class, as it is meant to link deployable Big Data jobs to the available
DIA execution engines and to specify additional deployment options for a Big
Data job. In this way the same DIA job can be deployed in multiple instances
using different deployment options.

The defined stereotypes led to the definition of a small library of UML
Enumerations and DataTypes, consistently with the methodology presented
in Subsection 2.3. In particular, the VMSize and the Provider Enumera-
tions are used by the DdsmVMsCluster stereotype to specify the size of each
VM in the cluster and the Cloud provider to be used in order to provision
the cluster respectively (see the genericSize and the provider Properties
of DdsmVMsCluster stereotype). The Language Enumeration is used by the
DdsmInternalComponent stereotype to specify the programming language us-
ing which the component is implemented. The Scheduling Enumeration is
specific for Yarn to specify the scheduling strategy used when allocating re-
sources. Similar ones are defined also for other supported BIg Data technolo-
gies, although not shown in Figure 11. Finally the FirewallRule DataType
can be used to set specific firewall rules required by InternalComponents,
which may, for example, listen for web requests on specific TCP ports.

In the following, we summarize steps for modeling, in a UML deployment
diagram, the essential parameters for DIA deployment. Hence, these steps
constitute a blueprint for modelers to get UML DDSM-profiled models:

1. Instantiate as many Devices, annotated with the DdsmVMsCluster stereo-
type, as the number of distinct homogeneous clusters of VMs you want to
deploy.

2. Configure each DdsmVMsCluster as desired, using the tags provided by this
stereotype, see Figure 11;

3. Allocate within the various DdsmVMsCluster as many Nodes as the number
of Big Data platforms needed by the DIA to deploy. Each Node should be

26 D. Perez-Palacin et al.

annotated with the corresponding stereotype of the Big Data platform it
represents, e.g., DdsmHdfsCluster or DdsmYarnCluster.

4. Configure each Big Data platform as desired, using the tags of the corre-
sponding stereotype. Execution engines, such as YARN, should be actually
ExecutionEnvironments, rather than simple Nodes.

5. Instantiate as many Artifacts, annotated with the DdsmBigDataJob stereo-
type, as the number of DIAs to be deployed.

6. Configure each DdsmBigDataJob with information about the actual DIA,
using the tags provided by the stereotype. Moreover, each DdsmBigDataJob

must be connected, by means of a Deployment annotated with the
DdsmJobSubmission stereotype, to the Big Data execution engine that is
supposed to execute the DIA. Additionally, deployment specific options
can be configured using the DdsmJobSubmission’s provided tags. Finally,
each DdsmJobSubmission should be connected by means of a Dependency
with each Big Data platform it requires in order to execute.

6 Adopting the DIA profile and the WikiStats example

The methodological steps entailed by the usage of the proposed profile encom-
pass at least the following activities:

1. At the DPIM level, elaborate a component-based representation of the
high-level architecture of the DIA (e.g., a DPIM Component Diagram). In
the scope of the proposed profile, this is done using the stereotypes and
tags necessary to specify the DIA nodes (source node, compute node or
storage node);

2. Augment the component-based representation with the properties and non-
functional specifications concerning that representation;

3. Refine that very same component-based representation with technological
decisions, if any; the decisions themselves represent the choice of which
technology shall realise which data-intensive application node. For exam-
ple, a <<CassandraDataStore>> conceptual stereotype is associated with
a <<StorageNode>> in the DPIM architecture view;

4. At the DTSM level, associate several data-intensive technology-specific di-
agrams representing the technological structure and properties of each of
the data-intensive nodes. These diagrams essentially “explode” the techno-
logical nodes and contain information specific to those technological nodes.
For example, a <<StorageNode>> in the DPIM architecture representa-
tion must be necessarily associated to a specific storage technology in the
DTSM counterpart; finally, the DTSM layer will feature yet another di-
agram, more specifically, a data-model for the Cassandra Cluster. These
separate technology-specific “images” serve the purpose of allowing data-
intensive application analysis and verification;

5. At the DDSM level, elaborate a deployment-specific component deploy-
ment diagram where the several technology specific diagrams fall into place

A UML profile for DIA development. 27

with respect to their infrastructure needs. This diagram contains all nec-
essary abstractions and properties to build a deployable and analysable
TOSCA blueprint. Following our <<CassandraDataStore>> example, at
this level, the DTSM <<CassandraDataStore>> node (refined from the
previous DPIM <<StorageNode>> construct) is finally associated with
a DDSM diagram where the configuration of the cluster is fully specified
(i.e., VMs type and number, allocation of software components to VMs,
etc.);

6. Finally, once the data-intensive deployment-specific component diagram is
available, DICE deployment modelling and connected generative technol-
ogy (DICER) can be used to realise a TOSCA blueprint for that diagram;

In summary, designers exploiting our UML modelling for DIA will be required
to produce (at least) one component diagram for their architectural structure
view (DPIM), two (or more) diagrams for their technology-specific structure
and behavior view (DTSM), and a deployment diagram for their deployment
view (DDSM). Our modelling approach does not encourage the proliferation
of many diagrams, e.g., for the purpose of re-documentation. Since the focus
is on quality-aware design and analysis, then our approach promotes mod-
elling all and only the technological nodes that require quality-awareness. Fi-
nally, designers are required to refine their architectural structure view with
deployment-specific constructs and connected decisions.

To provide concrete examples of the models designers should aim at, let’s
consider a concrete example called WikiStats [69]. This is inspired by the
Traffic Analysis Report software of Wikimedia Foundation8. Since 2016, some
Traffic Analysis Report of Wikimedia Foundation websites (e.g., Wikipedia)
such as browser and operating systems of users9 and page views by country
of users10 are generated by a Hadoop infrastructure11 using as input the web
access logs. In our case, we are interested on five types of traffic statistics over
a reduced set of logs (e.g., the access logs that represent requests to Wikipedia
pages in a concrete language), and we target an hourly analysis of the logs.
Therefore, the Hadoop platform of our WikiStats will support a population of
five jobs that execute periodically, having each of them a think time of 1 hour.

At the DPIM level, we can see the system as a component-based aggrega-
tion of three nodes, see Figure 12. A <<DpimSourceNode>> is responsible for
crawling (see the sourceType property of the Wikimedia element) the Wikime-
dia website and fetch the web pages to be processed. A <<DpimComputationNode>>,
named WikistatsApplication, is then responsible for actually processing the
retrieved web pages. Since we want the processing to be performed in a stream-
ing fashion, the procType property is set to be streaming. This component
represents the actual DIA that will later run on top of Hadoop and whose
internals will be detailed at the DTSM level. The readsFromDataSource and

8 https://www.mediawiki.org/wiki/Analytics/Wikistats/TrafficReports/Future per report B2
9 https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-os

10 https://stats.wikimedia.org/wikimedia/squids/SquidReportPageViewsPerCountryOverview.htm
11 https://wikitech.wikimedia.org/wiki/Analytics/Systems/Cluster

28 D. Perez-Palacin et al.

the storeOutput relationships of the ComputationNode concept in the DPIM
metamodel are modeled re-using the Directed Association UML element. Fi-
nally the output of the processing needs to be stored into a database. For
this purpose, we instantiate a <<DpimStorageNode>>, which we may want, for
example, to be a column-oriented database (see the storageType property of
the InternalDatastore element). The <<DpimStorageNode>> also allows to
specify the username and password to be used for accessing the database. No
<<CommunicationChannel>> is needed since WikiStats does not require any
message-queuing. We can notice that, at this abstraction level, it has not been
yet decided that the application will execute upon a Hadoop infrastructure.

Fig. 12 High-level view of WikiStats

At the DTSM level, the designer decides, in this case, to select Hadoop
as the target technological platform for the computation node and defines
the models shown in Figures 13 and 14. The first is a behavioural model
that identifies two types of components performing map and reduce functions
respectively. They can be available in many parallel instances. A detailed de-
scription of the main properties of this model is presented in Section 8. The
diagram of Figure 14 provides the resource view for the DTSM, identifying in
this case, the configuration of Hadoop as composed of a single node exploit-
ing four cores. Starting from the behavioral view and the resource view, the
designer can run various QoS analyses as discussed in Section 8 and can use
their results to further refine the technological choice he/she has made.

At the DDSM level, the designer focuses on the deployment view by mod-
eling in detail all components that have to be deployed for WikiStats (see
Figure 21). In this case, besides YARN, which is managing the Hadoop infras-

A UML profile for DIA development. 29

tructure, a HDFS cluster is used as a storage node. WikiStats is represented
in the diagram as an artifact that depends both on HDFS and Hadoop. All
infrastructural elements are deployed on a cluster of 5 medium size virtual
machines. Details on the transformation from this deployment view into an
executable blueprint are discussed in Section 9.

In the scenario we have described above, the designer has decided to select
Hadoop as main implementation technology for WikiStats. Other technologies
could have been selected as well. In [29] we describe how a different Storm-
based case study can be modeled at the DPIM and DTSM level. In [22] we have
shown how we can model at the DDSM level a Storm-based and a Spark-based
deployment of WikiStats that exploits Cassandra as a storage node. In general,
changing technologies means adopting the architectural style typical of that
technology, exploiting the corresponding profile stereotype, and personalize, if
needed, the properties associated to the technology. Each of these properties
has associated a default value that can allow non-expert users to exploit a
typical configuration of the technology.

Fig. 13 WikiStats: UML activity diagram

7 Goal of the validation

Once the three levels of the DIA profile have been presented, we want to carry
out the profile validation, according to the workflow in Figure 2. The validation
of the profile means to demonstrate its adequacy for addressing the objectives
we established in the third paragraph of the Introduction:

– DPIM: Guidance for an initial design of the DIA architecture.

