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Abstract: In order to extend the availability of the wireless sensor network and to extract 

maximum possible information from the surveillance area, proper usage of the power 

capacity of the sensor nodes is important. Our work describes a dynamic relocation 

algorithm called MaxNetLife, which is mainly based on utilizing the remaining power of 

individual sensor nodes as well as properly relocating sensor nodes so that all sensor nodes 

can transmit the data they sense to the sink. Hence, the algorithm maximizes total collected 

information from the surveillance area before the possible death of the sensor network by 

increasing cumulative connected coverage parameter of the network. A deterministic 

approach is used to deploy sensor nodes into the sensor field where Hexagonal Grid 

positioning is used to address and locate each sensor node. Sensor nodes those are not 

planned to be actively used in the close future in a specific cell are preemptively relocated 

to the cells those will be in need of additional sensor nodes to improve cumulative 

connected coverage of the network. MaxNetLife algorithm also includes the details of the 

relocation activities, which include preemptive migration of the redundant nodes to the 

cells before any coverage hole occurs because of death of a sensor node. Relocation Model, 

Data Aggregation Model, and Energy model of the algorithm are studied in detail. 

MaxNetLife algorithm is proved to be effective, scalable, and applicable through 

simulations. 
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1. Introduction 

A Mobile Wireless Sensor Network (WSN) is a collection of sensor nodes deployed in a 

surveillance area to extract information; where each sensor node has sensing, processing, 

communication, and locomotion capabilities [1]. Each sensor node is capable of sensing events, 

execute some processing on the sensed data, communicate with neighbor nodes, and change position 

when it is required. The main purpose of deploying a sensor network to a surveillance area is to get as 

much information as it is possible, before the sensor nodes, and eventually the whole network dies. 

While trying to reach this goal, the researchers struggle with the two constraints: energy scarcity, and 

low computation capacity of the sensor nodes. When wireless sensor networks were initially 

introduced, mobility was not tailored to the primitive sensor nodes [2]. As the research in this area 

emerged in years, the requirements for the WSN applications are improved as well as the capabilities to 

satisfy those requirements. Mobility is possibly the most important among all. Mobility studies targeted 

for gaining advantages such as: 

• Enabling connectivity of clusters when there is a hole between the mainland and the islands 

• Increasing coverage of the cluster by relocating redundant nodes to the holes 

• Fine-tuning the sensor nodes within a cluster when better coverage and connectivity can be 

performed after relocation 

• Healing the network by connecting the islands to the mainland by the migration of sensor nodes 

 

Mobility of sensor nodes to fill in a coverage hole is introduced, and studied by some researchers 

[3-11]. These studies mainly concentrate on finding the most appropriate sensor node around to fill in a 

gap just realized. Common features of the studied algorithms are: 

• They concentrate on solving one problem at a time, hence not scalable. 

• Distributed algorithms, those run on all sensor nodes are used without much help of the cluster 

head or sink; results in early power exhaustion of sensor nodes. 

• Distributed algorithms will also possibly result in many nodes relocating to the same hole, hence 

causing overlapping. 

• The relocation activity starts after the death occurs; hence creating delay to fill in the hole. 

• The algorithms include only the relocation activity, and do not include how the regular works 

are to be performed concurrently by the sensor nodes; hence are inapplicable. 

• Too much message traffic between the cells in need of extra sensor node, and many sensor 

nodes which may relocate potentially to fill in the hole; hence causing too much energy 

consumption, overhead, and poor data aggregation. 

• Their complexities are high. 

We introduce MaxNetLife algorithm, which essentially solves the deficiencies of prior algorithms, 

and also add some additional features. Each player, namely the sink, cluster heads, and the sensor 

nodes have their own roles in the algorithm. Data traffic is managed by the cluster head, and excess 

message traffic is prevented. The algorithm contains all the work done by the sensor nodes, hence it is 

inclusive. Energy model of the sensor nodes, Relocation model of the sensor nodes, as well as Data 

Aggregation model of the network are studied as part of the algorithms, hence it is inclusive. An open-

source simulation environment, called MobilSim is designed and implemented to be used in simulating 
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our model using Java programming language. MaxNetLife algorithm is tested extensively through the 

created test bed.  

The rest of the paper is organized as follows. Chapter 2 provides the definitions and the related 

work. In chapter 3 our new proposed MaxNetLife algorithm, which maximizes the cumulative 

connected coverage through mobility is proposed. The performance analysis of our algorithm is 

analyzed in chapter 4. Chapter 5 points out the contributions of our algorithm, and concludes our 

paper. 

2. Definitions and Related Work 

Two important hardware components of sensor nodes are sensors and transmitters. The sensing 

ranges of sensors define the coverage; whilst the transmission & reception ranges of transmitters define 

the connectivity of the sensor network. It is important to provide connectivity and coverage at the same 

time, since a sensed data is not good if it can not be sent to the sink because of the poor connectivity. 

After sensor nodes are deployed to the surveillance area, no problem regarding coverage or 

connectivity may be realized initially, and the same ideal situation may even go for a long period. But, 

it is a fate that some nodes, and probably the ones closer to the sink will start to die, so that the sensed 

information won’t be transferred to the sink. A cell which does not include any node is called as 

coverage hole, or briefly as hole. Another term, gap is used to refer to this situation in some works. A 

hole may also consists of more than one vacant cell, which of course is a bigger problem. Holes may 

start to occur much earlier then expected when a poor design is used, a poor deployment occurs, or a 

high amount of energy is consumed. 

Coverage of the WSN is designated by the collection of sensing units of the sensor nodes, whilst the 

connectivity is designated by the transmitters. The mainland is part of the network which contains the 

sink together with the sensor nodes those are connected to the sink, either directly or via other nodes. 

Sensor nodes in a mainland can send their messages to the sink, by definition. An island in the network 

contains one or more nodes which are not connected to the sink; hence, they can send messages to each 

other, but can not send any message to the sink. A network is connected if every node in the network is 

part of the mainland, not connected if at least one island exists.  

The coverage of a sensor node is not of importance, until the node can send its data to the sink, 

which requires that the sensor node must be connected to the sink, in other words be a part of the 

mainland. Thus, coverage is not beneficial until connectivity is accomplished. Without a valid route 

path between the sender (node) and the receiver (sink), a sensed data is worthless. Hence, connected 

coverage is useful, while unconnected coverage is one of the basic problems in WSNs.  

Sensor nodes have limited energy capacity, and recharging batteries is impractical, if not impossible. 

