
COMBINED USE OF CONGESTION CONTROL AND
FRAME DISCARDING FOR INTERNET VIDEO

STREAMING

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of
master of science

By

Ongun Yücesan

January 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Nail Akar(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Gözde Bozdağı Akar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ezhan Karaşan

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

ii

ABSTRACT

COMBINED USE OF CONGESTION CONTROL AND
FRAME DISCARDING FOR INTERNET VIDEO

STREAMING

Ongun Yücesan
M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Nail Akar
January 2003

Increasing demand for video applications over the Internet and the inherent

uncooperative behavior of the User Datagram Protocol (UDP) used currently as

the transport protocol of choice for video networking applications, is known to

be leading to congestion collapse of the Internet. The congestion collapse can be

prevented by using mechanisms in networks that penalize uncooperative flows

like UDP or employing end-to-end congestion control. Since today’s vision for

the Internet architecture is based on moving the complexity towards the edges of

the networks, employing end-to-end congestion control for video applications has

recently been a hot area of research. One alternative is to use a Transmission

Control Protocol (TCP)-friendly end-to-end congestion control scheme. Such

schemes, similar to TCP, probe the network for estimating the bandwidth avail-

able to the session they belong to. The average bandwidth available to a session

using a TCP-friendly congestion control scheme has to be the same as that of

a session using TCP. Some TCP-friendly congestion control schemes are highly

responsive as TCP itself leading to undesired oscillations in the estimated band-

width and thus fluctuating quality. Slowly responsive TCP-friendly congestion

control schemes to prevent this type of behavior have recently been proposed

in the literature. The main goal of this thesis is to develop an architecture for

video streaming in IP networks using slowly responding TCP-friendly end-to-end

congestion control. In particular, we use Binomial Congestion Control (BCC).

In this architecture, the video streaming device intelligently discards some of

the video packets of lesser priority before injecting them in the network in order

to match the incoming video rate to the estimated bandwidth using BCC and

to ensure a high throughput for those video packets with higher priority. We

iii

demonstrate the efficacy of this architecture using simulations in a variety of

scenarios.

Keywords: Congestion Control, Transmission Control Protocol, TCP-friendly

congestion control, video streaming, temporal scalability

iv

ÖZET

VIDEO AKTARIMI İÇİN BİRLEŞİK YOĞUNLUK
DENETLEYİCİ VE AKTARIM HIZI ŞEKILLENDİRİCİ

Ongun Yücesan
Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Nail Akar
January 2003

Internet üzerinde gün geçtikçe artan video uygulamaları vede bu uygulamalarda

tercih edilen Kullanıcı veri protokolu (UDP) nin yogunluk denetim mekaniz-

malarından yoksun olması nedeni ile ağişlerin yogunlukları giderek artmaktadır.

Bu artışın ağların yoğunluk nedeni ile çoküşüne neden olabildiği gözlenmiştir.

Bu durumun engellenebilmesi için ağiş içerisinde bazı tedbirler alınabilineceği

gibi yoğunluk denetim mekanizmaları kullanılarakta çözüm getirilinebilinmek-

tedir. Günümüzde hakim olan genel yaklaşım ağlar üzerindeki akıllı işlevlerin

daha çok ağlarin ucuna dogru taşinmasina yonelik olması nedeni ile yoğunluk

denetim mekanizmaları uzerine yogun bir sekilde araştırma yapılmaktadır. Bir

çözüm halen veri aktarımı için kullanılmakta olan Aktarım Kontrol Protokolu

(TCP) kullanımı olarak onerilmektedir. Bir başka yaklaşım ise TCP dostu algo-

ritmaların kullanımı olarak öne çıkmaktadır. Bu algoritmaların bazıları aynı

TCP’nin kendisinin de olduğu gibi çok değişken aktarım hızları sağlamakta

ve dolayısı ile izleyici açısından rahatsız edici değişken bir kaliteye neden ol-

matadırlar. Yavaş tepki gösteren denetim mekanizmaları bu konuda uzun za-

man aralıklarında geçerli olan değişikliklere tepki gostererek daha sabit bir

kalite seviyesini sağlamaya çalışmaktadırlar. Biz tez kapsamında gene böyle

bir mekanizma olan Binomsal Yoğunluk Denetim (BCC) mekanizmalarını kul-

lanmaktayız. Dinamik olarak belirlenen veri aktarım hızına video hızını uy-

durabilmek açısından bir hız şekillendirici mekanizma kullanılmaktadır. Bu

mekanizma mevcut aktarım hızının daha onemli video parçaları tarafından kul-

lanılmasına yonelik olarak ayrım yapmaktadır. Bu sitemin etkinliğini simulasyon

yolu ile değişik senaryoların altında değerlendirmekteyiz. Anahtar Kelimeler:

agiş, yoğunluk denetim, TCP, UDP, hat hızı, video hızı

iv

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my supervisor Assist. Prof. Dr. Nail

Akar for his guidance, suggestions and invaluable encouragement throughout the

development of this thesis.

I would like to thank Assoc. Prof. Dr. Gözde Bozdaği and Assist. Prof. Dr.

Ezhan Karaşan for reading and commenting on this thesis.

v

Contents

1 INTRODUCTION 1

2 Related Work and Background 6

2.1 TCP/IP Networks . 6

2.1.1 IP Data Plane . 8

2.1.2 The Transmission Control Protocol 9

2.1.3 The User Datagram Protocol 15

2.1.4 Congestion Control . 16

2.2 Video Transmission over IP Networks 20

2.2.1 Video Standards . 20

2.2.2 MPEG-1, MPEG-2 and Concepts 21

2.2.3 Video Streaming over IP 24

2.2.4 Quality Adaptation . 30

3 SELECTIVE FRAME DISCARDING (SFD) 35

3.1 Priority Assignment For MPEG Video Frames 36

3.2 Server Output Buffer . 37

3.3 Client Play-Out Buffer . 39

vi

3.3.1 Estimating the Latencies 40

3.4 Selective Frame Discard, A Heuristic Based Technique 41

3.4.1 Retransmissions . 42

3.4.2 Implementation . 43

4 Numerical Results 44

4.1 Interactions Between Transport Protocols 44

4.2 Smoothness . 48

4.2.1 Inverse BCC Parameters 48

4.2.2 Square Root BCC Parameters 49

4.2.3 k = 0.2, l = 0.8 BCC Set (BCC-02) 51

4.2.4 The TCP Set . 52

4.2.5 Interactions with TCP . 54

4.3 Video Streaming Using the BCC 55

4.3.1 Sharing the 24 Mbits/sec bottleneck 55

4.3.2 Sharing the 32 Mbits/sec bottleneck 59

4.3.3 Sharing the 40 Mbits/sec bottleneck 62

4.3.4 Multi-bottleneck Network Scenario 66

4.4 Effect of pre-buffering period . 70

4.5 Effect of γLP parameter . 72

5 Conclusions 74

vii

List of Figures

2.1 The four layers of the TCP/IP protocol suite 7

2.2 Header structure for an Ethernet Frame 8

2.3 Header structure for a TCP Segment 10

2.4 Sliding Window . 13

2.5 UDP Header . 16

2.6 Slices in MPEG-1 . 22

2.7 Motion Estimation . 23

2.8 A general video streaming architecture [1] 25

2.9 Protocol stacks for streaming media [1] 28

3.1 The frame sizes of a video stream 37

3.2 The server architecture and the output buffer 38

3.3 The frame sizes of a video stream 39

3.4 The end to end visualization of the system 40

4.1 Topology of the network “Dumbbell” 45

4.2 The RED dropping probabilities 46

4.3 Total successfully received bit-rate of UDP flows 47

4.4 Total successfully received bit-rate of a TCP flow 47

viii

4.5 Window size variations of Inverse BCC flow 49

4.6 The actual throughput of single Inverse BCC flow 49

4.7 Window variations of SQRT BCC 50

4.8 Throughput of SQRT BCC . 51

4.9 Window size variations of SQRT BCC for quarter packet increments 51

4.10 Throughput of SQRT BCC for quarter packet increments 52

4.11 Window size variations of k=0.2 BCC for quarter packet increments 53

4.12 Throughput of k=0.2 BCC for quarter packet increments 53

4.13 Window size variations of TCP 53

4.14 Throughput of TCP . 54

4.15 Total throughput of BCC k=0.2 and TCP sources 54

4.16 Comparison of the latency in server buffer vs admission threshold 56

4.17 Window size variation of BCC k=0.2 over 1.2 Mbits/sec fair share

bottleneck . 56

4.18 Play-out duration of BCC k=0.2 over 1.2 Mbits/sec fair share

bottleneck . 57

4.19 Length based SFD output buffer occupancy of BCC k=0.2 over

1.2 Mbits/sec fair share bottleneck 58

4.20 Window variations of BCC that length based SFD is employed

k=0.2 over 1.2 Mbits/sec fair share bottleneck 58

4.21 Play-out buffer duration of BCC that length based SFD is em-

ployed k=0.2 over 1.2 Mbits/sec fair share bottleneck 58

4.22 Comparison of the latency in server buffer vs admission threshold 60

4.23 Window size variations of BCC that delay based SFD is employed

k=0.2 over 1.6 Mbits/sec fair share bottleneck 60

ix

4.24 Play-out duration of BCC delay based SFD k=0.2 over 1.6

Mbits/sec fair share bottleneck 60

4.25 Window size variations of BCC that length based SFD is employed

k=0.2 over 1.6 Mbits/sec fair share bottleneck 61

4.26 Play-out buffer duration of BCC that length based SFD is em-

ployed k=0.2 over 1.6 Mbits/sec fair share bottleneck 61

4.27 Length based SFD output buffer occupancy of BCC k=0.2 over

1.6 Mbits/sec fair share bottleneck 62

4.28 Comparison of the latency in server buffer vs. admission threshold 64

4.29 Window variations of BCC that delay based SFD is employed,

k=0.2 over 2.0 Mbits/sec fair share bottleneck 64

4.30 Play-out duration of BCC delay based SFD, k=0.2 over 2.0

Mbits/sec fair share bottleneck 64

4.31 Window variations of BCC that length based SFD is employed,

k=0.2 over 2.0 Mbits/sec fair share bottleneck 65

4.32 Length based SFD output buffer occupancy of BCC k=0.2 over

2.0 Mbits/sec fair share bottleneck 65

4.33 Play-out buffer duration of BCC that length based SFD is em-

ployed, k=0.2 over 2.0 Mbits/sec fair share bottleneck 65

4.34 The Multi-bottleneck network topology 67

4.35 The window variations for multi-bottleneck topology 67

4.36 The resultant throughput for multi-bottleneck network topology . 68

4.37 The resultant play-out duration for multi-bottleneck network

topology for delay based discarding 68

4.38 The resultant play-out duration for multi-bottleneck network

topology of delay based system 69

4.39 The window size variations for multi-bottleneck network topology

of delay based system . 69

x

4.40 The resultant play-out duration for single-bottleneck network

topology for delay based discarding 70

4.41 Window size variations for the transmission that the client waits

3 seconds in order to start the play-out of the video 71

4.42 The resultant play-out duration for single-bottleneck network

topology for delay based discarding 71

4.43 Window variations for the transmission that the client waits 6

seconds in order to start the play-out of the video 71

4.44 Play-out buffer lengths for bottleneck link of 10 Mbits and γLP =

0.9, 0.5, 0.1 . 72

xi

List of Tables

3.1 Selective Frame Discarding Algorithm (SFDA) 42

4.1 Loss based statistics of different schemes over 1.2Mbits/sec avail-

able bandwidth channels . 59

4.2 Loss based statistics of different schemes over 1.6 Mbits/sec avail-

able bandwidth channels . 63

4.3 Loss based statistics of different schemes over 2.0 Mbits/sec avail-

able bandwidth channels . 66

xii

To My Family and Friends . . .

Chapter 1

INTRODUCTION

The Internet comprises a network of computer networks, which transmit mes-

sages to one another using a common set of communications protocols, or sets

of operating rules. Networks comprise addressable devices or nodes (computers)

connected by communication channels. Nodes are not limited to performing a

single role; for example, some workstations may also be configured to act as

servers for other workstations, and even as routers. For each of the roles that a

particular node performs, it is assigned a unique identifier, called an IP-address.

Any node can transmit a message to any other node, along the communications

channels, via the intermediate nodes.

The term protocol is used to refer to the set of rules that govern the com-

munications between nodes. A number of functions need to be performed, and

hence there is a considerable number of involved protocols. The complete family

of protocols is referred to as the Internet Protocol Suite. Sometimes the family is

also referred to by the combined names of just the two most important protocols,

TCP/IP (Transmission Control Protocol/IP Protocol).

To simplify matters, the functions are organised into a series of layers., the

lowest layer being the link layer which specifies how the node interfaces with

the communications channel. Link layer protocols convert the bits that make

up packets into signals on channels. One layer above lies the network layer

protocols which specify how packets are moved around the network. This includes

the important questions of how to address the node that is being sought, and

how to route each packet to that node. The key protocol at this level is IP

(Internet Protocol). Other protocols at this level, which are closely related to

and dependent on IP, include:

1

• ICMP (Internet Control Message Protocol), which is used to report errors

and obtain information about the transmission of IP datagrams; and

• IGMP (Internet Group Management Protocol), which is mostly used in

multicasting (transmitting a single message intended for multiple recipi-

ents).