30 D. Perez-Palacin et al.

– DTSM: Enabling the quantitative assessment of the DIA.
– DDSM: Enabling the automated deployment of the DIA.

Regarding the DPIM level, as stated in Section 2, the profile has been
validated through two case studies: the Posidonia Operations and a fraud
detection system, reported in [8] and [44] respectively. Each case study is a
project developed by a different partner of the DICE project [9], for which
the DIA profile has been developed. For both systems, we modelled the high-
level architecture, using the DPIM profile to pinpoint the basic architectural
constructs regarding the DIA concepts. Moreover, we modelled, also assisted
by the DPIM profile, their main workflows using UML activity diagrams and
their initial deployments. For both systems, we conducted an assessment of
the architecture design, at the DPIM level. These two experiences have shown
the suitability of the DPIM profile for modeling the two cases and for enabling
the analysis of their QoS characteristics.

The validation of the DTSM and DDSM profiles is carried out in the next
sections using the WikiStats application example introduced in the previous
section.

8 DTSM profile validation: Quality assessment

This section carries out the validation of the DTSM profile. Such validation
accomplishes our claim in the Introduction: The profile disengages developers
from knowing details of quality assessment, i.e., performance and reliability
assessment. Hence, we need to demonstrate that the DTSM profile: a) allows
to gather all the quantitative information needed for eventually assessing the
quality of a DIA; and b) helps to identify those model elements involved in
the assessment, e.g., service demands for mappers or reducers. In this vali-
dation, we rely on the Hadoop technology since it has been the profile used
to illustrate the DTSM level. Another satisfactory experience was carried out
with the DTSM profile in [47], which has been extended in [29], but using the
Apache Storm technology. Finally, Subsection 8.5 discusses choices of suitable
performance languages for assessment.

8.1 Modeling for quality assessment

In the following, we summarize steps for modeling quality input parameters,
which will be eventually used in the performance assessment of the DIA. Hence,
these steps may constitute a guide for practitioners to create models using
the DTSM profile, as those in Figures 13 and 14, for the Apache Hadoop
technology:

1. Define the number of users in the cluster. This is represented by the
population attribute of the <<GaWorkloadEvent>> stereotype, see Fig-
ure 13;

A UML profile for DIA development. 31

Fig. 14 Wikistats: UML DTSM resource view

2. Estimate the think time between consecutive executions of jobs. This is rep-
resented by the extDelay attribute of the <<GaWorkloadEvent>> stereo-
type. In this case, we are estimating a delay of one hour. The definition of
the values for this attribute are annotated using a MARTE-VSL expres-
sion, see Appendix A for details;

3. Define the number of Map (Reduce) operations. This is represented by the
numMaps (numReduces) attribute of the <<HadoopMap>> (<<HadoopReduce>>)
stereotype, see Figure 13;

4. Estimate the mean execution time of each Map (Reduce) operation. This
is represented by the hostDemand attribute of the <<HadoopMap>>

(<<HadoopReduce>>) stereotype. These stereotypes extend the
<<Core::CoreOperation>>, which in turn extends <<MARTE::GaStep>>,
that in fact provides the hostDemand, which is needed for defining in the
model the service time that a Map (Reduce) operation requires from its
computing resources, see Figures 7 and 9. Performance models use this
hostDemand for setting the frequency with which they can process elements,
for instance, hostDemand will define the servers service time in case of using
Queueing Networks or the average firing delay of transitions in case of using
Stochastic Petri Nets;

5. Decide the number and parallelism of the cores in the platform to be used.
This is represented by the numReservedCores and resMult attributes of
the <<HadoopComputationNode>> stereotype, see Figure 14;

6. Define the metric to be computed using the <<HadoopScenario>> stereo-
type. In this case, we want to compute the response time. Use this stereo-
type also for defining the Hadoop scheduling policy, in case you want to
use the Hadoop scheduling facility. See Figure 13.

At this moment, we need to recall that the UML models are not ‘per se’
useful to carry out performance prediction [18]. In fact, performance predic-
tion, based on models, needs the use of analyzable models, e.g., Petri nets [1].
Therefore, we have used the DICE Simulation tool [61] to carry out the actual

32 D. Perez-Palacin et al.

performance evaluation of our example inspired on WikiStats problem and its
Hadoop based solution.

8.2 Simulating DTSM-profiled models

The DICE Simulation tool [61] reads UML models annotated with the DPIM
or DTSM profiles, and then it creates the corresponding Petri net, by leverag-
ing techniques already developed in the literature [16,71]. In particular, for the
DTSM Hadoop models, the tool creates Stochastic Well-formed Nets (SWN)
[12], a sub-class of Petri nets well-fitted for performance evaluation following
the transformation patterns described in Appendix D. Once the SWN has
been created, the tool invokes GreatSPN [21], a Petri net solver engine, and
it computes the quality metrics specified in the UML model –response time in
our case–.

8.2.1 Proof-of-concept simulation

In order to test the potential of the performance simulation, we first built
a proof-of-concept Hadoop application. This application receives F text files,
each of them with containing a single line with N random values. The appli-
cation computes the median value of each array in the Map activity, and then
the average value of the F medians in the Reduce activity. One of the goals
of this proof-of-concept is to experiment the performance prediction with a
Map activity that does not scale linearly with the size of the input. Therefore,
to calculate each median value, the Map activity first sorts the values using

an O(N2) method (concretely, it requires N2+N
2 operations) and then it re-

turns the tuple <"median",calculatedMedian>. In turn, the computation of
the average value in the Reduce activity is O(F) (i.e., the Map activity has
produced a tuple to reduce for each single-line input file). To keep the proof-of
concept simple and to make simpler the execution time measurement, we do
not set think time between executions, we set a single resource, and we do not
bound the maximum allowed parallelism (although this last setting does not
matter due to the single resource).

To give values to the stereotype attributes, we executed the Hadoop ap-
plication, with F = 30 and N = 15000 elements each. The 30 computation of
medians finished in 25 seconds, so we got that an input line containing 15000
elements can be Mapped in around 833ms. Knowing the time to Map an array

of 15000 elements and the Map complexity N2+N
2 , we can create UML models

with several values for the attributes in the profile and then compare the simu-
lation prediction with the actual running time. Table 3 shows the values given
to the attributes of stereotypes in this proof-of-concept. The input parameters
have the following values:
– F=[10,20,30]
– N ranges from 5000 to 30,000 in steps of 5000.

A UML profile for DIA development. 33

– timeSingleOp= 833·2
150002+15000

Stereotype Attribute Value

<<GaAnalysisContext>> contextParams [out$responseTime, in$F, in$N,
in$timeSingleOp]

<<DtsmHadoopScenario>> jobSchedule capacity
<<DtsmHadoopScenario>> respT [(expr=$reponseTime,

statQ=mean, source=calc)]
<<GaWorkloadEvent>> pattern closed(population=1, extDelay=0)
<<DtsmHadoopMap>> numMaps F

<<DtsmHadoopMap>> hostDemand [(expr = N2+N
2
· timeSingleOp,

statQ=mean, source=calc)]
<<DtsmHadoopReduce>> numReduces 1
<<DtsmHadoopReduce>> hostDemand [(expr=F · timeSingleOp,

statQ=mean, source=calc)]
<<DtsmHadoopComputationNode>> resMult 1

Table 3 Attributes defined for the Hadoop simulation proof-of-concept

Fig. 15 Proof-of-concept results: Measured Vs Prediced response times in function of the
input size. X-axis: N . Y-axis: execution time in seconds.

We have simulated these 18 combinations of F and N . We have also ex-
ecuted all the 18 combinations and measured their running time. Figure 15

34 D. Perez-Palacin et al.

shows our results. We can see that, for this initial proof-of-concept, the simu-
lation of Hadoop profiled UML models gives results that are very similar or, in
some cases, almost identical to the measured values. For higher N or F values
the differences between the measured and predicted execution times are indis-
tinguishable while, we can observe a small gap between the two lines in the
plots when N and F have lower values.These proof-of-concept results encour-
age us to further explore the potential of the simulation-based performance
assessment of DTSM-profiled UML models for more complex applications. We
remark that we have used the measured values of only one of these 18 combina-
tions to compute the parameters for our profiled UML models. The remaining
17 combinations have been measured after the model parameterization.

8.2.2 WikiStats simulation

Figure 16 depicts the SWN created by the DICE Simulation tool from the pro-
filed UML design. The concepts modeled by the Petri net are those captured
by the DTSM annotations: Number of users, number of Map (Reduce) oper-
ations per job, number of cores, mean execution time of each Map (Reduce)
operation, and think time between jobs. Additional and interesting charac-
teristics of the Petri net are the following: It is a closed net, where jobs pass
through maps and reduce phases. The Reducing phase of a job starts right
after all the Mappings have finished. Also, when the Mapping phase of a job
has been completed, the Mapping phase of the next job can start. Therefore,
Mapping activities of different jobs do not compete for resources since they do
not execute concurrently. However, the Mapping activity of a job can execute
concurrently to the Reducing activity of a precedent job, albeit the Reducing
activity has higher priority over resources.

8.3 WikiStats Performance assessment

In the following, we elaborate different performance scenarios for the reader to
gain insight on the usefulness of the DTSM profile for guiding the performance
assessment process [53].