Therefore, energy-related study has become an area of intense research activity. [12], for example tries 

to decrease number of messages sent by the sensor nodes in order to decrease energy consumption 

within the network. Researches those concentrate on the design goals of sensor networks mainly put 

forward the importance of maximum coverage [13-15] as well as prolonged network lifetime [16-17]. 

Embedding the concerns about connectivity, coverage and lifetime all together into one simple 

parameter would help much to analyze performance of a given network.  
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We propose to use a new design parameter, namely cumulative connected coverage; which can be 

explained as the combination of all three parameters. Informally, it can be defined as maintaining 

connected coverage for an extended period of time. Formally, Equation (1) can be used to calculate its 

value. Ct is the marginal connected coverage at t = ti, and CC is the cumulative connected coverage of 

the network through network lifetime.  

∑
=

=
ft

t
tC CC

0

 (1) 

Many researches are performed on how to find the best way to arrange given number of sensor 

nodes to maintain maximum possible coverage. [13] is one of those, and confirms that the hexagonal 

model gives optimal performance in terms of requiring minimal number of sensor nodes for a given 

sensor field. SENDROM [18] proposes individual sensor nodes to be deployed around to be used in 

disaster recovery using sensor networks, where data collecting nodes, called cnodes, are used as the 

cluster heads. A distributed data aggregation and dilution technique, called DADMA is proposed in 

[19] for sensor networks where nodes aggregate sensed data to the cluster.  

In this study, sensor fields are divided into clusters, and clusters are further divided into hexagonal 

cells. When only one node is enclosed within a cell, it is called as master node, and it will be 

responsible to perform the activities within that cell. If more than one node exists in a given cell, one of 

the nodes will be referred as the master node, and the others will be referred as redundant nodes. We 

further classify redundant nodes as either extra node or excess node, depending on their future possible 

usage in or out of the cell. If a redundant node is planned to be used in the same cell after a while, after 

the master node dies for example, that node will be referred as extra node, and will be kept within the 

same cell for future usage. Redundant nodes those are not planned to be used in the current cell are 

called as excess nodes, and existence of excess nodes in a cell, especially for a long period is against 

productivity. 

Coverage is an important criterion for the quality of service in a sensor network, and handling the 

coverage holes received significant attention [4]. One approach is to deploy vast number of redundant 

sensor nodes to the cells. In [5], extra sensor nodes are deployed randomly in the area to be monitored 

if deployed sensor nodes can not achieve the required coverage. In order to maximize coverage and 

connectivity, some sensor nodes must be relocated to fill the holes by using mobile nodes. As also 

stated in [6], locomotion facilitates a number of useful network capabilities, including the ability to 

self-deploy and self-repair. Relocating excess nodes to cells in need of sensor nodes improves 

productivity. 

When a hole occurs, the obvious solution seems to relocate the closest redundant sensor node to 

heal the coverage hole. How to find the closest excess node may seem trivial at a first glance, but 

unfortunately it is not so. It has been pointed out that there are indeed important issues to consider such 

as minimizing total energy consumption, minimizing completion time of the overall movements via 

cascaded relocations of several sensor nodes, and minimizing average moving distances in cascaded 

relocations of several sensor nodes etc. [3]. 

Mobility of sensor nodes to fill in a coverage hole is studied by the researchers. Not only 

minimizing the distance to relocate, but also reducing the difference of the remaining energy among 

sensor nodes is studied in [7] for a longer system lifetime. In [7] it is aimed to find the positions and 
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movement information of nodes to achieve maximum coverage and to form a uniformly distributed 

wireless network in minimum time and with minimum energy consumption. Hence, [7] concentrates 

on only proper localization of sensor nodes after deployment and does not consider the latter relocation 

requirements. 

In [8] a self-organizing technique for enhancing the coverage of wireless sensor networks after 

initial random placement of sensor nodes is proposed, which can not appropriately handle simultaneous 

relocations. One of the weak points is the possibility that more than one sensor node may move 

towards the same location. This problem is tried to be solved by inserting a delay time, hopefully 

different for each sensor. Another problem with this study is execution of the same algorithm by each 

individual sensor nodes in every possible opportunity, resulting in extra energy consumption. 

In [3], matching redundant sensor nodes to the coverage hole is managed in publish / subscribe 

fashion. The most possible reason for using a publish / subscribe algorithm is considering the matching 

problem as a rare case. As a matter of fact, this is a frequent case.  

In order to increase coverage by healing the coverage holes, vector based (VEC), Voronoi based 

(VOR), and Minimax algorithms are proposed in [9-10] which uses mobility of sensor nodes. The two 

problems with [9-10] as pointed out by the same research group in [3] is that moving neighbor mobile 

sensor nodes may create new holes in that area; and it takes a long time for the algorithm to terminate. 

Authors propose finding the locations of the redundant sensor nodes first, and then to design an 

efficient route to move to the destination in [3]. We don’t assume that the new approach solves the 

problem as effectively as required, since it does not contain a deterministic approach to select the most 

appropriate node to fix the hole. We will address this issue further in this study. 

Authors of [11] propose four Dynamic Coverage Maintenance (DCM) schemes that exploit the 

limited mobility of the sensor nodes. Maximum energy based (MEB) preferentially moves the neighbor 

having maximum energy among all eligible neighbors; MinMax Distance (MMD) tries to minimize 

migration distance; Minimum D/E (MDE) combines the objectives of the MEB and MMD by choosing 

the node with the least ratio of the maximum distance each neighbor can move to their available energy 

(D/E); Minimum Distance Lazy (MDL) moves the closest neighbor.  

After a detailed analysis of earlier works, we list some work those need to be implemented in this 

area as follows: 

• Earlier works working on mobility solves one assignment problem at a time; which does a 

many-to-one mapping of sensor nodes at a time. The actual problem includes many coverage 

holes as well as many redundant sensor nodes in each cycle; hence a many-to-many problem 

exists. 

• If the relocation activity starts after the death of a sensor node creating the hole, a time delay will 

definitely happen. Since the delay will occur in almost all relocations, a healthful network 

process will not occur. It is more efficient to preemptively relocate a redundant node to a 

location just before an expected death of a sensor, and in some applications this approach may 

be even crucial. 

• Data transfer model between the dying sensor node and the relocating sensor node is an 

important issue for the broad picture.  

• The content of the data package is very important and should be clearly addressed.  
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• Sensor node relocation algorithm is not a stand-alone activity. The regular activities of the 

sensor nodes should continue concurrently while the relocation activity is performed.  