The transport layer protocols specify whether and how the receipt of complete

and accurate messages is to be guaranteed. In addition, if the message is too

large to be transmitted all at once, it specifies how the message is to be broken

down into segments. There are two major transport layer protocols:

• TCP (Transmission Control Protocol), which is the key protocol at this

level, and provides a reliable message-transmission service;

• UDP (User Datagram Protocol), which provides a stateless, unreliable/best

effort service.

The application layer protocols handle messages that are to be interchanged

with other applications in nodes elsewhere on the Internet. They specify such

details as the sequence and format of the data-items.

Of particular importance to the current thesis in this layered architecture is

Transmission Control Protocol (TCP). An important property of TCP is, differ-

ent flows under similar conditions get roughly the same bandwidth. Therefore,

competing flows get the fair share of the bandwidth. However, TCP probes

for available bandwidth, and halves its rate aggressively in response to conges-

tion. While data communications can tolerate such bandwidth variations, unicast

video and audio applications perform better if they are streamed with conges-

tion control mechanisms that react slowly. The User Datagram Protocol (UDP)

does not have mechanisms that will adapt its packet sending rate according to

the network conditions. UDP also does not provide a guarantee that the packet

will be delivered. It simply sends the data at the rate it has been instructed

to. This unresponsive behavior of UDP may result in both unfairness among the

competing flows, and congestion collapse of the Internet [2].

Since UDP and TCP are not very suitable for multimedia applications, the

TCP friendliness concept has been raised. Such a TCP-friendly algorithm will

therefore have roughly the same throughput with a TCP connection under similar

long term conditions. This algorithm while interacting fairly with TCP, will

2

adapt its rate smoothly so that video applications using it, can benefit. TCP-

friendly algorithms that are proposed are TCP-Friendly Rate Control (TFRC)

[3], Binomial Congestion Control (BCC) [4], Rate Adaptation Protocol (RAP)

[5], and others.

These techniques provide the necessary responsiveness for the healthy opera-

tion of the Internet. Since the available bandwidth changes over time, even if it

is smoothly varying, there is a need to adapt the video rate requirements to this

dynamically changing value. Quality adaptation schemes accomplish this task.

The main types of quality adaptation mechanisms or filters are frequency filters,

layer dropping filters, frame dropping filters, and codec filters. Frequency filter

works on compression layer and may discard some of the high frequency com-

ponents or some color information. Layer dropping filter is the mechanism that

includes or discards the necessary amount of layers of a scalable coded video.

Frame dropping filter discards necessary amount of frames according to their

importance. It matches the rate of the video through adapting the frame rate of

the video. A codec filter decodes and re-encodes the video.

Layer dropping filters work with the scalable encoded videos. The best known

scalability methods for encoding of the videos are the spatial, temporal, and SNR

scalabilities. The spatial scalability is the scalability of frame sizes. The SNR

scalability is the scalability of the frame quality. For this scalability the video is

encoded with various quantizer step sizes. Temporal scalability is scalability of

frame rates. The video therefore can be viewed and streamed in various frame

rates. The scalable videos consist of layers. The minimum sized, least frame

rated, or lowest quality version of the video is named as the base layer. Over

the base layer, enhancement layers are added and higher quality, higher frame

rate, larger sized versions of the video is obtained. Each added layer enhances

the plausibility of the content.

Examples of the techniques developed for layered quality adaptations are sys-

tems developed by Rejaie et.al. [6] employing RAP congestion control, the im-

plementation of the same system for BCC by Feamster et. al. [7], and the system

that employs a very advanced scalability technique (Fine Granular Scalability)

FGS by Liu et. al. [8]. The quality adaptation mechanism developed by Reajie

et. al. [6] adds and drops layers from a discrete set of layers to perform long term

coarse grain adaptation, while using RAP to react to congestion on very short

scales. The mismatches between two timescales are absorbed by buffering at the

receiver. The system by Liu et. al. employs fine granular scalability. For a FGS

3

coded video, there are two layers. First layer is the base layer, second layer is the

enhancement layer, which is coded by a bit-plane coding technique. Therefore,

the adaptability of enhancement layer becomes very fine granular. There may

be very little mismatches but they are compensated on the long run.

The layered video used in the work by Rejaie et. al. is not an actual video

trace. Also FGS is not a widely deployed and well understood coding scheme.

The temporal scalable encoded Mpeg-1 is a well known and widely deployed

video. The BCC mechanism, which is a generalization of TCP RENO, is a suit-

able selection for a temporal scalable video, since it employs a window based

congestion control. It uses the window to determine the amount of the packets

that can be sent without being acknowledged. Therefore since this algorithm

works on the packets, it has a major advantage over other rate adaptation al-

gorithms that employ calculations for determining the sending rate; which is its

simplicity.

Using BCC, we propose a novel scheme in this thesis on the streaming video

problem with a quality adaptation mechanism that adapts the video rate to

available rate dictated by the BCC. The selection of the window update param-

eters for the used congestion control mechanism is also considered to achieve

both smooth and fair transmission. The BCC mechanism employs a window

based congestion control mechanism, and it does not calculate an explicit rate.

However during low available bandwidth periods, it will take longer to forward

packets arriving at the quality adaptation buffer. Therefore, the delay of such

packets at the server increases. If the available line rate is higher than the video

packets, the frames will be forwarded immediately without delaying them. By

observing this property of the buffer and just by observing the delay of the qual-

ity adaptation buffer, it is possible to understand the network conditions. If not

the immediate but a longer term behavior of this delay is considered, a smooth

adaptation for an also smoothly varying available bandwidth is obtained. We

observe the quality adaptation buffer delay and admit the frame to the buffer,

if it will not spend more than a fraction of the left time to its play-out deadline

in the buffer. We have used the ns-2 [9] to show that this system achieves more

plausible video representation at the receiver.

The rest of this thesis is organized as follows: Chapter 2 describes the related

work and the background in this area; Chapter 3 discuses the selective frame

discard mechanism and some implementation details of this system in the ns-2

4

simulator; Chapter 4 presents the numerical results of the experiments we have

employed; Chapter 5 summarizes our conclusions and possible future work.

5

Chapter 2

Related Work and Background

2.1 TCP/IP Networks

The Internet Protocol (IP) is the basic carrier for all kinds of Internet communi-

cation protocols. It is the protocol software that makes the Internet appear as a

single and seamless communication system. All the data gets transmitted as IP

datagrams. An IP datagram is the name of the packets in IP networks.

IP provides connectionless, unreliable delivery of the datagrams over the ex-

isting packet switched network. By being unreliable, it is meant that IP networks

do not provide any guarantee on the packet delivery to its destination. When

sources are exhausted on the path, such as buffer space, the network will discard

the packet. By being connectionless, it is meant that there is no state informa-

tion about the successive datagrams. Each datagram is handled independent of

others. Two datagrams, sourced at and destined for the same source-destination

pair, may take different routes.

The process for transferring datagrams over the network is called IP routing.

Each datagram contains its own IP header which contains the source and desti-

nation addresses. If the destination is directly connected to the source through a

point to point link or a LAN, then the datagram is delivered to the destination

host. Otherwise, the host delivers the datagram to its default router. Datagrams

are treated on a hop-by-hop basis according to their destination IP addresses,

where each hop is a router, that forwards the datagrams to a closer node or a

hop towards the destination.

6

Application

Transport

Network

Link

Telnet, FTP, Video Conferencing.

TCP, UDP, Congestion Control

IP, IGMP, ICMP

Device driver and Interface Card

Figure 2.1: The four layers of the TCP/IP protocol suite

IP protocol does not cover all the communication standards. Instead of hav-

ing a single, giant protocol that specifies complete details for all possible forms

of communications, designers have chosen to divide the communication problem

into sub-pieces and to design a separate protocol for each sub-piece. Doing so

makes each protocol easier to design, analyze, implement and test. In this lay-

ered architecture, Internet protocol works on top of the link layer, which provides

connectivity. Since, IP is connectionless and unreliable, transport mechanisms

(protocols) are developed to be able to transfer the data safely. These mecha-

nisms make use of IP. Applications sending and receiving data use the transport

protocols. This hierarchical organization of the protocols leads to a layered ar-

chitecture. This architecture is depicted in Figure 2.1

Each layer adds a header for the information that they need. The final form

of the packet may be seen through Figure 2.2.

7

Ethernet

Header
IP header

Layer

Link Layer

(Ethernet)

Network Layer

IP

Transport Layer Application

TCP

Ethernet

Trailer
TCP Header Application Data

Figure 2.2: Header structure for an Ethernet Frame

2.1.1 IP Data Plane

This section describes how routers process and forward the packets, and some of

the mechanisms employed by routers in order to provide better services.

A router forwards each packet from one network node to another. A source

host creates a packet and places the destination address in the packet header, and

sends the packet to a nearby router. When a router receives a packet, the router

uses the destination address to select the next router on the path to the desti-

nation, and then transmits the packet. Eventually, the packet reaches a router

that can directly deliver the packet to its final destination. The format of the

packet in the Internet is unique, since a router may be connecting heterogenous

networks.

Datagrams traverse the Internet by following a path from their source to their

final destination. Each router along the path receives the datagram, extracts

the destination address from the header, and uses the destination address to

determine a next hop to which the datagram should be send. The router forwards

the datagram to the next hop, either the final destination or another router. To

8

select the next hop efficiently and to make it possible that humans understand

the computation, each router keeps information in a routing table. A routing

table must be initialized when the router boots, and must be updated if the

topology changes.

The delivery of the packet will be a best effort delivery, since IP does not

provide any guarantee that it will handle the packet.

Buffer Management

The buffers are the waiting room for IP packets to handle the case when

the outgoing rate is less than the incoming rate. The most popular queue man-

agement techniques are Drop-tail, Random Early Detection (RED), Weighted

Random Early Detection (WRED). For a drop-tail queue, the packet is simply

not admitted to the buffer, if the buffer is full. However the management of RED

and WRED is more complex.

A RED queueing mechanism basically uses the average queue occupancy as

input to a random function that decides whether there is a possibility of conges-

tion or not. If it decides that there is congestion, it may discard some packets

or mark them [10]. By dropping or the marking of the packets, the congestion

control mechanisms are informed of a congestion along the path of transmission.

For RED, there are two important parameters [11], min th and max th that

control the dropping process. Below min th, the packets are flowing through the

router by being untouched. If the buffer occupancy is above min th and below

the max th, then packets get statistically dropped, with an increasing probabil-

ity according to the average buffer occupancy. Above max th, packets will be

dropped with probability 1. The increasing probability is defined by a linear func-

tion with a constant slope which can also be set by the network administrator.

Weighted Random Early Detection, is a variant of RED, that enables applying

multiple policies to different flows using the same queue. Throughout this thesis,

the network nodes that are considered use RED queueing mechanisms.

2.1.2 The Transmission Control Protocol

In this section, the Transmission Control Protocol (TCP) will be introduced [12].

Although TCP is a part of the TCP/IP protocol suite, it is an independent,

9

Source Port Number Destination Port Number

Sequence Number

Acknowledgement Number

Header

Length

Unused U

R

G

A

C

K

P

S

H

S

Y

N

F

I

N

Receiver Window Size

Internet Checksum Ptr to urgent data

Options

Data

32 bits

Figure 2.3: Header structure for a TCP Segment

general purpose protocol that could also be adopted for use with other delivery

systems. The header structure of the TCP is as in Figure 2.3.

As already mentioned at the lowest level, computer communication networks

provide unreliable packet delivery. Packets can be lost or destroyed when trans-

mission errors interfere with the data, when network hardware fails, or when

networks become too heavily loaded to accommodate the present load. Networks

that route packets dynamically can deliver them out of order, deliver them after

a substantial delay, or may deliver duplicates. Furthermore, underlying network

technologies may dictate an optimal packet size or pose other constraints needed

to achieve efficient transfer rates.

At the highest level, application programs often need to send large volumes of

data from one computer to another. Using an unreliable connectionless delivery

system for large volume transfers becomes tedious and annoying, and it requires

every program to have error detection and recovery by its own. Because it

is difficult to design, understand, or modify software that correctly provides

reliability, few people can implement these functionalities successfully. As a

consequence, one goal of the network protocol research has been to find general

purpose solutions for the problems of providing reliable stream delivery, making

10

it possible for experts to build a single instance of stream protocol software that

all application programs use. Having a single general purpose protocol helps to

isolate application programs from the details of networking, and makes it possible

to define a uniform interface for the stream transfer service.

Application programs send a data stream across the network by repeatedly

passing data octets to the protocol software. When transferring data, each ap-

plication uses convenient sized pieces, which can be as small as a single octet.