Increasing the workload in the system We have studied what would happen
when increasing the traffic statistics in our WikiStats application. In the anno-
tation of the UML model with our profile, this will increment the population
of DIA users, i.e., an increase in the intensity of use of the DIA. In terms of
the DTSM profile annotation, we just need to change the hadoopPopulation

attribute, it will no longer be a constant but a variable. We set the variabil-
ity interval from the initial 5 up to 15 different statistics that execute in an
hourly basis, meaning that we will get insight of the expected performance up
to the case when the initial workload triples. Then, we ran the DICE Sim-
ulation tool again and obtained the results in Figure 17. It is worth noting
that the variability in the population is not represented in the design model

A UML profile for DIA development. 35

_0
_s

ta
rtD
m

IF
R

es
ou

rc
es

_s
ta

rt

qO
M

V

st
ar

t

p1rt U
sF

re
du

ci
ng

,st
ar

t

m
ap

pi
ng

,st
ar

t
R

es
ou

rc
es

_s
ta

rt,
m

ap
pi

ng
,st

ar
t

R
es

ou
rc

es
_s

ta
rt,

re
du

ci
ng

,st
ar

t

_0
_s

ta
rt lV

sF

m
ap

pi
ng

,st
ar

t
_0

_s
ta

rt,
st

ar
t

re
du

ci
ng

,st
ar

t

st
ar

t

[(
d(

st
ar

t)
=

st
ar

ta
)]

t1

[(
d(

st
ar

t)
=

st
ar

ta
)]

<s
ta

rt>

<S
 re

du
ci

ng
a,

st
ar

t>

<r
ed

uc
in

g,
st

ar
t>

<S
 m

ap
pi

ng
a,

st
ar

t>
<m

ap
pi

ng
,st

ar
t>

<R
es

ou
rc

es
_s

ta
rt>

<R
es

ou
rc

es
_s

ta
rt,

m
ap

pi
ng

,st
ar

t>

<R
es

ou
rc

es
_s

ta
rt,

re
du

ci
ng

,st
ar

t>

<R
es

ou
rc

es
_s

ta
rt,

re
du

ci
ng

,st
ar

t>

<R
es

ou
rc

es
_s

ta
rt>

<R
es

ou
rc

es
_s

ta
rt>

<s
ta

rt>

<s
ta

rt>

<i
d_

0_
st

ar
t,s

ta
rt>

_s
ta

rt,
st

ar
t>

<s
ta

rt>

<r
ed

uc
in

g,
st

ar
t>

<S
 re

du
ci

ng
a,

st
ar

t>
<s

ta
rt>

<R
es

ou
rc

es
_s

ta
rt,

m
ap

pi
ng

,st
ar

t>

<m
ap

pi
ng

,st
ar

t>

<!
id

_0
_s

ta
rt>

<i
d_

0_
st

ar
t>

<S
 m

ap
pi

ng
a,

st
ar

t>

<i
d_

0_
st

ar
t>

<i
d_

0_
st

ar
t>

<R
es

ou
rc

es
_s

ta
rt>

<S
 re

du
ci

ng
a

<i
d_

0_
st

ar
t>

<!
id

_0
_s

ta
rt>

M
ar

ki
ng

U
sF

 =
 <

S
 s

ta
rta

>
D

m
IF

 =
 <

ia
1>

IV
sF

 =
 <

ia
1>

q0
M

V
 =

 <
S

 R
es

ou
rc

es
_s

ta
rta

>

C
ol

or
 d

ef
in

iti
on

st
ar

t =
 u

 s
ta

rta
st

ar
ta

 =
 s

a{
1-

5}
R

es
ou

rc
es

_s
ta

rt
=

u
R

es
ou

rc
es

_s
ta

rta
R

es
ou

rc
es

_s
ta

rta
 =

 R
a{

1-
4}

m
ap

pi
ng

 =
 u

 m
ap

pi
ng

a
m

ap
pi

ng
a

=
m

a{
1-

14
4}

re
du

ci
ng

 =
 u

 re
du

ci
ng

a
re

du
ci

ng
a

=
ra

{1
-1

51
}

id
_0

_s
ta

rt
=

o
id

_0
_s

ta
rta

id
_0

_s
ta

rta
 =

 ia
{1

-5
}

Fig. 16 Petri net automatically obtained

36 D. Perez-Palacin et al.

but it is a feature of the DICE Simulation tool [17], which allows defining
ranges of values for variables for what-if analysis, as exercised in [31]. The
results show that the response time remains constant up to the 15 statistics,
which means that the DIA can support this workload without compromising
performance. To confirm this conclusion, Figure 18 shows the utilization of
the computing platform, also from the initial population of 5 up to 15. The
utilization grows linearly and it never goes beyond 0.25, which explains that
the response time keeps almost constant even for a population of 15 different
statistics. For getting the results in Figure 18, we needed to add, in the UML
model, the metric utilization to <<HadoopScenario>> stereotype, obviously.

Fig. 17 Response time Fig. 18 Resource utilization

Stressing the Map operation Suppose that developers want to know the effects
of re-programming the Mapping operation, so to get a more functional but
demanding one. Then, we changed the value of the hostDemand attribute.
Assuming that the complexity of a study can grow more easily than the number
of different studies to compute, rather than tripling the initial value of 10ms,
we now multiply the upper limit by 9. Thus, the value of the hostDemand will
vary from the initial 10ms up to 90ms. Figure 19(a) shows the variation in
the expected response time of the DIA, while Figure 19(b) the variation in the
utilization of the computing platform. It can be assessed that both metrics will
increase linearly with the increment in the demand of the Mapping operation.

Fig. 19 (a) Response time and (b) utilization, when the demand of the Mapping increases

A UML profile for DIA development. 37

Increasing the workload and stressing the Map operation Figure 20 shows the
results when both previous situations occur in combination. The response time,
part (a), is sensible to the increments of the demand of Mapping operation,
while the utilization, in part (b), is sensible to both variables and it increases
linearly with them. These results show that the computing platform is powerful
enough to support more intensive utilization and still offer good performance
to users. For instance, other users running a Hadoop application different from
Wikistats can also install it on the same Apache Hadoop computing platform.

Fig. 20 (a) Response time and (b) utilization, in both scenarios

8.4 Validity of the results

Work in [2] presented a SWN modeling approach, for Apache Hadoop applica-
tions, that achieved below 20% of prediction error with respect to system real
executions. The transformations implemented by the DICE Simulation tool
come from the modeling proposal in [2]. Since the SWN in Figure 16 was au-
tomatically produced by the DICE Simulation tool, then we assume that the
results obtained in the previous performance assessment present such accu-
racy levels. Although 20% of divergence is a significant error, we consider this
prediction error still an acceptable value. One of the main reasons is that the
models are not used to predict the application performance within the same
interval as their parameters are calibrated. On the contrary, their parameters
are calibrated using knowledge of the system behavior in a certain working
interval (small values of inputs) and later their predictions are requested over
a different working interval (large values of inputs, in order to foresee the
performance of the production system using its full input). Providing accu-
rate prediction results in these circumstances is a hard problem. Nevertheless,
model-based evaluations allow carrying out several studies with different val-
ues of the parameters, and these results give insights of the tendency in the
system performance. Therefore, even though the concrete figures from model-
based evaluations under these constraints may hold significant errors, they

38 D. Perez-Palacin et al.

are valuable. We also acknowledge that this prediction error reported is not a
hard-limit of the minimum accuracy of the approach but it would be possible
to find a Hadoop application where this prediction error is trespassed.

8.5 Discussion on alternative performance languages

The quality assessment presented before used SWN models. However, we do
not restrict the utilization of the profile for quality evaluation to SWN models.
In this subsection, we discuss a number of representative performance assess-
ment languages, selected from [26], belonging to different modeling languages
families.

Queueing Networks (QN)[27]. While the most basic QN model does not
allow to represent synchronisation of jobs, some extensions in the QN family
do. Fork-Join QN class provides the primitive for the synchronisation of jobs,
then allowing to model both the number of tasks in the Map and Reduce
phases of a job, and the fact that its Reduce phase starts after all Map tasks
have completed their execution. Extended QN class and their passive nodes
can be used to restrict the concurrent access of new jobs to their Map phase
before precedent jobs have obtained their resources for their Reduce phase.
The concept of Finite Capacity Region allows to model that a resource is
shared by more than one stations; in our case, this happens when Map and
Reduce phases share the the same computing cores.

Petri nets. While the most basic place-transition Petri net allows to rep-
resent the concepts of concurrency and synchronisation, it does not allow to
represent the concept of time. Extensions to Petri nets such as Stochastic Petri
nets (SPN), Generalized SPN (GSPN) [1], or the used SWN are options that
provide this concept. We have used SWN for this work, which is a rather elab-
orated member of the Petri nets family, although other Petri net models could
have been used. SPNs can model the concept of time in their transitions by
assigning them a probability distribution function that allow them to repre-
sent non-deterministic firing times. GSPNs generalise SPNs with immediate
transitions, which make the DTSM simpler to transform –especially the mod-
elling of the job scheduling logic as well as acquisition and release of resources–
and more easily understandable the resulting performance model. SWNs ex-
tend GSPNs with some concepts such as color in tokens, arc functions and
color conditions in transitions (Appendix D describes SWN in more detail). A
SWN model can represent in a concise and compact model cases cases where
a GSPN model shows symmetries. Therefore, the transformation to GSPNs of
the Hadoop DTSM is possible and it would offer the same results (the simu-
lation of GSPNs could be slower than the SWN, specially if the engine takes
advantage of the symbolic markings in SWN), but the resulting model would
become much larger and less visual, in particular when modelling that several
jobs exist in the Hadoop platform.

A UML profile for DIA development. 39

Markov Chains. Using Continuous Time Markov chains (CTMC) it would
be possible to represent the behavior and concepts represented in the DTSM
of Hadoop. The CTMC would have a finite number of states since the Hadoop
profile allows to model only closed workloads. However, the chain would need
to use at least12 one state for representing each possible state in the system
(or a state for each possible marking in the Petri net model). Due to the
concurrency and synchronisation present in the SWN model, the number of
states in the CTMC would be exponential in the size of the Petri net. That
is the main reason why we discarded the option of modelling with Markov
chains.