• The relocation activity indeed demands a more detailed study, including: 

o There may not be any redundant sensor node available. 

o The distance between the coverage hole and the most available redundant sensor node 

may not justify the relocation, most possibly because of the required energy consumption 

for relocation. The sensor node may consume most, if not all, of the remaining power if 

it performs the task; hence not satisfying the relocation. 

o The possible relocation direction of a redundant sensor node may be contrary to general 

power consumption within the network. For example, the cluster containing the 

redundant sensor node may be in fast power reduction phase, and most possibly that 

cluster may complain coverage hole in a close future. 

• Relocation requirement may be caused by dynamic change in the mission of the sensor network. 

Some area, not included in the initial design, may be added to the region of interest (ROI) 

requiring group relocation of sensor nodes. [20] partly addresses this issue by Reference Point 

Group Mobility (RPGM).  

3. MaxNetLife Algorithm 

3a. Motivation / Key Points / Fundamentals of our algorithm: 

The primary motivation of our algorithm is increasing CC, cumulative connected coverage ratio, of 

the WSN. It is mentioned above that, in order to reach this goal, maximization of connected coverage 

as well as extending network lifetime at the same time is required, both of which largely depends on 

low energy consumption, meanwhile appropriately utilizing the consumed energy. 

In our algorithm, we consider the following parameters: 

(1) Priority: Some regions in the surveillance area may have higher priority over others. When a 

redundant sensor node is to be relocated, holes within a region with higher priority should be chosen, 

based on the fact that all other parameters are equal. The priority may be imposed by the design 

parameters, or it may have some technical requirements such as continuously establishing data 

corridors among specific regions, or between specific cluster and the sink, for example.  

Methodology for assigning priorities to different regions or clusters mainly depends on the 

properties of projects. As an example, the boundary of the area may have higher priority than the inner 

regions in a security surveillance system. At first glance, dense deployment into regions with high 

priorities seems a solution to handle the priority management; which has some drawbacks. The first 

one is that it works only for static priority definition. Priorities of regions may also change dynamically 

after the deployment phase. As the possibility of an attack direction changes, the segment of the nodes 

with high probability may change for example. This implies that the solution in defining and 

processing priority must be embedded into the algorithm to process it dynamically. Handling priority 

dynamically in our algorithm increases flexibility and adaptability, without sacrificing efficiency. Our 

priority scheme mainly helps us strengthening the more important sub regions / clusters dynamically.  
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(2) Scarcity: If number of sensor nodes in a cluster is reduced below a threshold level, the sensor 

nodes may create an island which becomes disconnected from the mainland. Migrating all sensor nodes 

to another cluster may be reasonable in this case. 

(3) Being comprehensive: Previous works are concentrated on individual problems. Some tried to 

relocate sensor nodes to initially locate them into their design locations after initial deployment, but did 

not care about latter issues. Others tried to heal coverage holes, but concentrated on only one specific 

hole at a time. These types of works tried to solve either many-to-one problems, such that selecting the 

most appropriate redundant node to relocate and heal one such hole, or one-to-many problems, such 

that selecting the most appropriate hole to cover by an individual redundant hole. None of them worked 

on extensive many-to-many assignment problems. Our algorithm does not only solve individual 

problems, but also handles all relocation issues throughout network lifetime. It handles the relocation 

requirements starting with the deployment, resuming with relocating sensor nodes to heal the coverage 

holes throughout network lifetime until the death of the whole network.  

(4) Adaptability to changes in the mission statement: The algorithm should be robust for possible 

changes in mission parameters such as shift in location of the surveillance area, or changing priorities 

of different clusters. Sensor nodes may be required to move not only for healing the coverage holes 

occurred in the network, but also for satisfying the updated mission requirements.  

(5) Data transfer: In order to maintain continuity in data collection, the sensor node which 

relocates to a hole must receive the data of the dead sensor node. There are some options to transfer 

data between predecessor and the successor nodes: 

 (a) If the successor node arrive the hole before the predecessor die, the predecessor transfers all 

data that it owns to the successor node after the relocation. 

 (b) If the predecessor node dies before successor arrives, it transfers data either: 

i. to the cluster head, or 

ii.  to one of its neighbor sensor nodes, which we call as safe node. 

(6) Concurrent processing: Relocating sensor nodes execute the relocation part of our algorithm 

during the migration, while other sensor nodes execute regular tasks such as sensing, analyzing, 

transmitting etc. Thus, relocation issues and regular tasks are processed concurrently. This is an 

improvement over the previous studies in this area, since how the relocating and stable sensor nodes 

behave are not made clear in those works. In our algorithm, only relocating sensor nodes are distracted 

with the migration, whilst all other sensor nodes continue to execute their regular mission without any 

interruption. This capability apparently increases network efficiency. 

(7) Power Consumption Rate: Our algorithm introduces power consumption rate (pcr) of the 

clusters, which shows the average energy consumption in the last T period of time. The sink calculates 

pcr of each cluster in each period, and uses it to preemptively relocate sensor nodes to the cluster 

which will require node support in a close future. Sink also uses pcr of each cluster to predict a 

possible scarcity event from being occurred, and help the cluster head to which cluster should the 

sensor nodes migrate. 

(8) Uniformity: In addition to maintain connected coverage in a high success level, our algorithm 

can be used to smoothen sensor node distribution among clusters when excess number of sensor nodes 

are initially deployed in some regions, where scarce deployment rate exist in others. Uniformity will 
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enable utilization of energy more efficiently, since even distribution of sensor nodes ease the efficiency 

of algorithms [21]. Some clusters may be intentionally overloaded by redundant sensor nodes, as it will 

be described in the following paragraph in detail.  

(9) Preemptive relocation: Our algorithm enables relocating redundant sensor nodes to the 

locations where power consumption rate is high. If other parameters are kept same, the sensor nodes 

closer to the cluster head are expected to consume more energy, because they will be required to relay 

many messages [22]. Hence, those locations are candidates to require redundant sensor nodes for 

continuity. In our algorithm, redundant sensor nodes are migrated to the places where power 

consumption rate is high, in which coverage holes are expected to occur in close future. These sensor 

nodes wait in standby mode until an active node fails for some reason, after which it switches to on 

mode. This preemptive approach reduces the period between the death of the predecessor node and the 

arrival of the successor node, even makes it a negative value by relocating the successor node before 

the predecessor node dies.  

(10) S.O.S handling: The algorithm should contain an emergency recovery plan for isolated sensor 

nodes that can not communicate with the mainland. Every sensor node should be able to run the 

recovery algorithm in such a case to migrate to a position where it will be connected to the mainland 

back again. This algorithm prevents the possible loss of the sensor node which is caused by death of 

neighboring sensor nodes and / or the cluster head, or relocating to a rural district for some reason. 