At the receiving end, the protocol software delivers octets from the data stream

in exactly the same order they were sent, making them available to the receiving

application program as soon as they have been received and verified. The pro-

tocol software is free to divide the stream into packets independent of pieces the

application program transfers. To make transfer more efficient and minimize the

network traffic, implementations usually collect data from a stream to fill a rea-

sonably large datagram before transmitting it across the Internet. Thus, even if

the application program generates the stream one octet at a time, transfer across

the Internet may be quite efficient. Similarly, if the application program chooses

to generate extremely large blocks of data, protocol software can choose to divide

each block into smaller pieces for transmission. This property of the TCP is also

used as an underlying architecture for implementing the Binomial Congestion

Control Mechanisms and is also an important issue. Combining small pieces of

data means delaying the generated data, in order to combine them with a new

generated data. For a video application, since the generated data consists of the

frames that have a deadline to be met, delaying them may result in their failure

to catch their respective play-out times. However, a large frame can be sent in

smaller pieces. In this case, the possibility of missing their play-out times is only

determined by the network conditions, or the available rate information. For the

system proposed in this thesis, large sized frames are divided into smaller sizes,

and smaller sized ones are sent without further delaying them.

Connections provided by the TCP/IP stream service allow concurrent transfer

in both directions. Such connections are called full duplex. From the point of view

of an application process, a full duplex connection consists of two independent

streams flowing in opposite directions with no apparent interaction. The stream

service allows an application process to terminate flow in one direction, while

data continues to flow in other direction, making the connection half duplex. The

advantage of a full duplex connection is that the underlying protocol software can

send control information for one stream back to the source in datagrams carrying

data in the opposite direction. Such piggybacking reduces network traffic.

11

Providing Reliability

It was mentioned that a reliable stream delivery service guarantees to de-

liver a stream of data sent from one machine to another without duplication or

data loss. Most reliable delivery protocols use a single fundamental technique

called positive acknowledgement with transmission. The technique requires a re-

cipient to communicate with source, sending back an acknowledgement (ACK)

message as it receives data. The sender keeps a record of each packet it send

and waits for an acknowledgement before sending the next packet. The sender

also starts a timer. Sender retransmits a packet if the timer expires before an

acknowledgement arrives.

The problems caused by duplicate packets are handled by assigning each

packet a sequence number and requiring receiver to remember which sequence

numbers it has received. Acknowledgements contain these numbers, so the sender

correctly associate packets with acknowledgements. TCP/IP acknowledgements

are cumulative because they report how much of the stream has been accumu-

lated at the receiver.

Window Based Congestion Control

Window based schemes use a technique called sliding window. This technique

is more complex for positive acknowledgement and retransmissions than the sim-

ple method discussed before. Sliding window techniques utilize the network much

effectively than the previous one since they allow the sender to transmit multiple

packets before waiting for an acknowledgement. The easiest way to envision the

window operation is to think of a sequence of packets to be transmitted as in

Figure 2.4. Here, a fixed sized window is used. The protocol sends all the pack-

ets inside the window. We say that the packet is unacknowledged if it has been

transmitted but no acknowledgement has been received. Technically, the number

of packets that can be unacknowledged at a given time is constrained by the win-

dow size and is limited to a small fixed number. For example, in a sliding window

protocol with window size 6, the sender is permitted to transmit 6 packets before

it receives an acknowledgement. Once the sender receives an acknowledgement

for the first packet inside the window, it slides the window along and sends the

next packet. The window continues to slide as long as acknowledgements arrive.

In practice, the congestion window is not fixed, and TCP reacts to congestion.

The congestion situation is a condition of severe delay caused by an overload of

12

Current Window

Will be sent

without any

delay

Will be

delayed

Highest Sent Data

index

Highest

Received ack

+

Current

Window

1 2 3 4 5 6 7 8 9 10

Sent

Highest

Received ack

index

Figure 2.4: Sliding Window

datagrams at one or more switching points. When congestion occurs, router

queue starts to build up, eventually leading to loss.

The end point does not know the details about where the congestion has oc-

curred or why. To them, congestion simply means increased delay or lost pack-

ets. Most transport protocols use timeout and retransmission, so they respond

to increased delay by retransmitting datagrams. Retransmissions aggravate con-

gestion instead of alleviating it. If unchecked, the increased traffic will produce

increased delay, leading to increased traffic, and so on, until the network becomes

useless. This condition is known as congestion collapse [2].

To avoid such a situation, a congestion control mechanism must reduce its rate

when congestion occurs. To avoid congestion, TCP standards suggest different

techniques. These are slowstart, fast recovery and fast retransmit, and congestion

avoidance.

During the slow start, the TCP window increases exponentially. It is named

as it starts to transmit packets in a slow manner but accelerates rapidly. The

initial value of the window is one or two packets. Once the window exceeds the

threshold called the slow start threshold (ssthresh, which determines an upper

13

bound for the window size that can be incremented exponentially, the Congestion

Avoidance (CA) phase starts and congestion window grows linearly rather than

exponentially. Congestion window is updated as in equation (2.1) during this

phase. The window is increased by a single packet size per round trip time,

actually the time it takes to receive an acknowledgement after the packet is

transmitted. This window increasing phase continues until a loss occurs.

TCP algorithms differ in terms of the way they react to congestion. The

Tahoe type congestion control algorithm detects the loss by waiting a long period

for the retransmission timer to timeout and sets its congestion window to a single

packet. Reno, a variant of Tahoe, also sets its congestion control window to one

packet as a result of timeout, however, react by employing a fast retransmit

and fast recovery algorithm, upon the arrival of three duplicate acks. Vegas

tries to avoid congestion while providing good throughput. It tries to detect

congestion based on round trip time (RTT) estimates. Longer RTT will mean

higher probability of congestion. So the algorithm lowers the rate by lowering

the rate linearly when a possible loss is predicted [13].

As mentioned in the above paragraph RENO algorithm (RFC 2581) detects

the lost packets by the arrival of three duplicate acknowledgements, which are

generated by the receiver immediately after an out of order sequence has arrived.

Since there are other reasons of a duplicate acknowledgement, the sender should

wait for the same acknowledgement four times, and after that it recovers from

the loss by employing fast recovery and fast retransmit algorithms.

The most generally deployed algorithm today is the TCP Reno algorithm [13].

The Binomial Congestion Control (BCC) [4] is a smoothed version of Reno in

its responses to congestion. TCP-Reno responds to a lost segment by halving its

congestion window, and if there is no loss it increases its congestion window one

segment per RTT. BCC avoids to increase its window by one packet per round

trip time, and does not lower its window by half. Instead, it uses some parameters

that will result in the same average throughput but in a less oscillatory manner.

Binomial Congestion Control is a major part of this thesis and is based on TCP-

RENO.

Both RENO and Binomial Congestion Control mechanisms share their re-

sponse and method of detecting a loss. Fast Recovery and Fast Retransmit algo-

rithm is the key element of the lost detection and the recovery. This algorithm

functions as follows; as the third duplicate acknowledgement is received, ssthresh

is set to maximum of 2∗SMSS and the FlightSize/2, where the FlightSize is the

14

amount of outstanding data in the network. After the ssthresh is set, the lost seg-

ment is retransmitted, the window is set to sstresh plus 3∗SMSS at most, where

SMSS is the senders maximum segment size. Extra 3 segments are for the pack-

ets acked and therefore they are not in the network but are safely at the receiver.

This artificially inflates the window. For each additional duplicate ack, the win-

dow is also inflated by an SMSS. This also artificially inflates the window. A

new segment is transmitted as soon as the window allows. This mechanism in-

crements the number of packets that are unacked. However, transmission rate

will not exceed the transmission rate for the new value of window = ssthresh.

As the next ack, acknowledging new data is received, cwnd is set to ssthresh.

Algorithm stays active around 1 round trip time.

2.1.3 The User Datagram Protocol

UDP uses the underlying Internet Protocol to transport a message from one

machine to another, and provides the same unreliable connectionless datagram

delivery semantics as IP. It does not use acknowledgements to guarantee messages

arrive, does not order incoming messages, and does not provide feedback to

control the rate at which information flows between the machines. Thus, UDP

messages can be lost, duplicated, or arrive out of order. Furthermore, packets

may arrive faster than the recipient can process them.

The User Datagram Protocol(UDP) provides an unreliable connectionless de-

livery service using IP to transport message between machines. It uses IP to carry

messages, but adds the ability to distinguish among multiple destinations within

a given host computer.

An application that uses UDP, fully accepts the responsibility for handling

the problem of reliability, including message loss, duplication, delay, out-of-order

delivery, and loss of connectivity.

Each UDP message is called user datagram. Conceptually, a user datagram

consists of two parts: a UDP Header and a UDP data area. As Figure 2.5 shows,

UDP header is divided into 16 bit fields that specify the port from which it has

been originated, the port which it has been destined, message length, and UDP

checksum. The UDP checksum provides the only way to guarantee that the

packet has arrived intact, since IP header does not provide a checksum for the

data part it carries. A user datagram, that is going to be transmitted over the

15

Source Port Number

Length Checksum

Destination Port Number

Application Data

(Message)

32 Bits

Figure 2.5: UDP Header

Internet, is encapsulated in an IP header that contains the necessary information

for the packet to travel along the Internet and reach to its destination. This IP

header is encapsulated into the link layer headers as it is transmitted over the

links.

2.1.4 Congestion Control

The unresponsive flows that do not use end to end congestion control may lead

to both unfairness and congestion collapse of the Internet.

Unfairness caused by the absence of end to end congestion control, is mainly

from the interaction of TCP with unresponsive UDP flows. TCP flows reduce

their sending rates in response to a congestion. Since TCP constantly reduces

its rate in response to a packet drop, the UDP flows use the most of the available

bandwidth.

For two different users employing TCP that are similarly situated, TCP pro-

vides roughly the same bandwidth to both. However, TCP congestion control

16

mechanisms produce rapidly varying transmission rates. While several applica-

tions can tolerate these oscillations, streaming applications such as video and

audio do perform better with congestion control mechanisms that respond more

smoothly to a loss and have smoother bandwidth profile.

Since uniformity is necessary for fairness, and provide better solutions for the

multimedia applications TCP Friendliness is proposed. A congestion control

mechanism is TCP friendly if its bandwidth usage, for a constant loss rate, is same

as that of TCP [14]. In other words, the throughput of a TCP friendly algorithm

on long term basis should be similar or less to that of TCP. An algorithm that is

TCP friendly can achieve smoothness which streaming requires, while interacting

fairly with the main data transmission protocol TCP.

On the other hand congestion collapse occurs when an increase in the

network load results in a decrease in the useful work done by the network [2].

The first congestion collapse was caused by the unnecessary retransmissions of

the TCP connections. However, the problems that are caused by this type of

collapse have been corrected by improvements on timers and congestion control

mechanisms.

Another cause of congestion collapse is the “undelivered packets”. This arises

when, at a node, the packets that will not be able to reach to their destination

are forwarded. Main cause for such a situation is the increasing deployment of

open loop applications that do not have congestion control.

In order to prevent the congestion collapse scenarios, and provide the fair

interaction between different flows, TCP friendly congestion control mechanisms

are proposed. For better performance of video applications, delay and bandwidth

requirements should also be met. In order not to annoy audience by constantly

oscillating quality, the rate adaptation should be made smoothly on longer time

scales.

Recently Proposed Congestion Control Algorithms

There are various types of rate adaptation and congestion control schemes

proposed in the literature. They all claim to be TCP-Friendly. These methods

differentiate from each other based on methods of adapting their rates. Some

schemes use window based methods, where as some perform rate based adap-

tations. The ones employing rate based techniques adapt their rate according

to the TCP throughput model or an additive increase, multiplicative decrease

17

(AIMD) based method. For a scheme using window based mechanisms, window

increment and decrement govern the rate control and the TCP friendliness can be

achieved by suitably choosing parameters of the window adjustment algorithm.

Rate based Schemes are Rate Adaptation Protocol (RAP) [5], TCP-Friendly

Rate Control (TFRC) [3], a model based TCP-friendly rate control protocol

(TFRCP) [15], the loss-delay based adjustment algorithm (LDA) [16], Smooth

and Fast Rate Adaptation Mechanism (SFRAM) [17], Direct Adjustment Algo-

rithm (DAA) [18].

RAP [5] adjusts its rate by adapting the transmission times of the packets in

an AIMD manner. It has two mechanisms for adapting the transmission rate.

The coarse granular one works as follows: If there is no congestion, it shrinks

the transmission times in an additive manner. If there is a loss of packet, they

double the transmission timeout resulting in halving the rate. They also have fine

granular rate adaptation that emulates the rate change of TCP because of RTT

variation. They also consider multiple losses in one round trip time as a single

one. This is very important since the fast recovery and retransmit algorithm of

the TCP RENO is known not to recover well from the loss of multiple packets

in a single round trip time.

TFRC [3] is a protocol based on the TCP response function. However, its

not as aggressive as TCP. The receiver calculates the loss rate and RTT and

informs the sender. The sender adjusts the rate according to a TCP throughput

equation using these estimates. The smoother estimation of the parameters result

in smoother rate adaptations.