Other formalisms that may be suitable for the performance evaluation of
these Hadoop systems belong to the Process algebras family –for instance,
PEPA nets [32] which is a formalism in the family of process algebras for the
performance evaluation of systems– or to Stochastic Automata Networks [33];
but a deeper study should be carried out to give concrete recommendations
for their utilization.

9 DDSM profile validation: Automatic deployment

This section carries out the validation of the DDSM profile. Such validation
accomplishes our claim in the Introduction: The profile disengages developers
from knowing details on the complex tasks for continuously deploying the DIA.
Hence, we need to validate that the modeling capabilities of the DDSM profile
allow to gather the information needed for achieving the deployment of DIA.

One of the manners to validate this claim is by showing that the infor-
mation contained in a DDSM profiled UML diagram is enough for generat-
ing an Infrastructure-as-Code [42] (IaC) blueprint, and that such blueprint is
accepted by a deployment executor, called orchestrator, that automates the
deployment of the application based on the IaC blueprint. IaC is the practice
of specifying the deployment infrastructure using human-readable notations.
The IaC paradigm features: (a) domain-specific modeling languages (DSMLs)
for Cloud application specification, such as the TOSCA13 (Topology and
Orchestration Specification for C loud Applications) standard, to program the
way a Cloud application should be deployed; (b) orchestrators, that consume
IasC blueprints and automate the deployment based on those IasC blueprints.

The DICER tool [64] is able to perform both tasks: the creation of IaC
blueprints and the creation of the actual running platform from a blueprint.
Therefore, we have used DICER to validate the DDSM profile through the ex-
ample in Section 6. Actually, DICER tool allows to generate an IaC blueprint
in TOSCA language from a UML deployment diagram annotated with the

12 We say “at least” because we use Erlang-k distributions for the firing times, which are
possible to be represented in CTMC, although increasing even further the number of states
in function of the number of Erlang-k transitions and the value of k.
13 TOSCA is a language to specify deployable blueprints in line with the IaC paradigm

[43]. See Appendix C for TOSCA details.

40 D. Perez-Palacin et al.

Listing 1 DICER transformation pseudo-code.

1 for(UML:: Device dev in UML:: Model) {
2 if (dev.hasStereotype(’DdsmVMsCluster ’)) {
3 generateHostNodeTemplate(dev);
4 for(UML::Node node in dev.nestedNodes) {
5 stereotypes := node.getAppliedStereotypes ();
6 for (UML:: Stereotype ster in stereotypes) {
7 if(ster.isSubStereotypeOf(’InternalComponent ’) and ster.

↪→ getProperty(’protected ’)) {
8 generateFirewall(dev , node);
9 }}}

DDSM UML profile presented in Section 5. Regarding the actual deployment
of the application, DICER comes with a customised version of the Cloudify14

orchestration engine, which supports many of the most popular DIA technolo-
gies and is able to automatically deploy the generated IasC TOSCA blueprints.

Let us consider the UML deployment diagram shown in Figure 21, which
uses the DDSM profile to model the deployment of the Hadoop Wikistats
application. Given this UML-profiled model, the execution of the DICER tool
is able to automatically generate the deployable TOSCA blueprint reported
in Listing 2. The DDSM profile allows to properly model the deployment of
the Hadoop cluster, allowing the designer to dimension the cluster, setting
firewalls and configure the Big Data platforms in all their major configuration
parameters.

Fig. 21 The DDSM model for the deployment the Hadoop Wikistats sample application.

Listing 1 reports in pseudo-code an excerpt of the DICER transformation
workflow. It transforms each DdsmVMsCluster into a TOSCA node template

14 http://cloudify.co/

A UML profile for DIA development. 41

like the cluster node template (see Listing 2, line 4), which is generated start-
ing from the cluster element with DdsmVmsCluster stereotype of Figure 21.
The type of such node template (line 5) depends on the genericSize property
of the DdsmVMsCluster stereotype. The number of VM instances (line 6) and
the selected Cloud provider (line 13) correspond to the properties instances

and provider respectively of the DdsmVmsCluster stereotype (see again Fig-
ure 21). For each protected Node contained into a DdsmVMsCluster Device

(see the protected property of the DdsmInternalComponent stereotype), the
transformation generates a set of node templates (which depends on the actual
Big Data platform being deployed) from the package dice.firewall rules.*

(Listing 2, lines 30-33 and 56-59) and binds these with the generated dice.host.*

node template using a dice.relationships.ProtectedBy relation (Listing 2,
lines 8 and 9). Similarly, the TOSCA library provides specific relationships to
configure dependencies among Big Data technologies. For instance the Hadoop
package provides the dice.relationships.hadoop.ConnectedToNameNode rela-
tionship, which allows to specify the connection of a HDFS DataNode to the
corresponding NameNode (see line 27), or
the dice.relationships.hadoop.ConnectedToResourceManager, which al-
lows to connect a YARN NodeManager to the corresponding ResourceManager
(see line 53). The transformation implemented in DICER ensures that all the
elements of a model are properly instantiated into the corresponding IsaC.

By parsing the generated blueprint, the customised version of Cloudify
provided by DICER gets a global view of the application and automatically
derives and executes, based on dependencies between nodes, a suitable execu-
tion plan. As a result, no node is deployed until all the nodes it depends on
have been deployed first. Moreover Cloudify configures each node according to
what has been specified in the model through the DDSM profile. In conclusion,
our experience in the development of the WikiStats example shows that the
adoption of the DDSM profile enables a good level of disengagement of users
from the details of infrastructural code frameworks. Indeed, while the profile
allows users to fine tune the configuration parameters of the needed Big Data
frameworks, at the same time it also provides a default configuration for each
of them, which can be directly used without any adjustment. The provided
abstractions, i.e. MasterSlavePlatform and PeerToPeerPlatform, do also con-
tribute in achieving such disengagement. Without these abstractions the user
should explicitly model all the various virtual machines and their correspond-
ing configuration (e.g. size, amount of physical resources, etc.) one by one,
which is repetitive and error-prone. Moreover this is further complicated by
the fact that each platform has specific deployment aspects that the profile
abstracts from, while still letting the user to customize them when needed.
Just to make an example, Apache Cassandra 15, a popular NoSQL database
working in a peer-to-peer fashion, requires a special seed node to be deployed,
which supports the bootstrapping of all the peer nodes. The DDSM profile
user is not required to know anything about this technology specific aspect,

15 http://cassandra.apache.org/

42 D. Perez-Palacin et al.

neither she is required to specify anything about the seed node, for which
a default deployment configuration is provided. Still, the part of the profile
which concerns Cassandra allows to fine tune the deployment of the seed node
is desired, for instance by specifying a dedicated VM for it. Another exam-
ple of how the DDSM profile disengages users from IaC details are firewalls
configurations, for which the profile provides ready to use defaults, which can
still be tuned by the user. Finally it is worth to remind that the DDSM profile
comes, thanks to UML, as a general language for describing DIA deployments
and as an abstraction of top of the various IaC languages and implementa-
tions. In DICER, the profile has been used to enable the generation of TOSCA
code working for a customised version of the Cloudify orchestrator. Nothing
prevents the future development of other code generators that, starting from
the DDSM profile, target different TOSCA implementations or even different
infrastructural languages.

The main advantage provided by the DDSM profile in the context of the
DICER tool resides in the integration it enables between the typical design-
level activities and automated deployment, thus leading to the adoption of a
DevOps flavor. In fact, by using simple models to describe the deployment of
complex infrastructures and by automating the deployment starting from such
models, we have experienced considerable gains both in terms of reasoning on
and documenting our architecture, as well as in terms of time saved when
deploying and re-deploying it.

Listing 2 An excerpt of the DICER generated TOSCA blueprint for an Apache Hadoop
cluster.

1 # Imports , inputs and outputs sections omitted.
2 tosca_definitions_version: cloudify_dsl_1_3
3 node_templates:
4 cluster:
5 type: dice.hosts.Medium
6 instances: {deploy: 5}
7 relationships:
8 - {type: dice.relationships.ProtectedBy , target: HDFS_firewall}
9 - {type: dice.relationships.ProtectedBy , target: YARN_firewall}

10 - {type: dice.relationships.IPAvailableFrom , target: cluster_ip}
11 properties:
12 monitoring: {enabled: false}
13 provider: openstack
14 cluster_ip:
15 type: dice.VirtualIP
16 HDFS_master:
17 type: dice.components.hadoop.NameNode
18 relationships:
19 - {type: dice.relationships.ContainedIn , target: HDFS_master_vm}
20 properties:
21 monitoring: {enabled: true}
22 configuration: {’dfs.blocksize ’: ’128k’, ’dfs.permissions.enabled ’:

↪→ ’true ’, ’dfs.replication ’: ’2’}
23 HDFS:
24 type: dice.components.hadoop.DataNode
25 relationships:
26 - {type: dice.relationships.ContainedIn , target: cluster}
27 - {type: dice.relationships.hadoop.ConnectedToNameNode , target:

↪→ HDFS_master}
28 properties:
29 monitoring: {enabled: true}
30 HDFS_master_firewall:

A UML profile for DIA development. 43

31 type: dice.firewall_rules.hadoop.NameNode
32 HDFS_firewall:
33 type: dice.firewall_rules.hadoop.DataNode
34 HDFS_master_vm:
35 type: dice.hosts.Medium
36 instances: {deploy: 1}
37 relationships:
38 - {type: dice.relationships.ProtectedBy , target: HDFS_master_firewall

↪→ }
39 - {type: dice.relationships.IPAvailableFrom , target:

↪→ HDFS_master_vm_ip}
40 HDFS_master_vm_ip:
41 type: dice.VirtualIP
42 YARN_master:
43 type: dice.components.hadoop.ResourceManager
44 relationships:
45 - {type: dice.relationships.ContainedIn , target: YARN_master_vm}
46 properties:
47 monitoring: {enabled: true}
48 configuration: {’yarn.acl.enable ’: ’true ’, ’yarn.resourcemanager.