3b. Assumptions: 

Followings are the assumptions on the sensor nodes made in this study:  

• All nodes are identical to each other, in terms of:  

o Initial energy level and energy consumption rate for each action, 

o Sensing range, 

o Communication range, 

o Programs loaded into the memory. 

• Nodes know their positions. 

• Nodes have locomotion capability with a reasonable speed to perform the algorithms stated in 

this work. 

• Nodes are organized as clusters and the cluster heads perform data aggregation before sending 

aggregated data to the sink. Nodes do the sensing and relaying of data packets to the cluster 

heads, and cluster heads perform data fusion and relaying of data packets to the base station. 

• Shape of sensing and communication circle of sensor nodes are not perfect. This truth, in 

practice, means that sensor nodes have minimum and maximum affective ranges, depending on 

the technical properties of the sensor node equipments and the environmental conditions. Being 

aware of this, we are interested in only the minimum affective ranges for both sensing and 

communication, and use that value in our algorithm. 

• Time synchronization of the sensor nodes is performed. 
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Followings are the assumptions on the cluster heads made in this study:  

• Cluster heads have enough transmission range so that they can communicate among themselves. 

• Cluster heads have much higher processing capability, power, and storage capacity than sensor 

nodes so that the constituting algorithm can be processed. 

• Each cluster head utilizes a database which consists of all of the necessary information about 

sensor nodes within that cluster.  

• Cluster heads constitutes mobility of sensor nodes within the cluster, compute the power 

consumption rate of each individual sensor, predict the possible dissipation/death of each 

individual sensor, and arrange migration of a sensor node to that point, or request help from the 

sink when extra sensor nodes are required. 

• Arrange the data transfer between the former and the latter sensor nodes, undertake the valuable 

data if the former will be possibly dead before the latter sensor node arrives 

• They must be positioned in appropriate locations to manage the sensor nodes in the cluster. 

3c. Creation and Addressing of the Sensor Network 

In this study, the clusters will be referred with their Cluster ID starting from 0. Each sensor node in 

a cluster will have its unique ID, also starting from 0. Sensor nodes will be identified with the Cluster 

Id that it belongs to, together with the Node ID of the node within that Cluster. 
Because of higher success in providing coverage with the same amount of sensor nodes, we use 

hexagonal grid cell representation for locating sensor nodes within clusters. The placement of cluster 

head within the cluster is also an important issue in hexagonal placement of sensor nodes. Figure 1 

shows two extreme alternatives for positioning cluster heads. We suggest each sensor node sends its 

data to its neighbor cell in the inner tier, which enables sending data with minimum possible number of 

hops among other alternative transmitting routes. Each sensor node in Figure 1 is marked according to 

number of hops required to send a message which is originated from that sensor node, to the cluster 

head. The three neighbors of the cluster head can send a message to the cluster head directly, hence it 

requires only one hop. This is why all neighbors of the cluster head is marked with “1”. The sensor 

nodes marked with “2” can send messages to their neighbors those are marked with “1”, and 

transferring data to the cluster head requires 2 hops. All other sensor nodes will have similar behaviors, 

so that the cost of message transfer from farthest sensor nodes, which are marked with “8”, requires 8 

hops. Assuming that each sensor node sends one (periodic) message to the cluster head in each period, 

total number of hops for sending all messages to the cluster head in one period can be calculated as 

3.1 + 5.2 + 7.3 + 9.4 + 9.5 + 9.6 + 9.7 + 9.8 = 304. The cluster head is positioned on the center in 

Figure 1(b), and the sensor nodes behave similarly as described in previous statements. The 6 

innermost nodes require 1 hop, 12 nodes in the next circle requires 2 hops etc. Number of required 

hops in this case is calculated as 6.1 + 12.2 + 18.3 + 24.4 = 180, which is far less than the previous 

alternative.  
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Figure 1. Cluster head placement alternatives. 
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(b) Center 

 

By looking at Figure 1(b), we can easily observe that, the nodes in the inner tiers are bound to make 

more hops than the nodes in the outer tiers. Thus, the outermost nodes will consume least, and the 

innermost nodes will consume highest amount of energy when equal number of messages are to be sent 

by each node to the cluster head. This result is not surprising, and is in accordance with many studies 

made for the existing routing algorithms such as [22]. 

This information has a simple reflection to our algorithm. We locate redundant nodes in the cells in 

inner tiers of each cluster; they wait in standby mode and relocate to the places where nodes exhaust 

their energy. This solution is also harmonious with the results of [22]. By looking at the number of 

hops required for equal frequency of message creation, if x number of nodes are required in the 

outermost (4th) tier, 2x nodes are required in the 3rd, 3x nodes are required in the 2nd, and 4x nodes are 

required in the 1st, or the innermost tier. Thus, 10% of nodes need to be inserted into the 4th, 20% into 

the 3rd, 30% into the 2nd, and 40% into the 1st tier. We call this placement method of sensor nodes as 

heuristic deployment, and we compare its success against uniform deployment where each cell consists 

of same amount of sensor nodes in simulation analysis. 
By noticing the charm regarding the advantages of hexagonal positioning of sensor nodes within the 

clusters, and recognizing that similar advantages will be valid for positioning clusters within the sensor 

field, we choose to hexagonal grid system for cluster design too. Building hexagonal clusters with 

sensor nodes those are also positioned in hexagonal cells provides (1) an easy data acquisition scheme 

(2) proper utilization of data acquiring, (3) scalability, and (4) consistent structure. Figure 2 consists of 

a cluster which is built in as a hexagonal shape, consisting of 61 hexagonal cells. The required number 

of hops to send one packet from each cell to the cluster head is 180, as calculated before. Figure 2 

consists of two different configurations, and there is practically no difference between both. Figure 2 

shows the structure of the complete sensor field with sample amount of clusters as well as sensor nodes 

in the clusters. Hence, the clusters are formed in hexagonal shape as well as sensor nodes within the 

clusters.  
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Figure 2. Hexagonal cluster formation. 
 

 

3d. Relocation Model: Filling the Hole by Sliding Model (FHSM) 

This algorithm provides continuous connectivity of the sensor nodes within each cluster by filling 

out the coverage holes using the sensor nodes within the neighbor cells. When a master node dies in a 

cell, one of the redundant nodes will become master node, if exists. Otherwise, a coverage hole occurs. 