TFRCP [15] is also a model based approach, however a different model for this

protocol has been used. LDA [16] relies on Real Time Control Protocol (RTCP)

feedback information. If no loss has occured, the rate is adjusted in an additive

incremental manner. If loss has occurred, rate is decremented proportional with

the loss. SFRAM [17] smoothly adjusts its rate when there is not a distinct

bandwidth change. If there exists large variations, it adapts in a rapid manner.

It averages the measurements in an adaptive way. DAA [18] also relies on the

RTCP feedback mechanism. DAA employs both TCP-style AIMD and TCP

throughput model.

As mentioned before, the window based algorithms use their window for de-

termining the number of packets that can be transmitted, and yet not confirmed

to be at the receiver. These packets are accepted as “in flight”. Changes in

18

the window size will effect the number of packets transmitted. Among the win-

dow based algorithms there are linear and non linear generalizations of TCP

algorithm.

The linear generalization, Generalized AIMD (GAIMD) [19], develops a rule

for using the α and β parameters in Equation 2.1 and 2.3. In this equation w

is the window size, R is used for one round trip time period and δt is used to

indicate an immediate or a relatively short term change.

ωt+R = ωt + αωk
t ; α > 0 (2.1)

ωt+δt = ωt − βωk
t ; 0 < β < 1 (2.2)

Binomial Congestion Control [4] proposes a class of nonlinear generalization of

TCP. These algorithms are motivated in part by the needs of streaming audio and

video applications for which a drastic reduction in transmission rate upon each

congestion indication (or loss) is problematic. Binomial algorithms generalize

TCP-style additive-increase by increasing inversely proportional to a power k of

the current window (for TCP, k = 0); they generalize TCP-style multiplicative-

decrease by decreasing proportional to a power l of the current window(for TCP,

l = 1). We show that there are an infinite number of deployable TCP-compatible

binomial algorithms, those which satisfy k + l = 1, and that all binomial algo-

rithms converge to fairness under synchronised-feedback assumption provided

k + l > 0, l ≥ 0.

Developers of BCC assumes, a TCP friendly algorithm has a throughput pro-

portional with λαS/(R
√

p), where the λ is the throughput, S is the packet size,

R is the round trip time, and p is the packet loss rate. For binomial algorithms

throughput is around λα1/p
1

k+l+1 , and a binomial congestion control algorithm

is TCP compatible if only k + l = 1 for suitable α, β. There are two types of

binomial algorithms that are widely deployed. One of them is Inverse Increase

Additive Decrease (INV) with parameters (k = 1, l = 0), and the other is SQRT

called after that its parameters (k = 1/2, l = 1/2). For more information please

refer to [4].

Even though a fair interaction is envisioned for similiar loss rates, for the

cases with drop-tail queues some competing flows may experience different loss

rates, therefore they experience different rates. By the implementation of the

RED queues at the node’s interface that is connected to the bottleneck link, this

problem may be solved. There is also a study on the fairness of the binomial

congestion control mechanisms. This study has been reported in the [20], which

is a comparative study of binomial congestion control mechanisms. By the results

19

of this paper, the algorithms found to be converging to a fair allocation of the

bottleneck bandwidth for the k is in the range of [0, 0.2].

2.2 Video Transmission over IP Networks

2.2.1 Video Standards

The digital representation of a sequence of images requires a very large number

of bits. However, video signals naturally contain a number of redundancies that

could be exploited in the digital compression process. These redundancies are

either statistical due to the likelihood of occurrence of intensity levels within the

video sequence, spatial due to similarities of luminance and chrominance values

within the same frame, or temporal due to similarities encountered amongst

consecutive video frames. Video compression is the process of removing the

redundancies in the video and representing the video with less amount of bits

for reducing the size of its digital representation. Extensive research has been

conducted since the mid eighties to produce efficient techniques for image and

video compression.

The standards organizations ITU (International Telecommunication Union)

and ISO (International Standards Organization) both released standards for still

image and video coding algorithms. After the release of first still image standard,

namely JPEG (alternatively known as ITU T.81) in 1991, ITU recommended

the standardization of its first video compression algorithm, namely ITU H.261

for low bit rate communications over ISDN at rates multiple of 64kbits/s, in

1993. The MPEG-1 standards for audiovisual data storage on CD ROM (1991),

MPEG-2 (ITU-T H.262, 1995) for broadcasting applications have been released.

ITU H.263 (1998) was released for very low bit rate communications over PSTN

networks; then the first content-based object-oriented audiovisual compression

algorithm was developed, namely MPEG-4(1999). By means of research on the

video technology, scalable coding techniques such as two layer MPEG-2 and the

multi-layer MPEG-4 standards are developed. There are also switch-mode tech-

niques that have been developed, which can accommodate more than one coding

algorithm in the same encoding process to result in an optimal compression of

a given video signal. Some newly developed techniques employ joint source and

20

channel coding techniques to adapt the generated bit rate and hence the com-

pression ratio of the coder to the time varying conditions of the communication

medium.

Throughout this section, MPEG-1, MPEG-2, H.263 compression schemes are

introduced. The system proposed in this thesis is working on the MPEG encoded

videos. However, it may be possibly used with an H.263 coded video on very low

bit rates.

2.2.2 MPEG-1, MPEG-2 and Concepts

MPEG stands for the Moving Pictures Expert Group, which is a committee

under the Joint Technical Committee of ISO. To focus the design of the system

around a practical objective, certain parameter constraints are defined. These

parameter values represent boundaries; a bit stream with any parameters outside

these boundaries is not accepted as an MPEG-1 stream. Therefore an MPEG-1

decoder is not required to decode it. MPEG standard describes various tools

that may be used to perform compression, and gives some hints of how these

might be implemented.

MPEG-1 and MPEG-2 achieve both spatial and temporal compression of

the image sequence, and all known techniques of this types of analysis are com-

putationally complex. However, MPEG-1 and MPEG-2 are both designed as

asymmetric systems; the complexity of the encoder is much higher than the

decoder.

The top level definition in MPEG-1 is a sequence of pictures. A sequence can

be arbitrary in length and can represent a video clip, a complete program item,

or a concatenation of programs. Within the sequence, the next lower definition is

the group of pictures (GOP). In the simplest form of encoding without temporal

compression, the GOP can be a single picture. However, in typical MPEG appli-

cation the GOP will include pictures coded in three different ways and arranged

in a repetitive structure most commonly between 10 and 30 pictures long. A

picture or a frame consists of slices and macroblocks. A macroblock contains all

the information required for an area of the picture representing 16×16 luminance

pixels. Macroblocks are numbered in scan order (top left to bottom right). In

MPEG-1, a slice is any number of sequential macroblocks. The main significance

of a slice is that, it is encoded without any reference to any other slice; this means

21

Figure 2.6: Slices in MPEG-1

that if data is lost or corrupted, decoding and recovery can usually commence

at the beginning of the next slice. The hierarchical organization of MPEP video

sequence is given in Figure 2.6.

There are three types of frames. They are I, P and B type frames. I (Intra)

frames are the frames that are encoded using only the information within that

frame. In other words it is spatially coded. The non intra frames use information

from outside the current frame, from frames that have already been encoded. For

a non intra frame, motion compensated information is used for that macroblock.

This compansation results in less amount of total data. As in Figure 2.7, a

region in frame N is searched in the frame N+1 in a limited “Search Area”.

After the best matching part is found a motion vector is generated that contains

the necessary information for the prediction process.

The I-frames are coded solely on its own information. The P frames are pre-

dicted unidirectionally from I frames or a preceding P frame, and the B frames

are predicted from proceeding P frames and preceding I or P frames bidirec-

tionally. The I frames and the P frames are called anchor frames, because they

will be used as references in coding of other frames using motion compensation.

22

Figure 2.7: Motion Estimation

B-frames, however, are not anchor frames, since they are never used as a refer-

ence. The GOP starts with an I-frame. It is possible to place couple of B frames

preceding the I frame. The first P frame is encoded using the previous I frame as

a reference for temporal encoding. Each subsequent P-frame uses the previous

P frame as its reference. Therefore an error occurred in the previous frame will

propagate as the P frame becomes the reference of others. The B frames use

the previous anchor (I or P) frame as a reference for forward prediction, and the

following anchor as a reference for backward prediction. B frames are never used

as a reference for prediction.

As a summary, the encoding order of the frames may not be similar to the

order of the pictures needed to be shown. Therefore the transmission order of

the frames may not also be the same as their display order.

The MPEG-2 has similar basic principles. It is possible to express MPEG-2

as an MPEG-1 with improvements such as, tools for interlace, scalable syntax,

a range of profiles and levels accommodating wide range of applications, plus a

system layer to handle multiple program streams. While the MPEG-2 standards

are accepted as more complex, MPEG-1 provides basics.

23

The scalability techniques are introduced in order to make it possible for

a part of a video sequence to be decoded at a desired quality. The minimum

decodable subset of the bitstream is called the base layer. All other layers are

enhancement layers, which will improve the quality of the video. There are three

types of scalability; Spatial, SNR, Temporal Scalability. Spatial (pixel resolution)

scalability provides the ability to decode video at different frame sizes. By adding

them on to each other it is possible to end up with a picture size equal to the

original video. SNR scalability offers versions of the video, coded with different

quantizer step size for the quantizer. Therefore, resulting in coarser to gradually

improved quality. Temporal scalability refers to decodability at different frame

rates without first decoding every single frame. There may be a composite use

of the above techniques or they may be used alone.

The system proposed in this thesis, makes use of the MPEG-1 streams that

are temporal scalable encoded. Our mechanism selectively discards some of the

frames in order to adapt the rate of the video available bandwidth in the internet.

The video stream used has a bit rate around 2Mbits/s.

2.2.3 Video Streaming over IP

It is possible to transmit a stored video in two different modes. They are the

download and the streaming modes. In a download mode user downloads the

video file, and plays back the video file after download has been completed.

However, full file transfer usually takes long and sometimes unacceptable transfer

time. On the contrary, in the streaming mode, the video is played out while parts

of the video are still being transmitted. Since it has a real-time nature, video

streaming applications have some requirements on the transmission medium,

namely bandwidth, delay and loss requirements. However, today Internet does

not have any QoS (Quality of Service) support to guarantee that the packets will

be delivered within the requirements. Furthermore, for multicast, it might be

hard to efficiently meet different requirements of different users.

The General Architecture

Figure 2.8 presents a general architecture of video streaming. The raw audio

and video data are compressed by compression methods before a request is made

and stored into the storage devices. As a client requests video data, stream-

ing server retrieves compressed video/audio data from storage devices and then

24

Streaming Server

Raw

Video

Raw

Audio

Storage Device

Compressed

Video

Compressed

Audio

App.

Layer

QoS

Control

Transport

Protocols

Client / Receiver

App.

Layer

QoS

Control

Transport

Protocols

Video

Decoder

Audio

Decoder

INTERNET
(Continuous Media Distribution services)

Media

Synchronization

Video Compression

Audio Compression

Figure 2.8: A general video streaming architecture [1]

the application layer QoS control module adapts the video/audio bit-streams ac-

cording to the network status and QoS requirements. After the adaptation, the

transport protocols packetize the compressed bit-streams and send the packets

through the Internet. Packets may be dropped or experience excessive delay

inside the network due to a congestion. To improve the quality of video trans-

mission, continuous media distribution services are deployed in the Internet (e.g.

caching). To achieve synchronization between the video and the audio decoder,

video synchronization mechanisms are required. The above six areas are closely

related and they are the elementary granules of the video streaming architecture.

Video compression of a raw video is required to prevent the inefficient usage

of the bandwidth. The video coding can be further classified into two classes,

they are scalable and non-scalable coding. The available types of scalable video

encoding are SNR, spatial, temporal scalabilities, and newly developed FGS,

PFGS, namely fine granular and progressive fine granular scalability techniques.

The requirements of the streaming video such as bandwidth, delay, loss, VCR

like functionality, decoding complexity imposed on the video encoder and de-

coder, and techniques addressing these issues should be emphasized at this point.

Bandwidth cannot be set to a certain level on today’s Internet even though the

25

video has a minimum bandwidth requirement. It is also desirable for a streaming

server to employ congestion control to avoid the congestion that it may cause

inside the Internet. The streaming servers using UDP do not consider the fact

that the network may be overloaded with several of these streams. Therefore the

data flow and finally the streams themselves will suffer randomized and excessive

losses. The situation may lead to a worse situation, a congestion collapse. In this

case, even if the network resources are fully used, the successfully transmitted

packets are very few. Delay is another requirement. Streaming video requires

bounded delay on an end to end basis. The play-out will pause if there are miss-

ing packets, which is displeasing to humans. Play-out buffering is required in

order to suppress the time-varying delay that the Internet introduces . Loss is a

fact of Internet. In order to prevent the loss of information as a whole the mul-

tiple description coding might be implemented. VCR like functionality provides

user a tool to command the stream to start, pause, and fast forward. Decoding

complexity is an issue that is mostly related to mobile applications. Since they

have limited amount of battery, applications running on these devices must be

simple.