↪→ scheduler.class ’: ’org.apache.hadoop.yarn.server.
↪→ resourcemanager.scheduler.capacity.CapacityScheduler ’}

49 YARN:
50 type: dice.components.hadoop.NodeManager
51 relationships:
52 - {type: dice.relationships.ContainedIn , target: cluster}
53 - {type: dice.relationships.hadoop.ConnectedToResourceManager , target

↪→ : YARN_master}
54 properties:
55 monitoring: {enabled: true}
56 YARN_master_firewall:
57 type: dice.firewall_rules.hadoop.ResourceManager
58 YARN_firewall:
59 type: dice.firewall_rules.hadoop.NodeManager
60 YARN_master_vm:
61 type: dice.hosts.Medium
62 instances: {deploy: 1}
63 relationships:
64 - {type: dice.relationships.ProtectedBy , target: YARN_master_firewall

↪→ }
65 - {type: dice.relationships.IPAvailableFrom , target:

↪→ YARN_master_vm_ip}
66 YARN_master_vm_ip:
67 type: dice.VirtualIP
68 hadoopApplication:
69 type: dice.components.yarn.Topology
70 relationships:
71 - {type: dice.relationships.Needs , target: YARN}
72 - {type: dice.relationships.yarn.SubmittedBy , target: YARN_master}
73 - {type: dice.relationships.Needs , target: HDFS}
74 properties:
75 arguments:
76 - get_attribute: [HDFS , ip]
77 - ’/home/ubuntu/input.txt ’
78 application: http ://127.0.0.1:8080/ hadoop -wikistats.jar
79 topology_class: com.hadoop.test.Wikistats
80 topology_name: Wikistats

10 Related work

Model-Driven Engineering is nowadays a well-established discipline to sup-
port conception, design, assessment, and development of software in various
application domains. The variety of domains is witnessed by initiatives like

44 D. Perez-Palacin et al.

AUTOSAR [48] that focuses specifically on automotive. In the DIA context,
authors of [45] focus on modelling for the purpose of application code gener-
ation in the Hadoop framework. Similar support is offered by Stormgen [49],
a DSL for Storm-based topologies. Both approaches focus on a single tech-
nology and do not address issues such as the analysis and the deployment of
DIAs. Juniper [35] focuses on both, application code generation and deploy-
ment aspects, but assumes that DIAs run on specifically developed real-time
Java VMs and exploit MongoDB and PostgreSQL as databases. Compared to
this approach, our DIA profile aims at supporting a number of technologies
enabling parallel computation and allows these technologies to be combined
to build complex DIAs.

As for the quantitative assessment aspect, our approach relies on the on-
going effort on MARTE and DAM and extends them to DIAs, which confers
a standardized framework not present in other works already presented in
the literature. For example, a generic profile for the modelling of big data
applications is given in the context of the Palladio Component Model [36],
while in [37], the authors model and simulate Apache Spark streaming ap-
plications also for Palladio, although they did not focus on batch operations
as our Apache Spark DTSM profile. Mathematical models for predicting the
performance of Apache Spark applications are introduced in [67]. The work
in [46] discusses the role of modelling and performance assessment in big data
platforms.

For what concerns deployment, our work builds on top of Infrastructure as
Code approaches [42] that are based on the idea that the deployment configura-
tion of a complex system can be coded and executed by a proper orchestrator.
Essentially, pieces of code like Chef recipes16 or TOSCA blueprints [68][40]
define a model of the system to be deployed. Compared to these, our DIA
profile and our DICER tool enable those in charge of defining the deployment
configuration code to work at a higher level of abstraction in a way that is fully
integrated with a typical UML-based design context. With this main differ-
ence in mind, the work that appears to be closest to our deployment approach
is Ubuntu Juju17. It offers a framework for orchestrating the deployment of
complex systems in a cloud context. Moreover, it offers a graphical Web user
interface for building models of cloud applications and a repository, called
Charms Store, containing buy-per-use building blocks called Charms for a va-
riety of use cases, including Big Data. Juju supports describing applications in
YAML documents called bundles, which can be used in IasC. However, Juju’s
bundles are particular to Juju’s own orchestrator, while in our approach we
rely on a portable and orchestration-neutral TOSCA language. Also, Juju’s
GUI is aimed at Ops staff, while DICER is embedded into the Eclipse IDE to
provide for integrated Dev functionalities at the same time.

16 https://www.chef.io/
17 https://jujucharms.com/

https://jujucharms.com/

A UML profile for DIA development. 45

11 Conclusion and future work

This work has presented, to the best of our knowledge, the first domain specific
modeling language (DSML) for developing data-intensive applications (DIAs).
Our DSML has been designed as a UML profile so to leverage standard lan-
guages and practices. Inspired by the OMG-MDA initiative, the DIA profile
encompasses the three common abstraction levels in mature MDE approaches,
in our case called DPIM, DTSM and DDSM. The DPIM level to assist devel-
opers in the early architecture design, by identify the key concepts in DIA
development. The DTSM level for evaluating the quality of the architecture
design, while taming the jungle of Big Data frameworks and the jungle of con-
cepts behind each one of them. The DDSM level to automate the intricate but
key task of deploying the application in the cloud.

The painstaking technical work of designing a profile, with the character-
istics of ours, flourishes at the level of the technology. We have addressed four
of the most relevant Big Data frameworks today, i.e., Apache HadoopMR,
Apache Storm, Apache Spark and Apache Tez. So, we needed to conceptualise
from stream to batch processing, also from in-memory to realtime processing.
Obviously, for space reasons, we could not show up all the material we pro-
duced, but all the technical work is available at [60,62]. While, the reader can
find published the Apache Storm profile, not here reported, in [29].

The work in this manuscript has been useful to comprehensively present,
for first time, the DIA profile. We think that this work helps to understand
the foundations of the profile as well as the design decisions we needed to
take. Regarding the important aspect of the profile validation, we have tried
to manage the space to showcase one technology at the DTSM level and the
whole DDSM level.

Much work can be built around the DIA-profiled UML models and their
links to deployment artifacts and performance models. Some of the research
paths we believe that should be explored are the automatic code generation
from the profiled UML models, a smoother transition for the engineer between
DPIM, DTSM and DDSM models by automatic generation of skeletons, the
utilization of design and performance models at runtime to detect changes in
the operational profile of the DIA, report the detected changes to engineers,
and also self-adapt the computing infrastructure to the most convenient num-
ber of resources, to name a few.

Acknowledgements This work is supported by the European Commission grant no. 644869
(H2020, Call 1), DICE. D. Perez-Palacin, J. Merseguer and J.I. Requeno have been supported
by the project CyCriSec [TIN2014-58457-R] and Aragon Government Ref. T27-DISCO re-
search group.

A MARTE and DAM profiles

MARTE [41] is a standard profile that extends UML for the performance and schedulability
analysis of a system. MARTE consists of three main parts: MARTE Foundations, MARTE

46 D. Perez-Palacin et al.

Design Model and MARTE Analysis Model. The Analysis Model is of our interest since it
enables the QoS assessment by allowing the definition of QoS metrics and properties. The
Analysis Model consists of a Generic Quantitative Analysis and Modelling (GQAM) profile
and its specialization, the Performance Analysis and Modelling (PAM) profile. In addition
to this, two other features are also important for our DIA profile.

The first one is that MARTE enables the specification of quantitative non-functional
properties (NFP) in UML models through its Value Specification Language (VSL). The
VSL is useful for specifying the values of constraints, properties, and stereotype attributes,
particularly related to NFPs. Moreover, VSL allows to express basic types, data types,
values (such as time and composite values), as well as variables, constants and expressions.
This means that, using VSL we can define complex metrics and requirements to express
for example response times, utilizations or throughputs. MARTE also defines a library of
primitive data types, a set of predefined NFP types and units of measures. Hence, our DIA
profile inherits the VSL altogether.

For understanding the VSL expressions that appear in this paper, it is of interest to
briefly recall its syntax. An example of VSL expression for a host demand tagged value of
type NFP Duration is:

expr=6 unit=ms, statQ=mean, source=est

(1) (2) (3) (4)

This expression specifies that the Reducing activity in Figure 13, demands 6 (1) millisec-
onds (2) of processing time, whose mean value (3) is obtained from an estimation in the
real system (4). We could replace, for example, the value 6 for a variable $host dem to
parameterise the analysis of the model with different values for this host demand.

The second feature is that the DAM [6] profile specializes MARTE-GQAM for depend-
ability analysis (i.e., availability, reliability, safety and maintainability). Consequently, the
DAM profile also inherits the VSL. As MARTE, DAM consists of a library and a set of
extensions to be applied at model specification level. Our DIA profile inherits DAM with
the purpose of addressing reliability analysis for DIA.

B DIA Profile Library

In this Appendix we present the DIA library. The library defines the data types, basic
and complex, used in the attributes of the stereotypes proposed for the three abstraction
levels, DPIM, DTSM and DDSM. Basic types appear in Figure 22, while complex ones
in Figure 23. From DAM we have imported the DAM Library [6], which also imports the
MARTE Library [41].