In this case, a sensor node from the neighbor cell relocates to the coverage hole. If there is a redundant 

node exist the neighbor cell, then that node relocates. Otherwise, the master node in the neighbor cell 

relocates. Hence, connectivity of all sensor nodes within the cluster is satisfied continuously. Figure 3 

shows which sensor nodes should relocate to fill in the hole in the inner tier. If cell a creates a hole, a 

node from cell b fills in the hole; a node from cell c fills in the hole if the master node in cell b moved 

to cell a, resulting in creating a hole in cell b. We use the term sliding for filling out the hole in the 

inner cell by a node from the outer cell. After consecutive sliding relocations happen, a hole may occur 

in the outermost tier as can be seen in Figure 3(b), and hence relocation from other clusters may be 

required to fill the holes in the outermost tier of the cluster. Please remember again that after the master 

node in cell a dies, sliding is not required if a redundant node exists within the same cell, where the 

redundant node just wakes up to be the master node afterwards. 

 

Figure 3. Data flow among hexagonal grid cells. 

 

 
(a) Sliding direction 

 
(b) After filling the hole of a 
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3e. Data Aggregation Model: Data Acquisition by Partitioning Model (DAPM) 

According to our hierarchical communication model, all sensor nodes forward their messages to the 

head of the cluster in which they belong to, via the pre-determined neighbor nodes. Cluster heads have 

higher communication range capacity, which allows them to send the accumulated data to the sink via 

other cluster heads, instead of using sensor nodes. This structure enables both simplicity and efficiency.  

Data acquisition model defines how the data will be accumulated by the cluster head. For this 

purpose, we divide each -hexagonal- cluster into six triangular regions as depicted in Figure 4(a). 

Sensor nodes are marked with two subscripts. The first index represents the tier number, which starts 

with 1 for the innermost tier, and increases as it diverges outwards. The second index represents the 

sequence of the node in that tier, starts with 1, and increases counter clockwise. S2,3 for example, 

denotes the sensor node in the 2nd tier, 3rd node counter clockwise from the edge.  

Figure 4. Data flow from sensor nodes to the cluster head. 
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(b) Indexing nodes 

 

Please remember that FHSM assures existence of a node in the inner tier to send data for any node; 

otherwise current node needs to slide to fill in the hole. Each sensor node transmits its message to the 

node in the inner tier and in the same triangle. Since the messages are carried inwards, each message is 

eventually transferred to the cluster head by the node in the 1st tier. When we look at Figure 4(b), we 

can see that sensor nodes on either edges of the triangle { Si,j | ( j = 1 ) or ( j = i ) } have only one 

option, and they send their messages to the sensor nodes on the same edge, those are in the inner tier. 

Si,1 sends its message to Si-1,1 and Si,i sends its message to Si-1,i-1. There is a vague situation for the 

internal nodes, though. Internal nodes { Si,j | ( j ≠ 1 ) and ( j ≠ i ) } have two options, such that Si,j can 

send its message to either Si-1,j-1, or Si-1,j. Selecting the appropriate sensor node to transfer the message 

requires some work. We analyzed the situation in six significant options as listed below. 

(a) Internal nodes may send messages to the node in the same inner tier with the same sequence 

index, such that sensor node Si,j sends message to Si-1,j. Figure 5a shows this case, and we can 

see that sensor nodes in each tier are equally loaded, except for the nodes in the lower edge, i.e., 
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Si,i for each tier i, which are overloaded. In this case the algorithm is simple and same for each 

node except the nodes Si,1.  

(b) Internal nodes may send to alternating direction in each tier. Figure 5b shows this case, and we 

can see that Internal sensor nodes in each tier are loaded as the same as the previous example, 

and sensor nodes in the lower edge now undertake the load of the upper edge in (a), such that 

upper and lower nodes are -almost- equally loaded among themselves, which are overloaded 

from the Internal nodes. 

(c) Internal nodes in upper half may send to the nodes with the same index, Internal nodes in lower 

half may send to the node with one less index, immediate nodes may send half of the messages 

to the node with the same index, and half of the messages send to the node with one less index. 

Figure 5c shows this case, and we can see that the nodes have smoother load, except the nodes 

in the innermost tiers, where the nodes in the middle have more load than the others. It seems 

that the load of the edge nodes in (a) and (b) are shifted to the intermediate nodes in this case. 

(d) Internal nodes in upper half may send to the nodes with one less index, Internal nodes in lower 

half may send to the nodes with the same index, immediate nodes may send half of the messages 

to the node with the same index, and half of the messages send to the node with one less index. 

Figure 5d shows this case, and we can see that the edge nodes have overload as similar to the 

cases (a) and (b). 

(e) Internal nodes (Si,j) may send half of the messages to the node with the same index (Si-1,j), and 

half of the messages to the node with one lower index (Si-1,j-1). Figure 5e shows this case, and 

we can see that the Internal nodes in each tier are loaded exactly equal as in both previous 

examples, but the nodes in both sides in each tier are loaded exactly same, in the contrary with 

previous examples. 

(f) Internal nodes in tiers with odd number of nodes may send half of the messages to the node with 

the same index, and half of the messages may send to the node with one less index. Internal 

nodes in upper half in tiers with even number of nodes send to the node with the same index, 

and half of the messages to the node with one lower index. Figure 5f shows this case, and we 

can see that the edge nodes have still overload in the tiers close to the cluster head, but in the 

other tiers loads are well diverged. 

 

We compared number of message loads of nodes in each tier, in order to argue on the choices and 

choose the best one. We want to remind that our assumptions at the beginning of this section is valid; 

hence every node generates a message of its own in each cycle, and sends those messages to the cluster 

head via neighbor nodes. According to this assumption, number of messages those are sent by the 

nodes in tier 9 in one cycle is 9, since each node transfer its own (1 by each node) message. Tier 8 

nodes send their own (totally 8) messages plus messages sent by the node in the tier 9. Hence, totally 

17 messages are sent by the tier 8 sensor nodes. Number of total messages sent by the sensor nodes in 

other tiers are calculated similarly, and shown in Table 1. It also shows average number of messages 

per each sensor node in that tier. 
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Figure 5. Data flow among from sensor nodes to the cluster head. 
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(a) Omni-directions for all tiers 
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(b) Alternating directions in each tier 
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(c) Partitioning to both neighbors 
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(d) Partitioning to both neighbors 
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(e) Partitioning to both neighbors 
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(f) Smoothening/Uniforming approach 
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Table 1. Number of messages sent by sensor nodes in each tier. 