Application layer quality of service control tries to adapt video quality, to

changing network conditions by switching through different quality levels. These

techniques include congestion and error control. The congestion control aims

to prevent the packet loss and reduce delay. Error control has the obligation

of improving quality in the presence of packet loss. Error control mechanisms

include forward error correction (FEC), retransmission, error resilient encoding,

and error concealment.

Congestion control is necessary to prevent packet loss and delay. Bursty loss

and excessive delays are two facts that have devastating effects on the quality of

the video, and they are generally caused by network congestion. For a normal

video streaming application, rate control attempts to minimize the possibility of

network congestion by matching the rate of the video stream to the available

network bandwidth.

For a pre-compressed video, rate shaping is the mechanism to match the rate

of the video sequence to the target rate constraint. The main contribution made

in this thesis is the proposal of a rate shaper. However there are different types of

rate shapers. They are codec filters, frame dropping filters, layer dropping filters,

frequency filters and re-quantization filters. A codec filter decodes the sequence

and encodes it according to the available rate over the network. A frame dropping

26

filter can distinguish frames and drop frames according to their importance. The

dropping order would be first B frames, later P frames and at last I frames.

The frame dropping filter is used to reduce the data rate of a video stream by

discarding the necessary amount of frames and transmitting the remaining ones

at a lower rate. This filter can be both used at the source or in the network. Layer

dropping filter can distinguish between layers of a scalable coded video and drop

them according to their importance. The frequency filter works in the frequency

domain, and discards some of the frequency domain coefficients. It may employ

low pass filtering, color reduction, and color to monochrome filtering. The re-

quantization filter performs its operations on the DCT coefficients, and changes

the quantization step size. Our proposed system, employs a frame dropping filter

at the server.

Continuous media distribution services implemented in the Internet, provide

the adequate network support to decrease the delay, and packet loss ratio. Built

on top of the IP protocol, continuous media distribution services are able to

achieve QoS and efficiency for streaming video over the best effort Internet.

Continuous media distribution services are network filtering, application level

multicast, and content replication.

The streaming servers are the key components for providing streaming ser-

vices. To offer quality streaming services, the servers are required to process

multimedia data under timing constraints. Furthermore, they are required to

support interactive functionalities such as rewinding, fast forwarding. The fun-

damental components of a server are a communicator, an operating system, and

a storage system.

Media synchronization is a characteristic functionality of a video streaming

application. By use of the media synchronization mechanisms, the video content

can be displayed at the receiver as it was originally recorded. Best known example

of synchronization is lip movements of a speaker and the speech.

The protocols for streaming media delivery are standardized for the commu-

nication between clients and streaming servers. Protocols for streaming servers

provide, addressing, transport, and session control. They can be classified into

three groups, network layer, transport protocols, session control protocols.

Network layer protocols provide basic network service support such as net-

work addressing. The IP serves as the network layer protocol for Internet stream-

ing protocol.

27

Protocol Stacks

Compressed

Video

Data Plane Control Plane

RTCP RTSP/SIP

UDP/TCP

IP

RTP

Internet

Figure 2.9: Protocol stacks for streaming media [1]

Transport protocols provide end to end network transport functions for

streaming applications. Transport protocols include UDP, TCP, real-time trans-

port protocol (RTP), and real time control protocol (RTCP). UDP and TCP are

layer 3 protocols, however RTP and RTCP are layer 4 transport protocols, which

are implemented on top of the TCP and UDP.

Session control protocol defines the messages and procedures to control the

delivery of the multimedia data during an established session. The RTSP (Real

Time Streaming Protocol) and the session initiation protocol (SIP) are such

session control protocols.

In Figure 2.9, the relationship between these three types of protocols can

be observed. On the data plane, the compressed video/audio data is retrieved

and packetized at the RTP layer. The RTP provides timing and synchroniza-

tion information. The RTP packetized streams are then passed through the

TCP/UDP layer and the IP Layer. The latest research on video streaming tech-

niques provides alternatives to the use of TCP or UDP. There are newly proposed

techniques which have been emphasized in the IP networks section. At the re-

ceiver side, the media streams are processed in the backwards order, first IP

28

layer, then UDP/TCP layer, and the control plane. The control signals are also

encapsulated in TCP, and IP headers.

The transport protocols for media streaming include UDP, TCP, RTCP, RTP.

UDP and TCP provide the basic transportation functionality, RTP and RTCP

run on top of the UDP/TCP.

UDP and TCP protocols provides functionalities such as multiplexing, error

control, congestion control, or flow control. The port numbers of the UDP and

TCP headers make it possible to multiplex different applications running on the

same machine with the same IP address. For error control, TCP and UDP imple-

mentations employ a checksum to detect bit errors. If bit errors are detected on

any packet, that packet is discarded. TCP uses retransmissions to recover from

lost packets, therefore provides a reliable connection. However the retransmis-

sions of TCP may not be suitable for time stringent applications. However, for

a unidirectional streaming, the timing is not very stringent. TCP also employs

a congestion control mechanism which prevents the streaming application from

sending too much data, and overloading the network. TCP also has a mechanism

to prevent the receiver buffer from overflowing while UDP does not have. For

the simulation purposes the receiver buffer has been assumed sufficiently large

so it never overflows in the system proposed. The actual TCP implementation

naturally handles this problem. If a receiver buffer overflow occurs, TCP will

lower the transmission rate. Therefore the rate shaping will take place according

to this new rate.

UDP is much more generally employed, since TCP has a oscillatory behavior

and may have excessive delay. UDP does not provide any guarantee on the

delivery of the packet, therefore receiver will need to rely on the RTP system.

RTP is an international standard protocol designed to improve end-to-end

transport functions for supporting real-time applications, where RTCP is a com-

plementary protocol that provides QoS feedback to the participants of an RTP

session. Indeed RTP is the data transfer protocol while RTCP is a control pro-

tocol.

RTP does not guarantee QoS or reliable delivery. Its functionalities are time-

stamping, sequence numbering, payload type identification, source identification.

The time stamping provides marking for application to be able to synchronize

different media streams. Sequence numbering provides a way to detect out of

order delivered packets. Payload’s type identification indicates the type of data

29

that has been carried. It indicates whether the content has an encoding such as

MPEG1/2 or audio. Source identification indicates the source of each packet.

The function of the RTP header is providing the necessary mechanisms that

the UDP does not employ. The TCP however already has these types of fields. It

has its own sequence numbers, synchronization markers. The source identifica-

tion can be a challenge, however IP header also provides the necessary informa-

tion. Still the selection of headers is a research issue by itself, some modification

of TCP header will provide the necessary functionalities. In order to mention,

the selection and implementation of a header structure is an open issue and is out

of the scope of the research presented. The necessary sequence numbers, timing

functionalities are used as the ones of the video itself, and through the changes

of the TCP header without disturbing the functionality of the TCP itself.

RTCP is the control protocol designed to work together with the RTP. RTCP

provides QoS feedback, participant identification, control packet scaling, inter-

media synchronization, minimal session control information. The QoS feedback

includes statistics about the reached packets, fraction of the lost packets, de-

lay, packet inter-arrival jitter. Based on the feedback, the sender can adjust its

transmission rate. TCP again has all of these information, through mechanisms

it already has. The rate is also dictated by TCP. The participant identification

provides a mechanism to identify the source of a packet. Control packet scaling,

scale the RTCP control packet transmission with the number of participants.

Among the control packets, 25% are allocated to the sender reports and 75%

to the receiver reports. To prevent the control packet starvation, at least one

control packet is sent within 5 seconds at the sender or receiver. Inter-media

synchronization mechanism is the indication of the realtime and the correspond-

ing RTP time stamp. Minimal session control information is used to provide a

mechanism to transport the session information such as session names.

RTSP and SIP are two session control protocols. They provide the basic

initiation, VCR like functionalities, and the session termination functions.

2.2.4 Quality Adaptation

The quality adaptation is the method of adapting the rate of a video through

changing its quality, so that the required rate matches the rate determined by

the congestion control mechanism. The system that we have proposed also aims

30

to adapt the rate of the video according to the rate determined by the congestion

control mechanism.

Most of the work done in this field tries to achieve a constant quality over

long periods while performing a TCP-friendly transmission. [21], [22] employ

TCP-Reno to satisfy the concerns on TCP friendliness. [23], [24] chose to adapt

the video rate to smoother bandwidths, so they use TCP-friendly mechanisms

like TFRC and TFRCP. The systems proposed in [25], [26] aim to minimize the

number of packets that miss their play-out times by employing adaptive play-out

mechanisms.

Some mechanisms are designed for both encoding the video and providing

the transmission of the video [27], [28], [29]. The work presented in [30], [8], [31],

[32], [33], [34] are the examples of systems that adapt the pre-encoded or stored

video to a available bandwidth based on either a feedback from the congestion

control mechanism or a dynamic mechanism.

The encoding of video adaptive to the available bandwidth is called rate

control [35]. [36], [37], [38] dictate some improvements to the underlying network

architecture in order to be able to meet the demands of the video streaming

applications.

Layered quality adaptation is a pre-encoding of video that makes it possible

to stream the video with different rates from a discrete set. [39], [40], [6] are some

proposed mechanisms that have implemented such layered quality adaptation.

There are video rate shaping mechanisms implemented in the network [41].

There are also some techniques that were employed for the constant bit rate

applications. However, these adapt a rate of a pre-encoded video to a given

rate [42], [43].

[22] is actually an overview of the TCP streaming. Their point on retrans-

missions is as follows: since video on demand has interactivity limited to the

control commands such as start, pause, fast-forward, it may be possible to make

retransmissions without great deal of problems. However, they mention that,

retransmission is an issue that should be seriously considered. Their other point

is that quality adaptation should be made based on the long term oscillations

of the bandwidth, otherwise audience may find the video very annoying. Their

vision is that an ECN capable network would be really suitable for the increase

31

of the performance. In an ECN capable network it is possible to adjust the rate

almost without doing any retransmissions and losing any packets.

[21] employs dynamic rate shaping and a TCP congestion control mechanism

but in a semi-reliable way. Their rate shaping filter employs two techniques, re-

quantization and elimination of some transform coefficients. These eliminations

are based on the minimization of the distortion caused by the rate change. It is

left to a decision mechanism to retransmit the lost data.

[25] and [44] are proposing a mechanism that adapts play-out speed according

to the network conditions. The first paper proposes a mechanism for wireless

error-prone channels. The second paper is a variant of the system for real-time

media streaming. [26] is offering an advance over adaptive play-out mechanisms

by adaptively encoding the video.

Some of the mechanisms, in order to achieve best possible quality, both encode

and also further shape the video according to the available bandwidth [27]. Their

methodology toggles between modes of transmission, which are sending I frames,

I and P frames, and sending all frames. The condition of the network is estimated

by the penalty assigning to the lost packets in a differential manner.

[32] is one of the most similar systems to our mechanism in the sense of

the method employed for rate shaping. Even though the system implemented

works on the TCP output buffer and uses Binomial Congestion Control param-

eters, their implementation is related to the exceeding of a threshold. If this

threshold on the TCP buffer is exceeded, packets are gradually rejected with an

increasing probability. The video streamed is also MPEG-4 video coded with a

transformation based on wavelet transformation coding techniques.

[30] is actually developed for wireless channels. The algorithm is based on

the play-out deadlines and the cost assigned to each of the frames. The cost of

frames is assigned according to their position in the GOP which actually define

their importance. I frames have smaller cost than the others. A frame is sent

according to the combined consideration of the network delay, their cost and the

play-out deadlines. According to this mechanism, the video packets are scheduled

with respect to their importance instead of their original playback order. Their

similarity to our system is the usage of the delay as a constraint on the decisions.

[8] makes use of TFRC and the MPEG-4 Fine Granular Scalability (FGS)

that has been developed by the Microsoft Research China. The MPEG-4 FGS

32

provides enough mechanisms to match the rate of the video to the available

bandwidth. Matching may not be perfect however, on the long run, it does satisfy

the limiting rate that has been dictated by the congestion control mechanism.

[31] re-quantizes the DCT coefficient to adapt the video rate to the available

bandwidth information. The congestion control mechanism used is a TCP based

mechanism with limited retransmissions.

[33] is also a technique used for the wireless channels. They implement

an algorithm that reduces the effect of the packet losses by selectively sending

the packets. They prioritize packets according to their relative importance in

stream. They transmit a packet in the slot if it will not prevent the following

higher priority ones being transmitted in the next slot.

[34] employs a priority based technique which will ensure the minimum frame

rate delivered before transmitting the enhancement layers. The technique defines

a window for the transmission and forwards the base layer data, if there is still

room for upper layers it forwards them. This mechanism also works on the output

buffer of the congestion control mechanism, which is similar to the system we

propose.

[36] proposes some mechanisms to optimize the video streaming most effi-

ciently in a loss or delay differentiated network. However, as it dictates con-

straints on the network, it is harder to be implemented. [37] investigates the pos-

sible improvements via employing just simple prioritization on the flight, while

the packets are trans-passing through the network. [38] also implies differentia-

tion based on delay and loss.