C TOSCA

TOSCA provides a flexible and highly extensible DSL for modelling resources and soft-
ware components. TOSCA blueprints are executable IasC composed of node templates and
relationships, defining the topology of a hardware/software systems. Node templates and
relationships are instances of node types and relationship types, that are either normative
(i.e., defined in the standard), provided by the specific engine that executes a blueprint (the
orchestrator), or an extension of one of the above, such as in our case, with DIA-specific
node and relationship types. Node types are essentially used to describe hardware or virtual
resources (machines or VMs) and software components. Relationship types predicate on the
association between node types. For instance, a TOSCA node type representing Wordpress
CMS must be associated to a node type presenting VMs through the relationship hosted On.
Each node type and relationship type also enables specifying interfaces, which are composed
of operations that have to be carried out at specific stages of the deployment orchestration.
Typical examples of interface operations include installing, configuring or starting of com-
ponents, and may take form of Python/bash scripts, or pointers to Chef recipes. Node

A UML profile for DIA development. 47

«EPackage»

Basic_DIA_Types

«EPackage»

Enumeration_Types

«Enumeration»

ProcessingType

StreamProcessing

BatchProcessing

Interactive

«Enumeration»

SourceType

sensor

webCrawler

«Enumeration»

RefType

mongodb

hdfs

mysql

cassandra

«Enumeration»

DataFormat

json

plain

xml

csv

tsv

yaml

«Enumeration»

ConstraintType

less

lessEqual

equal

greaterEqual

greater

«Enumeration»

WorkflowOperation

groupBy

sum

count

split

«Enumeration»

MapType

regexMapper

fieldSelectionMapper

chainMapper

«Enumeration»

ReduceType

fieldSelectionReducer

chainReducer

intSumReducer

«Enumeration»

StreamPolicy

all

shuffle

field

global

«Enumeration»

Scheduling

capacity

fifo

fair

«Enumeration»

VMSize

Small

Medium

Large

«Enumeration»

ProviderType

FCO

EC2

AWS

«Enumeration»

LifeCycleElementType

start

stop

install

create

download

preconfigured

«Enumeration»

SparkAction

Reduce

Sample

Count

Aggregate

CollectAsMap

CountByValue

Fold

Lookup

Take

Top

«Enumeration»

SparkTransformation

Map

Filter

Sample

ByKey

RDDSetOperation

Subtract

Cogroup

CombineByKey

FlatMap

GroupByKey

GroupWith

Keys

MapValues

PartitionBy

ReduceByKey

SortByKey

theValues

TextFile

Parallelize

«Enumeration»

SparkOperation

Transformation

Action

«Enumeration»

LanguageType

bash

python

java

scala

«Enumeration»

DataMovementType

OneToOne

ScatterGather

Broadcast

«Enumeration»

StorageType

ColumnOriented

RowOriented

DocumentBased

GraphOriented

«Enumeration»

SchedulerType

FairScheduler

CapacityScheduler

«Enumeration»

CassandraConsistencyLevelType

«Enumeration»

MachineLearningAlgorithm

Regression

DecisionTreeClassification

KMeansClustering

SVM

Fig. 22 DIA basic data types

and relationship templates are free to provide their own interface operations, extending or
overriding behaviour defined in the corresponding types. TOSCA is being supported by a
number of orchestrators that, given a TOSCA blueprint and all node and relationship types
used there, are able to execute it deploying the corresponding system and managing its life-
cycle. Examples of such orchestrators are Cloudify18, ARIA TOSCA19, Indigo20, Apache
Brooklyn21 or ECoWare [4].

D Transformation of a DTSM design to a performance model

Stochastic Well-formed Nets (SWN) [12] are a modeling formalism suitable for performance
analysis purposes. A SWN model is a bipartite graph formed by places and transitions. Places
are graphically depicted as circles and may contain tokens. A token distribution in the places

18 http://getcloudify.org
19 http://ariatosca.org/
20 https://www.indigo-datacloud.eu/
21 https://brooklyn.apache.org/learnmore/

http://getcloudify.org
http://ariatosca.org/
https://www.indigo-datacloud.eu/
https://brooklyn.apache.org/learnmore/

48 D. Perez-Palacin et al.

«EPackage»

Complex_DIA_Types

«EPackage»

Data_Types

«DataType»

DIADataVolume

 + volume: NFP_DataSize [0..1]

«DataType»

DIADataSpecification

 + description: String [0..1]

 + size: NFP_DataSize [0..1]

 + refModel: RefType [0..1]

 + refDataFormat: DataFormat [0..1]

«DataType»

DIAChannelSpecification

 + rate: NFP_Frequency [0..1]

 + size: NFP_DataSize [0..1]

«DataType»

RequiredAttribute

 + referenceNode: String [1]

 + attributeName: String [1]

«DataType»

FirewallRule

 + allowedIpPrefix: String [1]

 + port: Integer [1]

«DataType»

MongoDBShard

 + nInstances: Integer [0..1]

 + hostSize: VMSize [0..1]

Fig. 23 DIA complex data types

of a SWN, namely a marking, represents a state of the modeled system. The dynamic of the
system is governed by the transition enabling and firing rules, where places represent pre-
and post-conditions for transitions. In particular, the firing of a transition removes (adds)
as many tokens from its input (output) places as the weights of the corresponding input
(output) arcs. Transitions can be immediate, those that fire in zero time; or timed, those
that fire after a delay which is sampled from a random variable with a given probability
distribution function. Immediate transitions are graphically depicted as black thin bars while
timed ones are depicted as white thick bars. Tokens may also have an associated color, i.e., a
data type, which enriches the expressiveness of the net and restricts the movement of tokens
to compatible places and transitions.

Figure 24 depicts a schema of how Apache Hadoop stereotypes in UML-profiled models
(left) are transformed into an analyzable model such as a SWN (right). Each stereotype
is transformed into a subnet by taking into account the information contained in the tags.
For each transformation pattern in the Figure, the part of the Petri net inside the blue box
corresponds to the part that the transformation creates. The part of the Petri net outside
the blue box corresponds to referenced parts, which are in turn created by other stereo-
types. Figure 24 depicts only the specific non-functional annotations for Apache Hadoop,
the functional part of the UML diagram is transformed according to the works in [28,71].
Eventually, all the subnets are composed into a single closed Petri net such as in Figure 16.

A UML profile for DIA development. 49

A Hadoop cluster accepts several categories of users, whose jobs are probably sub-divided
into a different number of map-reduce tasks or have assigned a different number of hardware
resources. Every user < i > has $nCi jobs waiting in the scheduler queue. Hadoop scheduler
launches periodically a new job at a given $rate following a scheduling policy defined by the
scenario (e.g., a shared common FIFO queue for all users). By default, our transformation
assumes an independent FIFO queue for each user; and always guarantees to take a job of
each user.

Jobs are labelled with the user they belong to (loop < i >-< i + 1 > in the net, where
< i > represents each user). The scheduler waits for the assignment of resources to all tasks
in the reduce phase of the precedent job < i > before launching the next job < i + 1 >
(inhibitor arc section). This scheduling allows both concurrency among jobs and giving
priority over resources to precedent jobs. Job < i > is divided in $mi map tasks and $ri
reduce tasks, that run simultaneously in up to $pi cores (

∑n

i=1
$pi ≥ $host, being $host

the total number of cores in the cluster). We use the notation < i > for expressing the color
of a token. For instance, each user is represented by a different color in the SWN. Notation
$mi is used for expressing numerical values; for instance, the number of map tasks in which
a job of type < i > is divided.

Fig. 24 Transformation of Apache Hadoop specific stereotypes to Petri nets

50 D. Perez-Palacin et al.

E Usability of the profile

The validation of the DIA profile has been carried out so far from the point of view of
its adequacy to solve the QoS assessment and the deployment. However, we consider also
important to learn about the usability of the profile, in terms of easiness of use for engineers.
It uses to happen that tools, although offering the required functionalities, do not reach their
expectations until a degree of maturity is accepted at this regard.

The DIA profile has been used by engineers in four organizations: Prodevelop[30],
ATC [24], BluAge [25] and XLAB R&D [34]. We have prepared eight questions, see Table E,
for a total of eight engineers, who have extensively used the DIA profile in the context of
the DICE project to carry out industrial applications. From the answers, we see that the
profile has been useful for the engineers, specially for the automatic deployment. However,
the main lack refers to the Papyrus implementation (see question #6) that also constraints
the profile implementation. In fact, the advice of the engineers (see question #8) referred
to improve the Papyrus implementation of the profile.

Question Choice Answers
1 Had you previous experience with UML profiles Yes, No 4 Yes

before using the DIA profile? 4 No
2 Did the DIA profile help you to better understand Yes, No, 8 Yes

the architecture of your Data Intensive Application? Neutral
3 The DIA profile intended to cover the architectural 1 to 5 4 (mean)

modeling needs of your DIA. (5 is top)
Please rate the profile at this regard.

4 The DIA profile intended to cover the modeling needs 1 to 5 4 (mean)
of your DIA for QoS assessment.
Please rate the profile at this regard.

5 The DIA profile intended to cover the deployment 1 to 5 4.5 (mean)
needs of your DIA. Rate the profile at this regard.

6 Rate the Papyrus implementation of the UML 1 to 5 3.5 (mean)
standard on top of the Eclipse platform in terms of
usability (friendly of use)?

7 Rate the DIA profile implementation 1 to 5 4 (mean)
on top of Papyrus in terms of usability (friendly of use)?

8 Please, if possible, offer some short advice on usability Text
of the DIA profile.

Table 4 Research questions on profile usability

References

1. M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modeling
with Generalized Stochastic Petri Nets. John Wiley and Sons, 1994.