 Tier 

 9 8 7 6 5 4 3 2 1 

Total messages in the tier 9.00 17.00 24.00 30.00 35.00 39.00 42.00 44.00 45.00 

Average messages per node 1.00 2.13 3.43 5.00 7.00 9.75 14.00 22.00 45.00 

 

It is better if all nodes in each tier transfer equal amount of messages to the inner tier because of 

equal energy consumption eases uniformity in applying algorithms. Hence, we want to equalize 

number of messages transferred among sensor nodes in each tier as much as possible. For this purpose, 

we prepared Table 2 that shows standard deviations of the sensor node loads from the average in that 

tier. The letters in the first column refers to the order of the figure in Figure 5. Hence, data in row a 

refers to Figure 5(a), for example. The sum of the deviations in each tier is given on the last column. 

We see that the choice (f) is the best among all, since the sensor nodes in each tier has the lowest total 

deviations in that option. As a matter of fact, sensor nodes in each tier have lowest variation from other 

options, not just in the total. 

Table 2. Standard deviation of the load of sensor nodes in each tier. 

 Tier  

 9 8 7 6 5 4 3 2 1 sum 

a 0.00 0.35 1.13 2.45 4.47 7.50 12.12 19.80 0.00 47.83 

b 0.00 0.35 0.79 1.67 2.83 4.50 6.24 2.83 0.00 19.22 

c 0.00 0.23 1.13 1.55 4.47 4.33 12.12 0.00 0.00 23.84 

d 0.00 0.58 1.88 3.97 6.87 9.53 11.26 0.00 0.00 34.10 

e 0.00 0.23 0.73 1.55 2.74 4.33 6.06 0.00 0.00 15.64 

f 0.00 0.23 0.73 0.89 2.45 0.87 4.33 0.00 0.00 9.50 

3f. Energy Model: Relocation based on power consumption trends of clusters 

Energy level of sensor nodes are digitized by the numbers [0..999] where 999 represents maximum 

possible initial energy level of any sensor node, and 0 represents the exhausted battery case, under 

which sensor can not neither sense or communicate, nor relocate.  
Our model consists of a clock-driven network, and hence each sensor node sends a periodic message 

to the cluster head, in T period with the format depicted in Table 3. The sensor nodes also send their 

energy level information in every ( x * T ) period to the cluster head, where x is some predetermined 

value. Increasing, or decreasing x is a design issue, and will change the amount of traffic within the 

network. 

After receiving Node Status Reports from each node within the cluster, cluster head calculates total 

amount of energy of all (n) nodes within the cluster with the summation as in Equation (2), and sends 

total remaining energy level of the cluster to the sink using Cluster Status Report, which is depicted in 

Table 4. 



Sensors 2008, 8 

                           

 

2807

 
(2) 

Table 3. Node Status Report. 

Field Name Content 
Node ID Node id of the node 

Tier The tier of the sensor node  

Energy Current energy level of the node 

Position in the Tier The index of the sensor node in that tier 

Current Status 
Shows information about current status of the sensor node among {master, 

extra, excess, relocating, dead} 

Safe Node 
Node Id of the node which stores the data of a dead sensor node. This data 

will be transferred to the relocated node after it arrives to the cell 

Data Data content of the node 

Table 4. Cluster Status Report. 

Cluster 

ID 

number of cells 

within cluster 

number of nodes 

within cluster 

Total energy of cluster 
number of missing nodes 

in any cell 

number of cells under 

critical energy level 

 

When any one of the Number of missing nodes in any cell or Number of cells under critical energy 

level values are not zero, related relocation activity needs to be planned in the next immediate period. 

The sink considers the values given with the Cluster Status Reports together with the power 

consumption rate, pcr of each cluster that the sink calculates, to analyze the need of clusters for 

relocation. It also checks the availability of clusters for relocating excess nodes to other clusters. It then 

prepares Sink Migration Instruction as depicted in Table 5, and sends them to the relevant cluster 

heads. Donor Node ID is node which is expected to relocate to fill the Deprived Cell which creates a 

hole. 

Table 5. Sink Migration Instruction.  

Donor Cluster ID Donor Node ID Deprived Cluster ID Deprived Cell 

 

When the Donor Cluster receives the Sink Migration Instruction, it sends corresponding Cluster 

Migration Instruction to the node(s) within that cluster as depicted in Table 6. 

Table 6. Cluster Migration Instruction.  

Donor Node ID Deprived Cluster ID Deprived Cell 
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3g. MaxNetLife Algorithm 

We depict MaxNetLife algorithm in Figure 6.  

Figure 6. Sensor Field Design and Relocation Algorithm 

 

Design the Sensor Network  

Analyze Surveillance Area 

Create Energy Model of the Network 

Calculate Total Number of Nodes Required 

Design Deployment Locations of the Sink, Cluster Heads and Nodes 

Deploy Sink, Cluster Heads and Sensor Nodes to the Surveillance Area 

Revise Each Cluster in the Network 

For each Cluster: Analyze Position of Cluster Head  

Relocate Cluster Head if Necessary 

For each Cluster: Analyze Position of the Nodes within each Cluster 

Relocate Nodes if Necessary 

Synchronize time among cluster heads 

Synchronize time among nodes in each cluster 

While ( WSN is alive ) do { 

// by the Sensor Nodes: 

Send NodeStatusReport by the Sensor Nodes to Cluster Head 

Send SensorNodeDataTransferReport by the Sensor Nodes to Cluster Head 

// by the Cluster Heads: 

Update ClusterStatusDatabase // by the Cluster Heads 

Detect coverage hole(s)  // Holes in every clusters will be determined by the Cluster Head 

Detect redundancies   // Redundant sensor nodes will be determined by the Cluster Head 

Calculate ClusterEnergy  // Cluster Head calculates total energy of the cluster 

Send ClusterStatusReport  // Cluster Head sends to the Sink 

AnalyzeRelocationNeed  // Cluster Head analyzes current situation to decide on the migration 

Consider Priorities  // Cluster Head considers defined priorities  

Send Relocate Reports  // Cluster Head sends to the Sensor Nodes 

// by the Sensor Nodes: 

RelocateIfNecessary  // Immigrant sensors will migrate to fill the coverage holes 

// by the Sink: 

Update ClusterStatusDatabase  

Detect Needs for External Nodes // Sink calculates external node requirements of each cluster 

Detect Excess Nodes   // Sink calculates excess nodes that each cluster contain 

Assign Nodes to Clusters   // Sink determines # of nodes required to transfer among clusters 

Send SinkMigrationInstruction  // from Sink to each Cluster Head 

// by the Cluster Heads: 

Send NodeMigrationInstruction // from Cluster Head to the Sensors 

// by the Sensor Nodes: 

RelocateByAvoidingCollision // Immigrant nodes will migrate to fill the coverage holes 

Run SOSAlgorithm  // Isolated nodes will migrate to join the network mainland 

StandbyandListen  // Redundant nodes goes to standby mode  

Wake Up if Current Cell is Vacant or Relocation is Necessary 

TransferDataToDescendants // Loaded Nodes transfer data to the descendant 

} 
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3h. Energy Model: Relocation based on power consumption trends of clusters (cont.) 