Layered video is a basic method for adapting to the available bandwidth. [6]

employs layered video streaming techniques. In this scheme, lower and higher

layers are both streamed when there is excess bandwidth, however during the

times when there is not enough bandwidth only the higher layers are streamed.

The lower layers are drained from the buffers, accumulated at the client, during

low bandwidth situations. By employing this type of mechanism, any layer that

is buffered is mostly guaranteed to be used at the client. No buffered data will

be dropped since the arrival of the lower layers are not sufficient. The used

congestion control mechanism is RAP. [40] is an implementation of this method

to Binomial Congestion Control Mechanism.

33

[41] is a technique that employs MPEG filtering in the network which also

discards the frames considering their dependencies.

[43] suggests one of the systems developed for the given constant bit rate. It

considers the client buffer constraints as well as QoS metrics at the client side.

This information is used to decide on whether to discard the frames or not. The

question they are trying to answer is, “What percentage of the frames can be

transmitted so that the transmitted ones will make their play-out deadlines”.

They evaluate some number of optimal selective frame discarding algorithms by

employing dynamic programming techniques and heuristics.

34

Chapter 3

SELECTIVE FRAME

DISCARDING (SFD)

Selective frame discarding is the name for the frame discarding filter that we

have proposed. The frames are arriving into the quality adaptation buffer of

the server, which is the term that we are using interchangeably with the term

server output buffer. The frames are arriving at the frame rate of the video.

For every frame arriving into this buffer, a decision is made whether to admit

this frame, or to discard it. In order to make the decision the main concern

is, if the frame is admitted, will it be able to reach the client before its play-

out time expires? Furthermore, there is a hierarchical architecture for the video

sequences. Some of the frames are more important than the other ones. Each

frame’s decision should also be effected by its importance in the video sequence.

For this reason there needs to be a differentiation between frames. I and P

frames are containing information necessary for the decoding of the frames that

are dependent on them, so it is essential to protect such frames. Therefore, while

B frames can be sacrificed easily, I and P frames should be admitted at the

cost of losing some more B frames. In order to achieve differentiation, we assign

priorities for each of the frames. A high priority frame is admitted even if there

is a probability that it may not make its deadline. However, a low priority frame

is not admitted if it will be delayed at the server more than a fraction of its left

play-out time. Once the frame is admitted to the quality adaptation buffer, it

is the transport protocol’s responsibility to deliver this frame to the client. The

client also buffers the content that arrives. It keeps an estimate for the duration

of the content arrived and informs the server about this estimate. Therefore, the

35

server has an estimate of the time left for a frame to reach its destination before

it is admitted.

3.1 Priority Assignment For MPEG Video

Frames

An encoded video with standard MPEG-1 codec, has I, P and B frames existing

in the stream. ‘I’ (intra) frames consist of the JPEG like encoded blocks and

macro blocks. The ‘P’ frames are, in the most part, predicted frames from the

preceeding I and the P frames. Up to some level, they also have Intra coded

blocks. These blocks are generated because prediction procedure would not give

out a clear result, or the prediction vectors will be so large that no gain from the

bandwidth will be supplied. This situation arises when there is a scene change.

The P frames corresponding to such an event will have higher size respect to

other P frames. Since they carry more information and their sizes are larger

they should be assigned as high priority. P frames contain both the Intra coded

and P coded blocks. B frames, which are generated from both preceding and

proceeding I and P frames, generally have predicted blocks. Since no frames

depend on them, any error on a B frame will not propagate. However for P

frames, the errors will propagate through the GOP until a new GOP starts and

a new intra frame is displayed.

It is generally accepted that [45] Intra frames are the frames that are biggest

in size. P frames which are next important, also having some intra blocks, has

the next largest sizes. B frames have the smallest size among them.

Therefore, in order to determine the importance of a frame, it is possible to

check the size of the frame. Even though this method may not be the best way to

assign priorities, its implementation simplicity makes such a priority assignment

mechanism a suitable choice. The frames having more than some number of Intra

blocks will have larger sizes and since they are the important ones, we can define

a threshold, for which the frames having larger sizes than this threshold, can be

assumed to be important and marked as high priority. This is the method that

we propose on the classification of the frames.

The packets that can survive by themselves become more important than the

ones that are dependent on the success of the others in the case of insufficient

36

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

 F
ra

m
e

si
ze

s
in

 b
yt

es
Frame Sizes
Decision Threshold

Frame index

Low Priority − High Priority Decision

Figure 3.1: The frame sizes of a video stream

bandwidth. The frames that have smaller sizes contain less independent infor-

mation. The Intra frames that are not very dependent on the success of any

other frame have larger sizes.

In Figure 3.1, we can see that most of the frames are small sized, but the

self dependent ones are in small numbers and in larger sizes. Here a threshold is

assigned, and the ones above that threshold are marked as high priority. There

could be more than one layer of separation, according to the sizes of the frames.

In that case we could mark the largest ones as, priority 0, and the smaller ones

as priority1, priority2, respective to their sizes. In our binary case, we mark the

smaller ones as low priority.

3.2 Server Output Buffer

The server output buffer is actually the standard TCP output buffer, as BCC

uses the underlying TCP architecture. Since TCP parameters are no longer used,

37

Admission

Control

Frame n

Frame n+1

Frame n+2

Frame n+3

Frame n+4

Frame n+5

Quality Adaptation Buffer
Congestion

Control

Mechanism

Stored, Temporal

Scalable Video

Dropped Frames

Packetized

Frames

Figure 3.2: The server architecture and the output buffer

this buffer can be accepted as the server output buffer. For the system that is

developed, this buffer is of finite length D seconds.

The congestion control mechanism governs the transmission of the packets

residing in this buffer. The packets are not dropped out of the queue, once they

are admitted. As the packets are transmitted copies of them are kept until they

receive an acknowledgement. This buffer is fed by the output of the priority

assignment sub-module and only drained by the Congestion Control Mechanism

that is forwarding the TCP packets.

The frames, that are at the input of the buffer, are separated into smaller

sizes if they are larger than the size of the Maximum Transmission Unit (MTU).

These smaller packets are formed at the size of MTU. The remaining part which

is less than the MTU, is sent as it is. In Figure 3.2, the situation is depicted.

The frames having a size more than an MTU are chopped into packets at the

size of MTU without actually changing their priority. The frames arrive into this

buffer at the rate of the video itself. Exceeding this rate may be beneficial in the

short term. However, injecting packets at a rate more than their drainage rate

out of the system will cause the play-out buffer to overflow and unnecessary loss

of packets.

38

i-2 ii-1

Frame

Period

jj-1j-2j-3

t

Figure 3.3: The frame sizes of a video stream

3.3 Client Play-Out Buffer

Client play-out buffer stores the necessary amount of content to keep the video

uninterrupted during the periods that the transmission rate is very low. During

the periods that the transmission rate is sufficient, this buffer is built-up again.

It also suppresses the early or a little late arrival of the packets. Since the video

frames are fragmented into smaller units in our system, they are reconstructed

in the play-out buffer. Packets that belong to the same frame are combined

according to their TCP sequence numbers. The drainage of the buffer is stopped

if the number of packets in the buffer fall below a certain threshold. By employing

a lower threshold, display of the frames still having packets on the flight will be

delayed. As soon as the buffer occupancy exceeds this lower threshold, play-out

will be resumed. This may provide more time for each frame to be constructed.

The frames are drained at the standard rate of the video. The missing frames

are also assumed to be displayed and the next existing frame is displayed at its

own deadline. In other words, the period for the missing frame is not filled with

the next existing frame. The scene will be frozen during the time of the missing

frames. The situation is given in Figure 3.3 where the frames i and i− 2 are the

ones that are in the play-out buffer. Instead of missing i− 1st frame, the i− 2nd

frame is continued to be shown on the screen. A similar picture which will be

less disturbing will be shown. For the case of jth and j − 3rd frames on the same

stream, j − 3rd will be displayed instead of missing j − 1st and j − 2nd frames.

39

Network

Server Side Client Side

D
d0

Tp

Figure 3.4: The end to end visualization of the system

3.3.1 Estimating the Latencies

A video streaming environment might be modelled with the queueing structure

given in Figure 3.4. D is the delay estimate in the output buffer of the server. It

is estimated with running average of the actual waiting time in the output queue

of the server. The running average filter is Dk+1 = β × Dk + (1 − β) × Dlast,

where Dlast is the delay experienced in the buffer by the last packet drained from

the buffer.

Tp is the estimated length of the play-out buffer in seconds. It is calculated as

a running average T k+1
p = α×T k

p +(1−α)×Ti, where Ti is the instantaneous length

of the play-out buffer in seconds. Actually, Ti is the period of time that will elapse

from now until current frame at the end of the play-out buffer will be displayed.

We assume that the information about Tp is available to the server. The value of

Tp is updated every time a frame is drained from the buffer. This information is

then fed back to the server, for the decision process. The feedback is provided by

the piggy backing of this information on the TCP acknowledgments. The client

instructs the server to start the algorithm. This instruction may also be carried

by the acknowledgements. When this signal is set ‘ON’, the algorithms become

40

effective. The implementation details are out of the scope for the research that

we have conducted.

The very first packet will be at the client without any delay at the server since

the server is initially empty. It will be delayed in the network by d0 seconds. Since

there is an initial waiting time T ′ for building up the play-out buffer, the time

that the first frame will be displayed is at d0+T ′. Assuming that the delay in the

network is small compared to T ′ in order for a frame to be played-out successfully,

the following inequality should be satisfied (D < Tp). This inequality, in case it

is satisfied, shows that the frame can be delayed up to Tp seconds at the server

without violating its play-out at the client play-out buffer. But we note that

only the estimates are available to the admission control mechanism.

3.4 Selective Frame Discard, A Heuristic Based

Technique

First of all, we need to mention some of the motivating facts in order to explain

the proposed algorithm more clearly. One of the facts is that there may be a

mismatch between the video rate and the available bandwidth. This situation

becomes problematic when the available bandwidth in the network is less than

the rate of the video. In this case, it will take more time to transmit the whole

video than the play-out duration of the video. If the video is sent at a rate more

than the available bandwidth, there may be unpredictable losses. There is also

an evident possibility that the network may become highly congested by such a

behavior.

As a second fact, some frames of the video sequence are much more important

than the other frames. The important frames should be treated as high priority

while others are treated as low priority. To prevent the unpredictable loss of data

during an insufficient bandwidth condition in the network, relatively unimportant

frames should be discarded. Otherwise, the video might experience extensive

delay. This discarding methodology may provide delivery of the more important

frames of the video on time by sacrificing less important frames. SFDA (Selective

Frame Discarding Algorithm) given in Table 3.1 addresses the listed concerns.

Then given a new high priority frame, it is admitted if D < γHP ×Tp equation

is satisfied. Following the lines of the previous section it may appear that γHP

41

Upon the arrival of each frame

if n ε High-Priority,

if D < γHP × Tp

admit;
else

reject;

else if n ε Low-Priority,

if D < γLP × Tp

admit;
else

reject;

Table 3.1: Selective Frame Discarding Algorithm (SFDA)

should be set to one. However, in this thesis, we set γHP = ∞ for two reasons.

Firstly, the choice of γHP may unnecessarily discard certain high priority frames

just because delay estimates are not sufficiently accurate. Moreover in our simu-

lation studies, the available bandwidth to a single connection is larger than the

bandwidth required for the base layer. We leave the discussion for the choice of

γHP in the case of more general scenario for future research. On the other hand,

we suggest to use a parameter 0 < γLP < 1 in order to minimize the probability

of discard for high priority frames.

3.4.1 Retransmissions

A packet will be retransmitted if it is not acknowledged. If retransmitted packet

reaches the client before its due play-out time, it would not pose a problem

for the continuity of the video. In the system being proposed, retransmissions

are ‘ON’ since the TCP Reno is the underlying concept of Binomial Congestion

Control and retransmissions are an integral part of the operation of TCP Reno.

There are two types of retransmissions for the Reno; first type is triggered by

the arrival of duplicate acks, second type is triggered by the timeouts.

The retransmissions triggered by the timeouts are generally caused by the

loss of multiple packets in one round trip time. Caused by such a fact, they

42

indicate that our transmitted packets have been lost on large scales. So the

decision to be made is; should one leave a gap in the video information and send

the new data or re-send the missing part? Our system re-sends the data at the

cost of increasing latency in output buffer of the server. However, we chose not

to significantly modify the TCP-Reno code we have and in our proposed system,

retransmissions are ‘ON’ as in the original TCP-Reno.

3.4.2 Implementation

The system is simulated using the ns v2 network simulator [9]. The simulator

runs on a linux platform. The exact version that our implementation evaluated is

the ns release 2.1b8a. The TCP implementation on this version of the ns includes

various types of TCP and also BCC. However, the TCP implementations are

generally based on the assumption that all the packet sizes are fixed. Therefore

instead of using sequence numbers based on the bytes, the original implementors

have chosen to use the packet counts as sequence numbers and window sizes.