2. Danilo Ardagna, Simona Bernardi, Eugenio Gianniti, Soroush Karimian Aliabadi, Diego
Perez-Palacin, and José Ignacio Requeno. Modeling Performance of Hadoop Applica-
tions: A Journey from Queueing Networks to Stochastic Well Formed Nets, pages 599–
613. Springer International Publishing, Cham, 2016. URL: http://dx.doi.org/10.

1007/978-3-319-49583-5_47, doi:10.1007/978-3-319-49583-5_47.
3. Danilo Ardagna, Elisabetta Di Nitto, Giuliano Casale, Dana Petcu, Parastoo Mo-

hagheghi, Sébastien Mosser, Peter Matthews, Anke Gericke, Cyril Ballagny, Francesco
D’Andria, Cosmin-Septimiu Nechifor, and Craig Sheridan. Modaclouds: A model-
driven approach for the design and execution of applications on multiple clouds.

http://dx.doi.org/10.1007/978-3-319-49583-5_47
http://dx.doi.org/10.1007/978-3-319-49583-5_47
http://dx.doi.org/10.1007/978-3-319-49583-5_47

A UML profile for DIA development. 51

In Proceedings of the 4th International Workshop on Modeling in Software Engi-
neering, MiSE ’12, pages 50–56, Piscataway, NJ, USA, 2012. IEEE Press. URL:
http://dl.acm.org/citation.cfm?id=2664431.2664439.

4. L. Baresi, S. Guinea, G. Quattrocchi, and D. A. Tamburri. Microcloud: A container-
based solution for efficient resource management in the cloud. In 2016 IEEE In-
ternational Conference on Smart Cloud (SmartCloud), pages 218–223, Nov 2016.
doi:10.1109/SmartCloud.2016.42.

5. Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,
323(5919):1297–1298, 2009.

6. S. Bernardi, J. Merseguer, and D.C. Petriu. A dependability profile within MARTE.
Software and Systems Modeling, 10(3):313–336, 2011.

7. S. Bernardi, J. Merseguer, and D.C. Petriu. Model-driven Dependability Assessment of
Software Systems. Springer, 2013.

8. Simona Bernardi, José Ignacio Requeno, Christophe Joubert, and Alberto Romeu. A
systematic approach for performance evaluation using process mining: The posidonia
operations case study. In Proceedings of the 2Nd International Workshop on Quality-
Aware DevOps, QUDOS 2016, pages 24–29, New York, NY, USA, 2016. ACM. URL:
http://doi.acm.org/10.1145/2945408.2945413, doi:10.1145/2945408.2945413.

9. G. Casale et al. DICE: Quality-driven Development of Data-intensive Cloud Applica-
tions. In Proceedings of the Seventh International Workshop on Modeling in Software
Engineering, pages 78–83, NJ, USA, 2015. IEEE Press. URL: http://dl.acm.org/

citation.cfm?id=2820489.2820507.

10. K. Chandrasekaran, Siddharth Santurkar, and Abhishek Arora. Stormgen - a domain
specific language to create ad-hoc storm topologies. In Maria Ganzha, Leszek A. Ma-
ciaszek, and Marcin Paprzycki, editors, FedCSIS, pages 1621–1628, 2014. URL: http:
//dblp.uni-trier.de/db/conf/fedcsis/fedcsis2014.html#ChandrasekaranSA14.

11. C.L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data. Information Sciences, 275:314 – 347,
2014.

12. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Trans. Comput., 42(11):1343–
1360, November 1993. URL: http://dx.doi.org/10.1109/12.247838, doi:10.1109/12.
247838.

13. Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, 2001.

14. Constantine Aaron Cois, Joseph Yankel, and Anne Connell. Modern devops: Optimizing
software development through effective system interactions. In IPCC, pages 1–7. IEEE,
2014. URL: http://dblp.uni-trier.de/db/conf/ipcc/ipcc2014.html#CoisYC14.

15. Mathieu Colas, Ingo Finck, Jerome Buvat, Roopa Nambiar, and Rishi Raj Singh. Crack-
ing the data conundrum: How successful companies make big data operational. Tech-
nical report, Capgemini consulting, 2015. url: https://www.capgemini-consulting.
com/cracking-the-data-conundrum.

16. The DICE Consortium. DICE transformations to Analysis Models. Techni-
cal report, European Union’s Horizon 2020 research and innovation programme,
2016. url: http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/

2016/08/D3.1_Transformations-to-analysis-models.pdf.

17. The DICE Consortium. DICE simulation tools. Technical report, Euro-
pean Union’s Horizon 2020 research and innovation programme, 2017. url:
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/08/

D3.4_DICE-simulation-tools-Final-version.pdf.

18. Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Model-Based Software
Performance Analysis. Springer, 2011.

19. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: A flexible data processing tool. Com-
mun. ACM, 53(1):72–77, January 2010.

20. Elisabetta Di Nitto, Peter Mattew, Dana Petcu, and Arnor Solberg, editors. Model-
Driven Development and Operation of Multi-Cloud Applications. PoliMI SpringerBriefs.
Springer International Publishing, 2017.

http://dl.acm.org/citation.cfm?id=2664431.2664439
http://dx.doi.org/10.1109/SmartCloud.2016.42
http://doi.acm.org/10.1145/2945408.2945413
http://dx.doi.org/10.1145/2945408.2945413
http://dl.acm.org/citation.cfm?id=2820489.2820507
http://dl.acm.org/citation.cfm?id=2820489.2820507
http://dblp.uni-trier.de/db/conf/fedcsis/fedcsis2014.html#ChandrasekaranSA14
http://dblp.uni-trier.de/db/conf/fedcsis/fedcsis2014.html#ChandrasekaranSA14
http://dx.doi.org/10.1109/12.247838
http://dx.doi.org/10.1109/12.247838
http://dx.doi.org/10.1109/12.247838
http://dblp.uni-trier.de/db/conf/ipcc/ipcc2014.html#CoisYC14
https://www.capgemini-consulting.com/cracking-the-data-conundrum
https://www.capgemini-consulting.com/cracking-the-data-conundrum
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-analysis-models.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-analysis-models.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/08/D3.4_DICE-simulation-tools-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/08/D3.4_DICE-simulation-tools-Final-version.pdf

52 D. Perez-Palacin et al.

21. Dipartamento di informatica, Università di Torino. GRaphical Editor and Analyzer for
Timed and Stochastic Petri Nets, Dec., 2015. url: www.di.unito.it/~greatspn/index.
html.

22. Matej Artac, Tadej Borovsak, Elisabetta Di Nitto, Michele Guerriero, Diego Perez-
Palacin and Damian Andrew Tamburri. Infrastructure-as-code for data-intensive archi-
tectures: A model-driven development approach. In IEEE International Conference on
Software Architecture, ICSA 2018, Seattle, WA, USA, April 30 - May 4, 2018, pages
156–165. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/ICSA.2018.
00025, doi:10.1109/ICSA.2018.00025.

23. Abel Gómez, José Merseguer, Elisabetta Di Nitto, and Damian A. Tamburri. To-
wards a uml profile for data intensive applications. In Proceedings of the 2Nd In-
ternational Workshop on Quality-Aware DevOps, QUDOS 2016, pages 18–23, New
York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/2945408.2945412,
doi:10.1145/2945408.2945412.

24. ATC. Athens Technology Center Website, 2018. URL: https://www.atc.gr/default.
aspx?page=home.

25. Blu Age. Blu Age, Make IT Digital, 2018. URL: https://www.bluage.com.
26. D.C. Petriu, M. Alhaj, R. Tawhid. Software Performance Modeling, volume 7320 of

Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2012.
27. E.D. Lazowska, J. Zahorjan, G. Scott Graham, and C. Sevcik. Quantitative System

Performance: Computer System Analysis Using Queueing Network models. Prentice-
Hall, 1984.

28. J. P. López-Grao, J. Merseguer and J. Campos. From UML Activity Diagrams to
Stochastic Petri Nets: Application to Software Performance Engineering. In Proceedings
of the 4th International Workshop on Software and Performance, WOSP ’04, pages
25–36, New York, NY, USA, 2004. ACM. URL: http://doi.acm.org/10.1145/974044.
974048, doi:10.1145/974044.974048.

29. José I. Requeno, José Merseguer, Simona Bernardi, Diego Perez-Palacin, Giorgos Giotis
and Vasilis Papanikolaou. Quantitative Analysis of Apache Storm Applications: The
NewsAsset Case Study. Information Systems Frontiers, 2018. Accepted for publication.
doi:10.1007/s10796-018-9851-x.

30. Prodevelop. Prodevelop- Integrating Tech, 2018. URL: https://www.prodevelop.es/en.
31. S. Bernardi, J.L. Dominguez, A. Gómez, C. Joubert, José Merseguer, D. Perez-Palacin,

J.I. Requeno and A. Romeu. A systematic approach for performance assessment using
process mining. Empirical Software Engineering, 2018. Accepted for publication. doi:

10.1007/s10664-018-9606-9.
32. Stephen Gilmore, Jane Hillston, Lela Kloul and Marina Ribaudo. Pepa nets: a structured

performance modelling formalism. Performance Evaluation, 54(2):79 – 104, 2003. doi:
https://doi.org/10.1016/S0166-5316(03)00069-5.

33. W.H. Sanders, J.F. Meyer. Stochastic Activity Networks: Formal Definitions and Con-
cepts, volume 2090 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
2001.

