1,227 research outputs found

    Adaptive Transmission Range Based Topology Control Scheme for Fast and Reliable Data Collection

    Get PDF
    An Adaptive Transmission Range Based Topology Control (ATRTC) scheme is proposed to reduce delay and improve reliability for data collection in delay and loss sensitive wireless sensor network. The core idea of the ATRTC scheme is to extend the transmission range to speed up data collection and improve the reliability of data collection.The main innovations of our work are as follows: (1) an adaptive transmission range adjustment method is proposed to improve data collection reliability and reduce data collection delay. The expansion of the transmission range will allow the data packet to be received by more receivers, thus improving the reliability of data transmission. On the other hand, by extending the transmission range, data packets can be transmitted to the sink with fewer hops.Thereby the delay of data collection is reduced and the reliability of data transmission is improved. Extending the transmission range will consume more energy. Fortunately, we found the imbalanced energy consumption of the network.There is a large amount of energy remains when the network died. ATRTC scheme proposed in this paper can make full use of the residual energy to extend the transmission range of nodes. Because of the expansion of transmission range, nodes in the network form multiple paths for data collection to the sink node.Therefore, the volume of data received and sent by the near-sink nodes is reduced, the energy consumption of the near-sink nodes is reduced, and the network lifetime is increased as well. (2)According to the analysis in this paper, compared with the CTPR scheme, the ATRTC scheme reduces the maximum energy consumption by 9%, increases the network lifetime by 10%, increases the data collection reliability by 7.3%, and reduces the network data collection time by 23%

    EMMON - EMbedded MONitoring

    Get PDF
    Despite the steady increase in experimental deployments, most of research work on WSNs has focused only on communication protocols and algorithms, with a clear lack of effective, feasible and usable system architectures, integrated in a modular platform able to address both functional and non–functional requirements. In this paper, we outline EMMON [1], a full WSN-based system architecture for large–scale, dense and real–time embedded monitoring [3] applications. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. Then, EM-Set, the EMMON engineering toolset will be presented. EM-Set includes a network deployment planning, worst–case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset was crucial for the development of EMMON which was designed to use standard commercially available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. Finally, the EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ nodes testbed

    Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks

    Get PDF
    يستهلك إرسال واستقبال البيانات معظم الموارد في شبكات الاستشعار اللاسلكية (WSNs). تعد الطاقة التي توفرها البطارية أهم مورد يؤثر على عمر WSN في عقدة المستشعر. لذلك، نظرًا لأن عُقد المستشعر تعمل بالاعتماد على بطاريتها المحدودة ، فإن توفير الطاقة ضروري. يمكن تعريف تجميع البيانات كإجراء مطبق للقضاء على عمليات الإرسال الزائدة عن الحاجة ، ويوفر معلومات مدمجة إلى المحطات الأساسية ، مما يؤدي بدوره إلى تحسين فعالية الطاقة وزيادة عمر الشبكات اللاسلكية ذات للطاقة المحدودة. في هذا البحث ، تم اقتراح طريقة تجميع البيانات المستندة إلى النقاط المهمة إدراكيًا (PIP-DA) لشبكات المستشعرات اللاسلكية لتقليل البيانات الزائدة عن الحاجة قبل إرسالها إلى المحطة الاساسية. من خلال استخدام مجموعة بيانات Intel Berkeley Research Lab (IBRL) ، تم قياس كفاءة الطريقة المقترحة. توضح النتائج التجريبية فوائد الطريقة المقترحة حيث تعمل على تقليل الحمل على مستوى عقدة الاستشعار حتى 1.25٪ في البيانات المتبقية وتقليل استهلاك الطاقة حتى 93٪ مقارنة ببروتوكولات PFF و ATP.The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the sink. By utilizing Intel Berkeley Research Lab (IBRL) dataset, the efficiency of the proposed method was measured. The experimental findings illustrate the benefits of the proposed method as it reduces the overhead on the sensor node level up to 1.25% in remaining data and reduces the energy consumption up to 93% compared to prefix frequency filtering (PFF) and ATP protocols

    Relocating sensor nodes to maximize cumulative connected coverage in wireless sensor networks

    Get PDF
    PubMed ID: 27879850In order to extend the availability of the wireless sensor network and to extract maximum possible information from the surveillance area, proper usage of the power capacity of the sensor nodes is important. Our work describes a dynamic relocation algorithm called MaxNetLife, which is mainly based on utilizing the remaining power of individual sensor nodes as well as properly relocating sensor nodes so that all sensor nodes can transmit the data they sense to the sink. Hence, the algorithm maximizes total collected information from the surveillance area before the possible death of the sensor network by increasing cumulative connected coverage parameter of the network. A deterministic approach is used to deploy sensor nodes into the sensor field where Hexagonal Grid positioning is used to address and locate each sensor node. Sensor nodes those are not planned to be actively used in the close future in a specific cell are preemptively relocated to the cells those will be in need of additional sensor nodes to improve cumulative connected coverage of the network. MaxNetLife algorithm also includes the details of the relocation activities, which include preemptive migration of the redundant nodes to the cells before any coverage hole occurs because of death of a sensor node. Relocation Model, Data Aggregation Model, and Energy model of the algorithm are studied in detail. MaxNetLife algorithm is proved to be effective, scalable, and applicable through simulations.Publisher's Versio