This property of the window and the sequence numbers are not appropriate for

the video transmission simulations. Because a frame may be smaller than the

size of an MTU, a window implementation based on the packet counts rather

than bytes will treat this packet as a full MTU size packet. Even though there

is a possibility of transmitting more packets, we will transmit a single packet for

this case. Also the window increment for transmission of a smaller size packet

will be the same as the window increment for a full size segment. In order to

avoid this, we changed the ns TCP code so that the window updates are based

on byte increments and decrements.

The trace files for the respective video files are created in a separate ‘C’

program. The ns simulator also creates a trace file that indicates which packets

have arrived before their play-out time expire. By the use of the output trace

the video is reconstructed by a separate ‘C’ program. The video file is then

separately viewed by a media player.

43

Chapter 4

Numerical Results

Already existing streaming video protocols use UDP as a transport protocol.

UDP has some obvious advantages such as stable rate, simplicity of usage and

low protocol overhead. However, UDP does not employ congestion control. This

causes the major data transmission protocol TCP to suffer from the unfair share

of the bandwidth (in favor of UDP) in IP networks. As a major motivation for

this thesis, we will present this unfair interaction at first place. Smoothness,

which is a key requirement for video applications for various BCC parameters,

will be evaluated. After suggesting the most suitable parameters, the TCP friend-

liness of such a scheme will also be verified.

Performance evaluation of our selective frame discarding mechanism and ex-

isting UDP type streaming will be evaluated on similar network conditions. The

comparisons are based on the streaming of a temporal scalable MPEG encoded

video. Since lesser waiting times to play video content is desirable, our system’s

performance for different buffering delays will also be reported.

4.1 Interactions Between Transport Protocols

In order to present the effect of unresponsive UDP flows on the ongoing TCP

data traffic, we set a single bottleneck scenario as in Figure 4.1. Here 20 TCP

connections from different sources share the same transmission path with UDP

flows. Along the transmission path of each flow, all the links have sufficient

bandwidth to carry video at its own bit rate except the bottleneck link. All

of the traffic flows must pass through this bottleneck link to reach their final

44

Destination Nodes

TEST TOPOLOGY

Bottleneck Link

3

2

4

1

EDGE CORE EDGE

Source Nodes

1

2

Figure 4.1: Topology of the network “Dumbbell”

destinations. By adjusting the bandwidth of this link, it is possible to simulate

different loss levels over the Internet and different available bandwidth scenarios.

For a lossless transmission, each connection should be provided with a rate at

least matching to the rate of the video being streamed. The video that we are

streaming has a rate of 2.0 Mbits/sec. By setting the capacity of the bottleneck

link 2.0 Mbits times the number of sources there will be enough capacity for each

of the flows, so a lossless transmission may be achieved.

A single bottleneck link network will simulate the interaction of similarly

conditioned flows. Such a topology is called “dumbbell topology” in the literature

[14]. Since the capacity of the links that connect each of the sources to their

destinations is much higher than the bottleneck share of each flow, the loss events

will take place only on the bottleneck link. The buffer management of this link

is important since all loss events take place at the output interface of the core

node. The buffer management method of this node is chosen to be Random Early

Discard (RED). Since there is a single class of network traffic, in other words the

network is best effort, no scheduling mechanisms are necessary or employed.

The RED parameters for this node are chosen with the aim to prevent extensive

losses of a single flow. The queue size is 200 packets, and the RED parameters are

45

Dropping Probability

1 / linterm

1

Buffer

Occupancy
minth maxth

Figure 4.2: The RED dropping probabilities

chosen minimum threshold as 40 packets and maximum threshold as 195 packets.

The linear term that determines the maximum dropping probability is 180, which

means maximum dropping probability is 1/180. The dropping probabilities are

given in Figure 4.2. By setting the bottleneck link capacity to 12 Mbits on

this topology, we will investigate the interaction of TCP with UDP. In order

to present the conjectured unfairness, 20 TCP sources and 9 UDP sources each

having 1 Mbits/s rate are sequentially started. First, all TCP connections start

their transmission. Twenty seconds after TCP sources start their transmission,

the first UDP source starts streaming at 1 Mbits/s. After 30 seconds have passed,

the second UDP source starts transmission. All the remaining UDP sources start

their transmissions after 30 seconds following each other sequentially. However,

the last source begins its transmission after 10 seconds that the previous one

has started. The total successfully received bit-rates by the clients of the UDP

sources are presented in Figure 4.3. The share of the network capacity that

UDP uses should be 1/21 of the available rate if the protocols were interacting

fairly. However, it successfully accomplishes a rate around 1 Mbits/s. The excess

rate is presented to the TCP flows, which reduce their rates in order to prevent

congestion. However, UDP does not take any action against congestion, and

continues to stream its content with its dictated rate. As new UDP sources

46

50 100 150 200 250
0

1

2

3

4

5

6

7

8

x 10
6 UDP Bit rate reached to the client

time (sn)

Th
rou

ghp
ut (

Bit
s/s

ec)

Figure 4.3: Total successfully received bit-rate of UDP flows

arrive, unfair sharing of the network resources becomes more evident. After the

arrival of all 9 UDP sources, they use roughly the 3/4 of the available bandwidth,

while the remaining 20 TCP sources try to achieve their transmission through

the remaining 3 Mbits/s bandwidth. For each TCP source, the available rate

becomes 150 Kbits/s. Under these conditions, throughput of a single TCP source

is given in Figure 4.4.

50 100 150 200 250
0

2

4

6

8

10

x 10
5

time (sn)

Th
rou

gh
pu

t (B
its/

sec
)

Figure 4.4: Total successfully received bit-rate of a TCP flow

Such a situation leads to the extreme suffering of data connection over the

Internet. As a solution, all the sources can be enforced to use TCP. But such an

enforcement will lead to the suffering of the video streaming applications because

of the oscillatory behavior of TCP.

47

4.2 Smoothness

In this thesis, we use the term “smoothness” to describe throughput behavior of

a transmission. A smooth algorithm provides transmission rate with a certain

mean and its variance around this mean is minimal. In this section, smoothness

of different parameter settings for the binomial congestion control mechanism

are compared through simulations. We observe the congestion windows of the

algorithms, and their respective throughputs. There are two proposed parameter

sets for BCC [4]. These are called SQRT and INV. k and l are the window update

parameters as used in Equation 2.2 and 2.3. The square root (SQRT) set has

values k = l = 0.5. The inverse (INV) set has the values k = 1 and l = 0.

Since TCP friendliness of the algorithm depends on the value of sum k + l, any

value of k and l that satisfies equation k + l = 1 is accepted as TCP-friendly.

However, α and β values are left to be freely chosen. The choice of α parameter

dictates the increment of the window size after a window amount of data has

been acknowledged to be transferred. The β is the decrement constant and we

chose that constant same as TCP.

We will consider the values k = 1, k = 0.5, k = 0.2 and k = 0. We call

the set k = 0.2 as BCC-02. These values correspond to INV, SQRT, BCC-02

and TCP, respectively. In scenario we have considered, 20 sources are streamed

over the same dumbbell topology. The capacity of the bottleneck link is set as

32Mbits/sec. According to a fair sharing of this link each source should get a

fair share of 1.6 Mbits/sec of a link capacity. We measure the throughput of

the connection by adding up the amount of data arrived in a second period.

The presented results are for a single connection, except the comparison of the

throughput of the BCC and TCP sources. In this comparison total throughput

of all the sources are given.

4.2.1 Inverse BCC Parameters

The first parameter set that is going to be investigated is the inverse parameter

set, which has the inverse characteristics of TCP value set. It has window in-

crement parameters as k = 1 and α = 1 × MSS, where MSS is the maximum

segment size. The window decrement parameters are l = 0 and β = 0.5.

In such a situation, the window size is decremented slowly in response to

congestion and it is also incremented slowly for probing the available bandwidth.

48

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.5: Window size variations of Inverse BCC flow

140 160 180 200 220 240

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

x 10
6

time (sec)

Th
rou

gh
pu

t (B
its/

sec
)

Figure 4.6: The actual throughput of single Inverse BCC flow

Therefore, the adaptability of this scheme is sacrificed for the smoothness of

the rate. Its lack of adaptability causes this algorithm to experience timeouts.

The window size variation over the transmission period is given in Figure 4.5.

Around 15th second of the simulation, it suffers a timeout. After this period it

never achieves its previous rate of transmission. Its throughput is presented in

the Figure 4.6.

4.2.2 Square Root BCC Parameters

We will consider two different versions of this parameter set. The first set uses the

size of one packet increment for the successful transmission of a window full data

if k was set to be 0. However the value of k is still 0.5 for the SQRT parameter.

The second uses a quarter full packet size increment. In this section, after we

49

50 100 150 200 250

0.5

1

1.5

2

2.5

x 10
6

time (sec)

Th
rou

gh
pu

t (B
its/

sec
)

Figure 4.7: Window variations of SQRT BCC

present and discuss the results of the one packet increase, we will conclude that

it may be too aggressively probing for the available rate. Therefore, we propose

that alternative quarter increments may give better results.

For the one packet increment scheme, as the window size is presented in

Figure 4.7, there are many timeouts. A timeout is caused for a BCC scheme as

a result of multiple dropped packets in single round-trip time. These timeouts

may result in, delaying of the content over one or more seconds. During this

period, aggressive probing mechanisms may occupy all the bandwidth that was

previously used by the SQRT BCC. During the period between 120th and 140th

seconds there is such a problem, the scheme experiences a series of timeouts. Its

throughput is seriously affected, which can be observed through Figure 4.8. In

this case all 20 sources are using the same mechanisms. The aim is to investigate

their interaction with each other, which is not yet a well explored area. As all the

sources use the same slowly responsive algorithm, regaining the old rate requires

some time. After a timeout, slow start threshold is also lowered, therefore,

it is not possible to regain the same available bandwidth using the slow start

mechanisms.

Perhaps, if the algorithm attacks for more rate less aggressively, the conges-

tion that is caused by the total probing experiments may not become very serious,

and congestion may result in dropping of less packets in a single RTT. Therefore,

we may try to decrement the α parameter which will end up in less aggressive

probing for the available bandwidth. However, since the k + l = 1 condition is

still satisfied, we don’t need to be concerned about the TCP friendliness. Actu-

ally, probing experiments are done less aggressively, which will obviously lead to

better TCP friendliness.

50

50 100 150 200 250

0.5

1

1.5

2

2.5

x 10
6 TCP Bit rate reached to the client

time (sec)

Th
rou

gh
pu

t (B
its/

sec
)

Figure 4.8: Throughput of SQRT BCC

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.9: Window size variations of SQRT BCC for quarter packet increments

The value that has been chosen is α = 0.25, which corresponds to a window

increment of a quarter full size packet, after a successful window-full transmission

if k was set to be 0. The resulting window variation can be observed in Figure

4.9, and its respective throughput is visible through Figure 4.10. Even though

the number of timeouts are decreased, there are still timeouts. These may result

in unfair sharing of bandwidth. While some sources are not transmitting, others

will increase their rates more than the fair share they would take. On the worst

case, such a situation will lead to unfair allocation of sources.

4.2.3 k = 0.2, l = 0.8 BCC Set (BCC-02)

For the sake of a healthy transmission, it is necessary to prevent time outs as

much as possible. In the literature [20], the parameter set that the BCC is at

51

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
x 10

6

time (sec)

Th
rou

gh
pu

t (B
its/

sec
)

Figure 4.10: Throughput of SQRT BCC for quarter packet increments

most fairly interacting with each other is found to be in the set k = [0, 0.2]. Since

both smoothness and fairness are important for a streaming protocol, values in

this set should also be considered.

To be as fair as possible, while adapting rate as smooth as possible, the

k = 0.2 should be considered as it is the extreme smooth parameter that is

reported to be fair. The value of α is chosen to be 0.25, which results in more

smoothness as also been observed in the SQRT. The window size variations for

one of the 20 sources making transmission on a ”dumbbell” topology can be

seen in Figure 4.11. As we can observe, there are no timeouts occurred in this

parameter setting. Actually, we can conclude that this scheme has relatively

better adaptability for the network conditions. Even though it is adaptable, the

throughput is provided on a smoother basis, this can be observed from Figure

4.12. As it is evident, it is able to smoothly adjust its rate over the transmission

period.

4.2.4 The TCP Set

Is the TCP really oscillatory? We can observe TCP over the same network sce-

nario. The window size variations are observable in Figure 4.13, and its respective

throughput can be seen in Figure 4.14.