34. XLAB. XLAB, R&D, 2018. URL: https://www.xlab.si.
35. Juniper Project. Experimental: Models for big data stream processing, 2015. Ju-

niper Project Tutorial. URL: http://forge.modelio.org/projects/juniper/wiki/

Tutorial_on_Models_for_Big_Data_stream_processing.
36. Johannes Kroß, Andreas Brunnert, and Helmut Krcmar. Modeling Big Data Systems

by Extending the Palladio Component Model. Softwaretechnik-Trends, 35(3), 2015.
37. Johannes Kroß and Helmut Krcmar. Modeling and Simulating Apache Spark Streaming

Applications. Softwaretechnik-Trends, 36(4), 2016.
38. François Lagarde, Huáscar Espinoza, François Terrier, and Sébastien Gérard. Im-

proving UML profile design practices by leveraging conceptual domain models. In
22nd IEEE/ACM International Conference on Automated Software Engineering (ASE
2007), Atlanta (USA), pages 445–448. ACM, November 2007.

39. M. Langheinrich. Privacy by design. In G.D. Abowd, B. Brumitt, and A. Shafer, editors,
UBICOMP 2001, pages 273–291. Springer, 2001.

40. Paul Lipton, Derek Palma, Matt Rutkowski, and Damian A. Tamburri. TOSCA solves
big problems in the cloud and beyond. IEEE Cloud, To appear, 21(11):31–39, 2016.

www.di.unito.it/~greatspn/index.html
www.di.unito.it/~greatspn/index.html
https://doi.org/10.1109/ICSA.2018.00025
https://doi.org/10.1109/ICSA.2018.00025
http://dx.doi.org/10.1109/ICSA.2018.00025
http://doi.acm.org/10.1145/2945408.2945412
http://dx.doi.org/10.1145/2945408.2945412
https://www.atc.gr/default.aspx?page=home
https://www.atc.gr/default.aspx?page=home
https://www.bluage.com
http://doi.acm.org/10.1145/974044.974048
http://doi.acm.org/10.1145/974044.974048
http://dx.doi.org/10.1145/974044.974048
http://dx.doi.org/10.1007/s10796-018-9851-x
https://www.prodevelop.es/en
http://dx.doi.org/10.1007/s10664-018-9606-9
http://dx.doi.org/10.1007/s10664-018-9606-9
http://dx.doi.org/https://doi.org/10.1016/S0166-5316(03)00069-5
http://dx.doi.org/https://doi.org/10.1016/S0166-5316(03)00069-5
https://www.xlab.si
http://forge.modelio.org/projects/juniper/wiki/Tutorial_on_Models_for_Big_Data_stream_processing
http://forge.modelio.org/projects/juniper/wiki/Tutorial_on_Models_for_Big_Data_stream_processing

A UML profile for DIA development. 53

41. UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded Systems,
June 2011. Version 1.1, OMG document: formal/2011-06-02.

42. K. Morris. Infrastructure As Code: Managing Servers in the Cloud. Oreilly & Associates
Incorporated, 2016.

43. Derek Palma, Matt Rutkowski, and Thomas Spatzier. Tosca simple profile in yaml
version 1.0. Technical report, OASIS Committee Specification, http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-
YAML-v1.0-cs01.html, 2016.

44. Diego Perez-Palacin, Youssef Ridene, and José Merseguer. Quality assessment in de-
vops: Automated analysis of a tax fraud detection system. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering Companion,
ICPE ’17 Companion, pages 133–138, New York, NY, USA, 2017. ACM.

45. A. Rajbhoj, V. Kulkarni, and N. Bellarykar. Early experience with model-driven de-
velopment of mapreduce based big data application. In Software Engineering Con-
ference (APSEC), 2014 21st Asia-Pacific, volume 1, pages 94–97, Dec 2014. doi:

10.1109/APSEC.2014.23.
46. Rajiv Ranjan. Modeling and Simulation in Performance Optimization of Big Data

Processing Frameworks. IEEE Cloud Computing, 1(4):14–19, 2014.
47. Jose-Ignacio Requeno, José Merseguer, and Simona Bernardi. Performance Analysis

of Apache Storm Applications Using Stochastic Petri Nets. In IEEE International
Conference on Information Reuse and Integration (IRI), pages 411–418, 2017. URL:
http://ieeexplore.ieee.org/document/8102965/, doi:10.1109/IRI.2017.64.

48. Guido Sandmann and Richard Thompson. Development of autosar software components
within model-based design. SAE Technical Paper, 04 2008. doi:10.4271/2008-01-0383.

49. S. Santurkar, A. Arora, and K. Chandrasekaran. Stormgen - a domain specific language
to create ad-hoc storm topologies. In Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on, pages 1621–1628, Sept 2014. doi:10.15439/
2014F278.

50. Markus Scheidgen and Anatolij Zubow. Map/reduce on emf models. In MDH-
PCL@MoDELS, page 7. ACM, 2012. URL: http://dblp.uni-trier.de/db/conf/

models/mdhpcl2012.html#ScheidgenZ12.
51. Bran Selic. A Systematic Approach to Domain-Specific Language Design Using UML.

In Tenth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2007), 7-9 May 2007, Santorini Island, Greece, pages 2–9. IEEE
Computer Society, 2007.

52. Bran Selic and Sebastien Gerard, editors. Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE. Morgan Kaufmann, Boston, 2014.

53. Connie U. Smith and Lloyd G. Williams. Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 2002.

54. The Apache Software Foundation. Apache Cassandra. url: http://cassandra.apache.
org/.

55. The Apache Software Foundation. Apache Hadoop. url: http://hadoop.apache.org/.
56. The Apache Software Foundation. Apache Kafka. url: http://kafka.apache.org/.
57. The Apache Software Foundation. Apache Spark. url: http://spark.apache.org/.
58. The Apache Software Foundation. Apache Storm. url: http://storm.apache.org/.
59. The Apache Software Foundation. Apache Tez. url: http://tez.apache.org/.
60. The DICE Consortium. DICE Models Repository, Jan., 2017. url: https://github.

com/dice-project/DICE-Models.
61. The DICE Consortium. DICE Simulation tool, Oct., 2017. https://github.com/

dice-project/DICE-Simulation.
62. The DICE Consortium. DICE Profiles Repository, Sep., 2017. url: https://github.

com/dice-project/DICE-Profiles.
63. The DICE Consortium. DICE Profiles, Sept., 2017. https://github.com/

dice-project/DICE-Profiles.
64. The DICE Consortium. DICE-Rollout, Sept., 2017. https://github.com/

dice-project/DICER.
65. The Object Management Group (OMG). Model-Driven Architecture Specification and

Standardisation. Technical report, , 2018. url: http://www.omg.org/mda/.

http://dx.doi.org/10.1109/APSEC.2014.23
http://dx.doi.org/10.1109/APSEC.2014.23
http://ieeexplore.ieee.org/document/8102965/
http://dx.doi.org/10.1109/IRI.2017.64
http://dx.doi.org/10.4271/2008-01-0383
http://dx.doi.org/10.15439/2014F278
http://dx.doi.org/10.15439/2014F278
http://dblp.uni-trier.de/db/conf/models/mdhpcl2012.html#ScheidgenZ12
http://dblp.uni-trier.de/db/conf/models/mdhpcl2012.html#ScheidgenZ12
http://cassandra.apache.org/
http://cassandra.apache.org/
http://hadoop.apache.org/
http://kafka.apache.org/
http://spark.apache.org/
http://storm.apache.org/
http://tez.apache.org/
https://github.com/dice-project/DICE-Models
https://github.com/dice-project/DICE-Models
https://github.com/dice-project/DICE-Simulation
https://github.com/dice-project/DICE-Simulation
https://github.com/dice-project/DICE-Profiles
https://github.com/dice-project/DICE-Profiles
https://github.com/dice-project/DICE-Profiles
https://github.com/dice-project/DICE-Profiles
https://github.com/dice-project/DICER
https://github.com/dice-project/DICER
http://www.omg.org/mda/

54 D. Perez-Palacin et al.

66. Unified Modeling Language: Infrastructure, 2017. Version 2.5.1, OMG document:
formal/2017-12-05.

67. Kewen Wang and Mohammad Maifi Hasan Khan. Performance prediction for Apache
Apark platform. In 2015 IEEE 17th International Conference on High Performance
Computing and Communications (HPCC), 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conferen
on Embedded Software and Systems (ICESS), pages 166–173. IEEE, 2015.

68. J. Wettinger, U. Breitenbücher, and F. Leymann. Standards-based devops automation
and integration using tosca. In 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing, pages 59–68, Dec 2014. doi:10.1109/UCC.2014.14.

69. WikiMedia project. Wikistats, Dec., 2016. https://www.mediawiki.org/wiki/

Analytics/Wikistats.
70. Rudolf Wille. Formal concept analysis as mathematical theory of concepts and concept

hierarchies. In Formal Concept Analysis, pages 1–33, 2005.
71. C. Murray Woodside, Dorina C. Petriu, José Merseguer, Dorin Bogdan Petriu, and

Mohammad Alhaj. Transformation challenges: from software models to performance
models. Software and System Modeling, 13(4):1529–1552, 2014. URL: http://dx.doi.
org/10.1007/s10270-013-0385-x, doi:10.1007/s10270-013-0385-x.

http://dx.doi.org/10.1109/UCC.2014.14
https://www.mediawiki.org/wiki/Analytics/Wikistats
https://www.mediawiki.org/wiki/Analytics/Wikistats
http://dx.doi.org/10.1007/s10270-013-0385-x
http://dx.doi.org/10.1007/s10270-013-0385-x
http://dx.doi.org/10.1007/s10270-013-0385-x

	Introduction
	Motivations and Approach
	DIA profile definition: DPIM
	DIA profile definition: DTSM
	DIA profile definition: DDSM
	Adopting the DIA profile and the WikiStats example
	Goal of the validation
	DTSM profile validation: Quality assessment
	DDSM profile validation: Automatic deployment
	Related work
	Conclusion and future work
	MARTE and DAM profiles
	DIA Profile Library
	TOSCA
	Transformation of a DTSM design to a performance model
	Usability of the profile