    Secure and energy-efficient multicast routing in smart grids

    Get PDF
    A smart grid is a power system that uses information and communication technology to operate, monitor, and control data flows between the power generating source and the end user. It aims at high efficiency, reliability, and sustainability of the electricity supply process that is provided by the utility centre and is distributed from generation stations to clients. To this end, energy-efficient multicast communication is an important requirement to serve a group of residents in a neighbourhood. However, the multicast routing introduces new challenges in terms of secure operation of the smart grid and user privacy. In this paper, after having analysed the security threats for multicast-enabled smart grids, we propose a novel multicast routing protocol that is both sufficiently secure and energy efficient.We also evaluate the performance of the proposed protocol by means of computer simulations, in terms of its energy-efficient operation

    Enabling sustainable power distribution networks by using smart grid communications

    Get PDF
    Smart grid modernization enables integration of computing, information and communications capabilities into the legacy electric power grid system, especially the low voltage distribution networks where various consumers are located. The evolutionary paradigm has initiated worldwide deployment of an enormous number of smart meters as well as renewable energy sources at end-user levels. The future distribution networks as part of advanced metering infrastructure (AMI) will involve decentralized power control operations under associated smart grid communications networks. This dissertation addresses three potential problems anticipated in the future distribution networks of smart grid: 1) local power congestion due to power surpluses produced by PV solar units in a neighborhood that demands disconnection/reconnection mechanisms to alleviate power overflow, 2) power balance associated with renewable energy utilization as well as data traffic across a multi-layered distribution network that requires decentralized designs to facilitate power control as well as communications, and 3) a breach of data integrity attributed to a typical false data injection attack in a smart metering network that calls for a hybrid intrusion detection system to detect anomalous/malicious activities. In the first problem, a model for the disconnection process via smart metering communications between smart meters and the utility control center is proposed. By modeling the power surplus congestion issue as a knapsack problem, greedy solutions for solving such problem are proposed. Simulation results and analysis show that computation time and data traffic under a disconnection stage in the network can be reduced. In the second problem, autonomous distribution networks are designed that take scalability into account by dividing the legacy distribution network into a set of subnetworks. A power-control method is proposed to tackle the power flow and power balance issues. Meanwhile, an overlay multi-tier communications infrastructure for the underlying power network is proposed to analyze the traffic of data information and control messages required for the associated power flow operations. Simulation results and analysis show that utilization of renewable energy production can be improved, and at the same time data traffic reduction under decentralized operations can be achieved as compared to legacy centralized management. In the third problem, an attack model is proposed that aims to minimize the number of compromised meters subject to the equality of an aggregated power load in order to bypass detection under the conventionally radial tree-like distribution network. A hybrid anomaly detection framework is developed, which incorporates the proposed grid sensor placement algorithm with the observability attribute. Simulation results and analysis show that the network observability as well as detection accuracy can be improved by utilizing grid-placed sensors. Conclusively, a number of future works have also been identified to furthering the associated problems and proposed solutions

    A Multiple Mobility Support Approach (MMSA) Based on PEAS for NCW in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) can be implemented as one of sensor systems in Network Centric Warfare (NCW). Mobility support and energy efficiency are key concerns for this application, due to multiple mobile users and stimuli in real combat field. However, mobility support approaches that can be adopted in this circumstance are rare. This paper proposes Multiple Mobility Support Approach (MMSA) based on Probing Environment and Adaptive Sleeping (PEAS) to support the simultaneous mobility of both multiple users and stimuli by sharing the information of stimuli in WSNs. Simulations using Qualnet are conducted, showing that MMSA can support multiple mobile users and stimuli with good energy efficiency. It is expected that the proposed MMSA can be applied to real combat field

    Context Protecting Privacy Preservation in Ubiquitous Computing

    Full text link
    In ubiquitous computing domain context awareness is an important issue. So, in ubiquitous computing, mere protection of message confidentiality is not sufficient for most of the applications where context-awareness can lead to near deterministic ideas. An adversary might deduce sensitive information by observing the contextual data, which when correlated with prior information about the people and the physical locations that are being monitored by a set of sensors can reveal most of the sensitive information. So, it is obvious that for security and privacy preservation in ubiquitous computing context protection is of equal importance. In this paper, we propose a scheme which provides two layer privacy protection of user's or application's context data. Our proposed context protecting privacy preservation scheme focuses on protecting spatial and temporal contextual information. We consider the communication part of ubiquitous computing consists of tiny sensor nodes forming Wireless Sensor Networks (WSNs). Through simulation we show the efficacy of our scheme. We also demonstrate the capability of our scheme to overcome the constraints of WSNs.Comment: 6 pages, 7 Figures, IEEE CISIM 201
    corecore