There exists a preemptive part of our algorithm. This part handles the future / estimated need of 

sensor nodes of all clusters within the network. Sink examines total remaining energy of clusters as it 

gets the periodic Cluster Status Reports from the clusters. It analyzes energy consumption rate over 

time, and tries to predict future node relocation need before it actually happens. As it also knows 

number of redundant sensor nodes in neighbor clusters and knows expected arrival time of redundant 

sensor nodes from those clusters, it informs the cluster with excess number of sensor nodes to send 

required number of sensor nodes to the cluster before the node actually die. Therefore the sensor nodes 

will be in the proper position just before the coverage hole is formed. And migration phase will take 

only a small amount of time, as we defined above. 

Each predecessor sensor node tries to transfer its data to the successor node before it dies. If the 

successor node arrive the target cell before the predecessor node dies, predecessor node transfers all of 

its data using the format depicted in Table 7. If it dies before, it tries to send the data to the safe node, 

which is defined by the cluster head, by using the same format. 

Table 7. Sensor Node Data Transfer Report. 

Node ID Cell ID Data Type1 Data1 Data Type2 Data2 ... 

4. Performance Evaluations 

We analyze various parameters related to mobility of sensor nodes in order to see their affects on 

MaxNetLife algorithm. We designed and implemented a new simulation environment, called 

MobilSim, to use in performance evaluation. MobilSim is an object-oriented simulation environment 

implemented using Java programming language.  

4a. Performance metrics & Factoring Parameters 

We use hexagonal grid deployment and addressing thru the simulations. The Surveillance area is 

composed of clusters, and each hexagonal cluster contains either 60 or 220 cells, depending on the 

model which will be mentioned in the corresponding part below. Nodes are placed deterministically, 

and are located in the center of the hexagonal cell, so that it can cover whole cell using the embedded 

sensor. Each sensor node has also enough transmitting range capacity, so that it can transmit its data to 

the sensor node in the inner tier as well as other neighbor cells.  

A very important parameter in the model is power consumption by the sensing, transmission, 

processing, and relocation activities. There are various studies about power consumption of sensor 

nodes in the literature, and we select values close to those used in [23]. The energy consumption values 

used in the simulation are given in Table 8.  
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Table 8. Node Energy Properties. 

Metric Value (units) 
Energy stock of each node 1.000 

Energy consumption for sending data 2 

Energy consumption for receiving data 1 

Energy consumption for computation 2 

 

The cluster head is located in the middle of the cluster. We model clock-driven networks, and hence 

every node generates one data packet in each cycle. We model both mobile and immobile networks 

throughout the simulation, and compare their performances. When a sensor node is to send a data to its 

neighbor cell, and all nodes are dead in that cell, a node from the outer node relocates to that cell in 

mobile networks. The mobile node can send its data after relocation is realized and hole is disappeared. 

In immobile network the hole stays forever, in which case the gap may prevent data being transmitted 

to the cluster head. The simulation ends when no sensor node remains alive within the clusters, as well 

as within the network. Networks in all models aims to maximize the amount of total collected 

information from the surveillance area before the death of the sensor network by increasing cumulative 

connected coverage of the network as described above sections. 

We use two different deployment strategies in our simulations. The first strategy, namely Uniform 

deployment includes deploying equal number of nodes to each cell. Heuristic deployment, in the 

contrary, includes deploying more sensor nodes to the cells closer to the cluster head, as described in 

section 3c. 

We used two different network types in the simulations. In immobile network, nodes are not mobile; 

hence they can not relocate to fill in the holes. In the contrary, nodes relocate to fill the hole in mobile 

network; according to the MaxNetLife algorithm.  

4b. Simulation Results 

We created various simulation models to measure the affects of changing relocation cost to be 

between { 0 … 1,000 }, mobility capability of sensor nodes as { mobile, immobile }, deployment type 

as { uniform, heuristic }, node density in each cell as { 1 … 50 }, and time; in order to see their affects 

on the amount of Cumulative Data Transferred to the Cluster head before the death of the network, 

Number of Alive Cells at Different Times, and Cumulative Connected Coverage of the network. 

Simulation Model – 1: Effect of relocation cost to transferred data 

In this model, we want to measure the affect of relocation cost for mobile sensor nodes on the total 

amount of data transferred to the cluster head before the network die when uniform deployment is 

chosen. We also want to compare success of mobile and immobile networks, by counting data 

transferred to the cluster head in immobile network using the same parameters (except relocation cost). 

Both mobile and immobile networks have the characteristics shown in Table 9. 

 



Sensors 2008, 8 

                           

 

2811

Table 9. Common Characteristics of Mobile and Immobile Networks. 

Metric Value 
Deployment type  Uniform 

Number of cells in each cluster  60 

Number of nodes in each cell 1 

Total number of nodes in each cluster 60 

 

In order to measure the effect of mobility, we varied the relocation cost between 1 and 1,000 units. 

Actually since the initial energy stock of nodes is 1,000 units, only energy consumption < 100 seems 

reasonable, but we included a wide range anyway.  

Figure 7. Effect of relocation cost to number of data arrived to the cluster head. 
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Figure 7 shows the amount of data packets those arrived to the cluster head before the network dies, 

i.e. no living node remains. Immobile network generates same amount of (823) data packets 

independent from the relocation cost, since relocation cost is irrelevant for immobile nodes. In mobile 

network, total arrived packets are very high for low relocation costs (4559 when relocation cost equals 

50, for example) and decreases as relocation cost increases until it is equal to 560 units. Mobile and 

immobile networks perform equal if relocation cost is higher than 560. Beware of the fact that 560 is 

more than half of the total initial energy capacity (1,000) of a node, which is not a practical value. For a 

relatively low relocation cost, mobile network seems to be a very good choice. 

