53 research outputs found

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    End to end architecture and mechanisms for mobile and wireless communications in the Internet

    Get PDF
    Architecture et mécanismes de bout en bout pour les communications mobiles et sans fil dans l'Internet. La gestion performante de la mobilité et l'amélioration des performances des couches basses sont deux enjeux fondamentaux dans le contexte des réseaux sans fil. Cette thèse apporte des solutions originales et innovantes qui visent à répondre à ces deux problématiques empêchant à ce jour d'offrir des possibilités de communication performantes et sans couture aux usagers mobiles accédant à l'Internet via des réseaux d'accès locaux sans fil (WLAN). Ces solutions se distinguent en particulier par l'impact minimum qu'elles ont sur les protocoles standards de l'Internet (niveaux transport et réseau) ou de l'IEEE (niveaux physique et liaison de données). S'inscrivant dans les paradigmes de "bout en bout" et "cross-layer", notre architecture permet d'offrir des solutions efficaces pour la gestion de la mobilité : gestion de la localisation et des handover en particulier. En outre, nous montrons que notre approche permet également d'améliorer l'efficacité des transmissions ainsi que de résoudre efficacement plusieurs syndromes identifiés au sein de 802.11 tels que les anomalies de performance, l'iniquité entre les flux et l'absence de contrôle de débit entre la couche MAC et les couches supérieures. Cette thèse résout ces problèmes en combinant des modèles analytiques, des simulations et de réelles expérimentations. Ces mécanismes adaptatifs ont été développés et intégrés dans une architecture de communication qui fournit des services de communication à haute performance pour réseaux sans fils tels que WIFI et WIMAX. ABSTRACT : Wireless networks, because of the potential pervasive and mobile communication services they offer, are becoming the dominant Internet access networks. However, the legacy Internet protocols, still dominant at that time, have not been designed with mobility and wireless in mind. Therefore, numerous maladjustments and “defaults of impedance” can be observed when combining wireless physical and MAC layers with the traditional upper layers. This thesis proposes several solutions for a pacific coexistence between these communication layers that have been defined and designed independently. Reliable mobility management and Low layer performance enhancements are two main challenging issues in the context of wireless networks. Mobility management (which is mostly based on mobile IP architecture nowadays) aims to continuously assign and control the wireless connections of mobile nodes amongst a space of wireless access networks. Low layer performance enhancements mainly focus on the transmission efficiency such as higher rate, lower loss, interference avoidance. This thesis addresses these two important issues from an original and innovative approach that, conversely to the traditional contributions, entails a minimum impact on the legacy protocols and internet infrastructure. Following the “end to end” and “cross layer” paradigms, we address and offer efficient and light solutions to fast handover, location management and continuous connection support through a space of wireless networks. Moreover, we show that such an approach makes it possible to enhance transmission efficiency and solve efficiently several syndromes that plague the performances of current wireless networks such as performance anomaly, unfairness issues and maladjustment between MAC layer and upper layers. This thesis tackles these issues by combining analytical models, simulations and real experiments. The resulting mechanisms have been developed and integrated into adaptive mobility management communication architecture that delivers high performing communication services to mobile wireless systems, with a focus on WIFI and WIMAX access networks

