37,514 research outputs found

    A Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data

    Full text link
    The Markov chain Monte Carlo methods offer practical procedures for detecting signals characterized by a large number of parameters and under conditions of low signal-to-noise ratio. We present a Metropolis-Hastings algorithm capable of inferring the spin and orientation parameters of a neutron star from its periodic gravitational wave signature seen by laser interferometric detector

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Breaking a chaos-noise-based secure communication scheme

    Full text link
    This paper studies the security of a secure communication scheme based on two discrete-time intermittently-chaotic systems synchronized via a common random driving signal. Some security defects of the scheme are revealed: 1) the key space can be remarkably reduced; 2) the decryption is insensitive to the mismatch of the secret key; 3) the key-generation process is insecure against known/chosen-plaintext attacks. The first two defects mean that the scheme is not secure enough against brute-force attacks, and the third one means that an attacker can easily break the cryptosystem by approximately estimating the secret key once he has a chance to access a fragment of the generated keystream. Yet it remains to be clarified if intermittent chaos could be used for designing secure chaotic cryptosystems.Comment: RevTeX4, 11 pages, 15 figure

    Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps

    Get PDF
    Industrial manufacturing plants often suffer from reliability problems during their day-to-day operations which have the potential for causing a great impact on the effectiveness and performance of the overall process and the sub-processes involved. Time-series forecasting of critical industrial signals presents itself as a way to reduce this impact by extracting knowledge regarding the internal dynamics of the process and advice any process deviations before it affects the productive process. In this paper, a novel industrial condition monitoring approach based on the combination of Self Organizing Maps for operating point codification and Recurrent Neural Networks for critical signal modeling is proposed. The combination of both methods presents a strong synergy, the information of the operating condition given by the interpretation of the maps helps the model to improve generalization, one of the drawbacks of recurrent networks, while assuring high accuracy and precision rates. Finally, the complete methodology, in terms of performance and effectiveness is validated experimentally with real data from a copper rod industrial plant.Postprint (published version
    corecore