Arguments may increase about the reason for mobile network generating more, or at least equal 

number of data for all values of relocation cost when compared to immobile network. The answer lies 

in the fact that mobile nodes choose not to relocate if high amount of energy will be consumed. Hence, 

especially when the relocation cost is very high (like 400-500), most of the sensor nodes does not 

relocate, hence they perform at least as good as an immobile node. But, even with that high relocation 

cost, some nodes (especially nodes in the outer tiers) those still include enough remaining energy just 



Sensors 2008, 8 

                           

 

2812

relocates to the neighbor cell which increases productivity of mobile network against immobile 

network alternative.  

Simulation Model – 2: Effect of deployment type to transferred data 

We want to measure the affect of the deployment types together with the mobility. Hence, uniform 

and heuristic deployments are tested against relocation cost. To see this, we re-created the previous 

model, by using 220 cells per cluster instead of 60, and 2 nodes per cell, instead of 1, which adds up to 

220*2=440 total number of nodes within each cluster. We again measured data transferred to the 

cluster head until death of the network. 

Figure 8. Effect of relocation cost to number of data arrived to the cluster head (uniform deployment). 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 25 50 75 100

Relocation Cost

D
a

ta
 tr

a
n

sf
e

rr
e

d
 to

 c
lu

st
e

r 
h

e
a

d

Mobile & Heuristic

Mobile & Uniform

Immobile & Heuristic

Immobile & Uniform

 
 

Heuristic network transfers 4032 packets, where uniform network transfers only 1612 in immobile 

network. In mobile network, heuristic network creates 14,919 where uniform deployment creates only 

12,533 packets when relocation cost equals 50. 

Figure 8 has two important results. Heuristic deployment creates better results in both mobile and 

immobile deployment. Heuristic and mobile network using MaxNetLife algorithm outperforms all 

other options. 

Simulation Model – 3: Effect of node density to transferred data 

In this model, we measure the effect of node density (number of nodes per cell) to the total number 

of data transferred to the cluster head before network dies. We simulated both mobile and immobile 

networks as well as uniform and heuristic deployments, and depicted the results together in Figure 9. 

Each cluster consists of 60 cells, and node density is varied between 1 and 50. Relocation cost is kept 

constant (50 units) throughout the simulation.  
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Figure 9. Effect of node density to number of data arrived to the cluster head. 
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As we see from Figure 9, number of arrived data packets is always more in mobile network than 

immobile network for every node density option. We also see from the figure, that heuristic 

deployment results in higher total number of packets than uniform deployment, a similar result with the 

previous model. We also conclude that number of data packets is linearly proportional with the node 

density for both network choices. The result shows that MaxNetLife algorithm is scalable with respect 

to the node density. 

Simulation Model – 4: Effect of cell density to transferred data 

In this model, we measure the effect of number of nodes by varying size of the clusters. We varied 

cluster size between 60 and 220, and also nodes per cell between 1 and 50. Relocation cost is kept 

constant with 50 units throughout the simulation. We simulated mobile networks using uniform 

deployment in model. 

As we easily see from Figure 10, number of arrived data packets is linearly proportional with cluster 

size, which is an expected result. The data arrived to the cluster head seemed almost linearly 

proportional to the cluster size too. The result shows that MaxNetLife algorithm is scalable with 

respect to the cell density. 

Simulation Model – 5: Comparing number of alive cells when Heuristic and Uniform deployment in 

Mobile vs. Immobile Network are used 

A very important indication about the success of an algorithm is number of living cells after a 

certain period. We already know that higher number of living cells contribute increase in cumulative 

connected coverage, which is a very important indicator for wireless sensor networks. We try to 

measure number of living cells as time passes. In this model, number of cells in each cluster is 220; 

number of deployed nodes to each cell is 2. We included both heuristic as wall as uniform deployment 
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options to see a comprehensive result. Relocation cost is kept constant with 50 units throughout the 

simulation. 

 

Figure 10. Effect of node density to number of data arrived to the cluster head. 
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Figure 11. Comparing number of alive cells in heuristic deployment with mobile nodes. 
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Figure 11 shows that, all of the nodes die within first 15 units of time when equal number of nodes 

is deployed into each cell in immobile network, and within the first 35 units of time when heuristic 
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deployment is used in immobile network. In the contrary, nodes live much longer in immobile network 

running MaxNetLife algorithm, better in heuristic than uniform deployment. 

Simulation Model – 6: Cumulative Connected Coverage when Heuristic and Uniform deployment in 

Mobile vs. Immobile Network are used 

We included the definition of cumulative connected coverage in previous sections, and we will 

measure its value against running time in this model. We have the same options as in Figure previous 

model. 

Figure 12. Cumulative Connected Coverage  
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Figure 12 shows many important indicators about the success of MaxNetLife algorithm. Immobile 

network with uniform deployment dies very early. Death of the sensor nodes closer to the cluster head 

is the main reason for Cc = 220 in uniform immobile network option. Immobile network with heuristic 

deployment shows a better performance, since the distribution of the sensor nodes are made 

considering early energy consumption by the closer nodes, but the network still dies early, and Cc = 

516. Mobile network using MaxNetLife algorithm outperforms in both deployment types. Mobile 

network with uniform deployment creates Cc = 1391. Mobile network with heuristic deployment 

creates the best result by Cc = 1641. 

5. Conclusions 

We propose a dynamic relocation algorithm called MaxNetLife, which is mainly based on utilizing 

the remaining power of individual mobile sensor nodes as well as total remaining power of all sensor 

nodes in clusters within the surveillance area. It also aims to maximize the amount of total collected 

valuable information from the surveillance area before the death of the sensor network by increasing 
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cumulative connected coverage throughout the sensor network lifetime. A deterministic approach is 

used to deploy sensor nodes into the sensor field, where Hexagonal Grid positioning is the selected 

method to address and locate sensor nodes, since it is the best method to maximize the connected 

coverage with a given amount of sensor nodes. Excess nodes are preemptively migrated to the cells 

when number of sensor nodes is decreased below a threshold to prevent a possible hole. When early 

reaction is impossible, master nodes are relocated to the neighboring cells after the hole occurs. The 

algorithm also includes details of the relocation activities of the sensor nodes. MaxNetLife assures 

highest possible cumulative connected coverage before sensor network dies; thus this work 

outperforms all other relocation related algorithms. We also developed an open-source simulation 

environment, called MobilSim using Java programming language, which we use in simulating our 

model.  

We created various simulation models to measure the affects of relocation cost, mobility capability, 

deployment type, node density, and time. Results have proven that mobile sensor network using 

MaxNetLife algorithm outperforms immobile network. MaxNetLife algorithm is also proved to be 

effective, scalable in cell density in clusters scalable in node density in nodes, and applicable through 

simulation. 
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