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    Investigating TCP performance in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) have become increasingly important in view of their promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such networks, consisting of potentially highly mobile nodes, have provided new challenges by introducing special consideration stemming from the unique characteristics of the wireless medium and the dynamic nature of the network topology. The TCP protocol, which has been widely deployed on a multitude of internetworks including the Internet, is naturally viewed as the de facto reliable transport protocol for use in MANETs. However, assumptions made at TCP’s inception reflected characteristics of the prevalent wired infrastructure of networks at the time and could subsequently lead to sub-optimal performance when used in wireless ad hoc environments. The basic presupposition underlying TCP congestion control is that packet losses are predominantly an indication of congestion in the network. The detrimental effect of such an assumption on TCP’s performance in MANET environments has been a long-standing research problem. Hence, previous work has focused on addressing the ambiguity behind the cause of packet loss as perceived by TCP by proposing changes at various levels across the network protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the routing protocol at the network layer. The main challenge addressed by the current work is to propose new methods to ameliorate the illness-effects of TCP’s misinterpretation of the causes of packet loss in MANETs. An assumed restriction on any proposed modifications is that resulting performance increases should be achievable by introducing limited changes confined to the transport layer. Such a restriction aids incremental adoption and ease of deployment by requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As such, a proposed solution may involve implementation at the sender, the receiver or both to address TCP shortcomings. Some attempts at describing TCP behaviour in MANETs have been previously reported in the literature. However, a thorough enquiry into the performance of those TCP agents popular in terms of research and adoption has been lacking. Specifically, very little work has been performed on an exhaustive analysis of TCP variants across different MANET routing protocols and under various mobility conditions. The first part of the dissertation addresses this shortcoming through extensive simulation evaluation in order to ascertain the relative performance merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful examination reveals sub-par performance of TCP Reno, the largely equivalent performance of NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly stated and justified for the first time in a dynamic MANET environment. Examination of the literature reveals that in addition to losses caused by route breakages, the hidden terminal effect contributes significantly to non-congestion induced packet losses in MANETs, which in turn has noticeably negative impact on TCP goodput. By adapting the conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents, like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based congestion avoidance mechanism which increases TCP goodput considerably across long paths by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity of non-congestion related packet loss in MANETs. The proposed changes maintain intact the end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is further contrasted with an existing transport layer-focused solution and is shown to perform significantly better in a range of dynamic scenarios. As solution from an end-to-end perspective may be applicable to either or both communicating ends, the idea of implementing receiver-side alterations is also explored. Previous work has been primarily concerned with reducing receiver-generated cumulative ACK responses by “bundling” them into as few packets as possible thereby reducing misinterpretations of packet loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions reveals limitations in common evaluation practices and the solutions themselves. In an effort to address this shortcoming, the third part of this research work first specifies a tighter problem domain, identifying the circumstances under which the problem may be tackled by an end-to-end solution. Subsequent original analysis reveals that by taking into account optimisations possible in wireless communications, namely the partial or complete omission of the RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over long paths. This novel modification is activated in a variety of topologies and is assessed using new metrics to more accurately gauge its effectiveness in a wireless multihop environment

    Combined use of congestion control and frame discarding for Internet video streaming

    Get PDF
    Cataloged from PDF version of article.Increasing demand for video applications over the Internet and the inherent uncooperative behavior of the User Datagram Protocol (UDP) used currently as the transport protocol of choice for video networking applications, is known to be leading to congestion collapse of the Internet. The congestion collapse can be prevented by using mechanisms in networks that penalize uncooperative flows like UDP or employing end-to-end congestion control. Since today’s vision for the Internet architecture is based on moving the complexity towards the edges of the networks, employing end-to-end congestion control for video applications has recently been a hot area of research. One alternative is to use a Transmission Control Protocol (TCP)-friendly end-to-end congestion control scheme. Such schemes, similar to TCP, probe the network for estimating the bandwidth available to the session they belong to. The average bandwidth available to a session using a TCP-friendly congestion control scheme has to be the same as that of a session using TCP. Some TCP-friendly congestion control schemes are highly responsive as TCP itself leading to undesired oscillations in the estimated bandwidth and thus fluctuating quality. Slowly responsive TCP-friendly congestion control schemes to prevent this type of behavior have recently been proposed in the literature. The main goal of this thesis is to develop an architecture for video streaming in IP networks using slowly responding TCP-friendly end-to-end congestion control. In particular, we use Binomial Congestion Control (BCC). In this architecture, the video streaming device intelligently discards some of the video packets of lesser priority before injecting them in the network in order to match the incoming video rate to the estimated bandwidth using BCC and to ensure a high throughput for those video packets with higher priority. We iiidemonstrate the efficacy of this architecture using simulations in a variety of scenarios.Yücesan, OngunM.S

    Centralized random backoff for collision free wireless local area networks

    Get PDF
    Over the past few decades, wireless local area networks (WLANs) have been widely deployed for data communication in indoor environments such as offices, houses, and airports. In order to fairly and efficiently use the unlicensed frequency band that Wi-Fi devices share, the devices follow a set of channel access rules, which is called a wireless medium access control (MAC) protocol. It is known that wireless devices following the 802.11 standard MAC protocol, i.e. the distributed coordination function (DCF), suffer from packet collisions when multiple nodes simultaneously transmit. This significantly degrades the throughput performance. Recently, several studies have reported access techniques to reduce the number of packet collisions and to achieve a collision free WLAN. Although these studies have shown that the number of collisions can be reduced to zero in a simple way, there have been a couple of remaining issues to solve, such as dynamic parameter adjustment and fairness to legacy DCF nodes in terms of channel access opportunity. Recently, In-Band Full Duplex (IBFD) communication has received much attention, because it has significant potential to improve the communication capacity of a radio band. IBFD means that a node can simultaneously transmit one signal and receive another signal in the same band at the same time. In order to maximize the performance of IBFD communication capability and to fairly share access to the wireless medium among distributed devices in WLANs, a number of IBFD MAC protocols have been proposed. However, little attention has been paid to fairness issues between half duplex nodes (i.e. nodes that can either transmit or receive but not both simultaneously in one time-frequency resource block) and IBFD capable nodes in the presence of the hidden node problem
    corecore