As it can be observed, the window size variations are so dense that it is

not possible to distinguish any one of them. As we consider the throughput,

it oscillates between 0.3 Mbits/sec and 2.5 Mbit/sec. So such an oscillatory

52

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.11: Window size variations of k=0.2 BCC for quarter packet increments

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
x 10

6

time (sec)

Th
rou

gh
pu

t (B
its/

sec
)

Figure 4.12: Throughput of k=0.2 BCC for quarter packet increments

50 100 150 200 250

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4 Real Window Size

sec

By
tes

Figure 4.13: Window size variations of TCP

53

50 100 150 200 250

0.5

1

1.5

2

2.5

x 10
6

time (sn)

Th
rou

gh
pu

t (M
bits

/se
c)

Figure 4.14: Throughput of TCP

50 100 150 200 250
1

2

3

4

5

6

7

8

9

10

11
x 10

6 Bit rate reached to the client

time (sn)

Th
rou

ghp
ut

BCC Throughput
TCP Throughput

Figure 4.15: Total throughput of BCC k=0.2 and TCP sources

behavior of TCP will not result in desired smooth variations of a video streaming

application.

4.2.5 Interactions with TCP

Since TCP is the major data carrier, its interaction with the parameter set,

which we have found to be best among the others, is a question that needs to

be answered. Again for the dumbbell topology of Figure 4.1, we consider the

interaction of 10 TCP sources with 10 BCC k=0.2 sources. The result presented

is the sum of all TCP’s throughput in solid, and sum of all BCC’s throughput

in dashed lines. From Figure 4.15 we can observe that the total of throughput

of BCC flows is less than that of TCP. As this figure indicates, our algorithm is

TCP friendly. The BCC flows seem to be taking about 10% less than the fair

54

share of the bandwidth, however this is the price that needs to be paid for the

smoothness. The results in the previous work done are also in this direction.

Work done by Bansal et. al. [14] concludes that such a loss of throughput does

not prevent them to be deployed since they do not take throughput away from

the TCP connections.

4.3 Video Streaming Using the BCC

Throughout this section we will be presenting the results of our video streaming

system that employs prioritization of packets according to their relative impor-

tance. We will present two different selective frame discarding systems, which

are delay based and the length based schemes. Delay based system has been

presented in the section 3.4. The length based system constraint is simply the

quality adaptation buffer length in packets. A frame is not accepted if the buffer

length is above some threshold. This threshold is set to be 100 packets. Since

mean frame size is 7638 bytes, which corresponds to 8 packets, this buffer can

take around 12 frames. 12 frames corresponds to a half seconds of video con-

tent. For the delay based system, if the packets already in the quality adaptation

buffer are waiting more than a fraction of their left time towards their play-out

deadlines, no more packet is admitted to the buffer. Furthermore, we will also

consider the streaming case using UDP.

We will present the results of the above schemes for various network con-

ditions, namely for the cases of extremely insufficient to sufficient bandwidth

situation. For this purpose for the topology in Figure 4.1, we will consider the

cases of 20 BCC sources, sharing the bottleneck of 24 Mbits/sec, 32 Mbits/sec

and 40Mbits/sec. Also a multi-bottleneck scenario will be presented.

4.3.1 Sharing the 24 Mbits/sec bottleneck

In this scenario, each source will receive a fair share of the bandwidth, which is 1.2

Mbits/sec. Such a bandwidth share is above the HP layer rate requirement. At

this phase, we will present results for delay based scheme. First for this network

scenario, the server buffer latency and the effective threshold for admission will

be given. This threshold we propose is 0.1 × Tp i.e. γLP = 0.1. The Tp is the

feedback of the estimated play-out buffer length. In Figure 4.16, the comparison

55

50 100 150 200
0

0.5

1

1.5

2

time

sec
on

ds

Latency Estimate
Threshold for Latency Estimate

Figure 4.16: Comparison of the latency in server buffer vs admission threshold

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.17: Window size variation of BCC k=0.2 over 1.2 Mbits/sec fair share
bottleneck

of the latency in server buffer with the admission threshold is given. From this

figure, we observe that the threshold value limits the latency delay to an upper

bound, that does not exceed or even get close to the play-out buffer length in time.

Therefore, system will not be further delaying the packets that will not be able

to make their play-out time and will be discarding them, whenever the threshold

is exceeded. Since the Intra frames and some important P frames will also be

protected, low layer of the temporal scalable video content will be preserved. As

the rate is low, latency continues to increase since the clock is ticking. After

already highly delayed packets are sent the latency starts decreasing. As it

goes under the threshold dictated by play-out deadlines all the frames are again

admitted. The advantage of such a scheme is that, it responds to the changing

conditions rapidly. The window size variation for this transmission is as in Figure

4.17.

56

50 100 150 200 250

1

2

3

4

5

6

7

8

9

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.18: Play-out duration of BCC k=0.2 over 1.2 Mbits/sec fair share bot-
tleneck

The resulting play-out duration is presented in Figure 4.18. The play-out

duration of the video has some oscillations, however these oscillations are not

critically high. Play-out duration is maintained at the level of initial buffering

period. This period is chosen to be 10 seconds, different values of this may also

be considered according to the conditions of the network that the video will be

streamed over.

An alternative to delay based approach might be the length based approach,

which indeed relies on the same principle. As the transmission rate decreases,

output buffer length will increase. The server output buffer occupancy in such

a case for the same topology will be of the form in Figure 4.19 for the window

size variations in Figure 4.20. This methodology may experience a weakness in

maintaining play-out buffer duration when the network has highly oscillatory

behavior. However, for the cases presented here we do not examine such a sit-

uation. Even though the level of the play-out buffer is much more steady, the

resultant video form is not as pleasable as the one that has been achieved with

the video form of delay based system. Figure 4.21 presents the resultant play-out

duration over the transmission period.

In such a bandwidth sharing situation, UDP suffers unpredictable losses in

the network. These losses are generally because of the bigger sized frames. This

information is based on the observations of the visual simulation interface of

the ns simulator. They are divided into more number of packets and also they

are streamed in a bursty manner. These cause sudden bursts in the network

traffic, the packets belonging to higher sized I and P frames are more likely to be

dropped. The compared results of all the mechanisms are presented in Table 4.1.

57

50 100 150 200
0

50

100

150

200

250

Buffer Occupancy by index

time

p
ack

ets

50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

5 Buffer Occupancy by Byte

time

b
yte

s

Figure 4.19: Length based SFD output buffer occupancy of BCC k=0.2 over 1.2
Mbits/sec fair share bottleneck

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.20: Window variations of BCC that length based SFD is employed
k=0.2 over 1.2 Mbits/sec fair share bottleneck

50 100 150 200 250

1

2

3

4

5

6

7

8

9

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.21: Play-out buffer duration of BCC that length based SFD is employed
k=0.2 over 1.2 Mbits/sec fair share bottleneck

58

Total HP frames of the Video 597

Total LP frames of the video 6069 E2 24 Mbit Shared by 20 Connections

Total HP packets of the video 15442 Length Based Delay Based UDP

Total LP packets of the video 52246 count percent count percent count percent

HP frames Dropped at the Server 0 100% 0 100% 0 0

LP frames Dropped at the Server 29334 56% 29653 56% 0 0

HP packets lost during transmission 0 0 0 0 5252 34.01%

LP packets lost during transmission 5 0 6 0 18149 34.74%

HP packets rejected at the client 0 0 0 0 0 0

LP frames rejected at the client 0 0 0 0 0 0

Actual rate taken by each connection 1.162 Mbps 1.150 Mbps 1.200 Mbps

Table 4.1: Loss based statistics of different schemes over 1.2Mbits/sec available
bandwidth channels

As the table indicates UDP suffers randomized loss over the transmission path

while the BCC streaming schemes streams the content by dropping the frames

according to their relative importance in the video sequence. Furthermore UDP

stream’s loss rate seems higher than the ones occurring for the SFD schemes.

This is also because of the bursty behavior of UDP traffic. Even though the

TCP traffic is known to be creating bursty traffic, since its bandwidth does not

exceed the available rate extensively, losses due to burstiness do not seem to be

evident.

4.3.2 Sharing the 32 Mbits/sec bottleneck

For the 32 Mbits/sec bottleneck, each source will have its share of 1.6 Mbits/sec

link capacity. The loss conditions will not be that severe for the video. Again as

in the 24 Mbits bottleneck scenario, the delay based scheme will be presented at

first. Later on the results for the length based scheme will also be presented.

The delay of the server output buffer can be observed in Figure 4.22.

Even though the buffer latency is oscillatory, it is bounded by 1.6 seconds.

Therefore the packets in the buffer are forwarded after at most 1.6 seconds.

This will prevent the extensive delaying of admitted packets. The window size

variation in this situation is visible through Figure 4.23. The resultant play-out

buffer length is presented in Figure 4.24.

59

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

sec
on

ds

Latency Estimate
Threshold for Latency Estimate

Figure 4.22: Comparison of the latency in server buffer vs admission threshold

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.23: Window size variations of BCC that delay based SFD is employed
k=0.2 over 1.6 Mbits/sec fair share bottleneck

50 100 150 200 250

1

2

3

4

5

6

7

8

9

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.24: Play-out duration of BCC delay based SFD k=0.2 over 1.6 Mbits/sec
fair share bottleneck

60

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.25: Window size variations of BCC that length based SFD is employed
k=0.2 over 1.6 Mbits/sec fair share bottleneck

50 100 150 200 250

1

2

3

4

5

6

7

8

9

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.26: Play-out buffer duration of BCC that length based SFD is employed
k=0.2 over 1.6 Mbits/sec fair share bottleneck

The length based SFD, for the transmission that has the window size vari-

ations as in Figure 4.25, achieves the play-out duration as in Figure 4.26. The

output buffer length variation is as in Figure 4.27.

As the play-out buffer durations indicate, both the length based SFD and the

delay based SFD achieve a steady buffering level. They keep around 9 seconds

of content in reserve that will help them in case of a transmission off period.

When two approaches are compared, they differ from each other by the content

of the video they provide. These two videos are evaluated with a subjective

video grading, namely Mean Opinion Score (MOS), in which the audience has

been asked to grade the video over a scale of 6, as they just watched it and

after they watched whole bunch of the results obtained with different schemes.

Content has been viewed with Windows Media Player version 7.01.00.3055. The

61

50 100 150 200
0

50

100

150

Buffer Occupancy by Sequence

time

p
ack

ets

50 100 150 200
0

5

10

15
x 10

4 Buffer Occupancy by Byte

time

b
yte

s

Figure 4.27: Length based SFD output buffer occupancy of BCC k=0.2 over 1.6
Mbits/sec fair share bottleneck

video content that has been achieved with the delay based SFD received a MOS

of 2.725 out of 6, whereas the length based video received a MOS of 2.125 out

of 6. The video streamed using INV parameter in combination with the delay

based SFD in the same survey received the MOS value 2.025 out of 6. In order

to verify the validity of the results, delay based SFD with BCC-02 under similiar

network conditions has been re-evaluated. The result obtained was again 2.425

out of 6. In this survey, video simulated to be lossless transferred through our

system received a MOS of 4.6 out of 6.

The statistics about both videos are reported in Table 4.2. For the loss rates

reported in the table, the UDP video streaming received a MOS score of 1.5714/6.

UDP performs poorly because it does not determine which packet will be lost.

So the loss is suffered on a probabilistic basis, and most important frames will

be lost most likely because of their sizes, and burst of traffic they cause. As we

can observe from the table even though the bandwidth that has been taken by

the length based algorithm is roughly a 0.05 Mbits higher, the achieved quality

is found to be better for the delay based SFD by the audience. The UDP was

the worst performing, since there was only one or two frames found viewable by

the player so the frame rate was pretty low.

4.3.3 Sharing the 40 Mbits/sec bottleneck

In this scenario we again observe the video content that has been streamed over

a bottleneck link shared by 20 identical BCC sources. This time the bottleneck

link capacity is set as 40 Mbits/sec allowing a fair share of 2.0 Mbits/sec for each

62

Total HP frames of the Video 597

Total LP frames of the video 6069 32 Mbit Shared by 20 Connections

Total HP packets of the video 15442 Length Based Delay Based UDP

Total LP packets of the video 52246 count percent count percent count percent

HP frames Dropped at the Server 0 0 0 0 0 0

LP frames Dropped at the Server 14997 28.7 16609 31.7 0 0

HP packets lost during transmission 1 0 1 0 2670 17.30%

LP packets lost during transmission 8 0 3 0 10134 19.40%

HP packets rejected at the client 0 0 0 0 0 0

LP frames rejected at the client 0 0 0 0 0 0

Actual rate taken by each connection 1.5918 Mbps 1.54282 Mbps 1.600 Mbps

Table 4.2: Loss based statistics of different schemes over 1.6 Mbits/sec available
bandwidth channels

source. We again compare the same video content that has been streamed over

the channel using delay based SFD, length based SFD, and UDP.

For this network conditions, we will evaluate the situation of the delay based

SFD first, next we will evaluate the length based SFD, and finally compare their

performances using their loss rates.

The quality adaptation buffer or the output buffer latency is presented in

Figure 4.28. The window size variation throughout this transmission is presented

in Figure 4.29. As we can observe from the latency sketch, since the line rate is

very much close to the video rate, the arriving frames are sent without delaying

them, therefore no frames have been discarded. Thus the delay based system also

achieves the objective of keeping the content intact by not creating a burst that

the network cannot withstand. Since the content is not delayed and discarded,

the play-out buffer is kept at a certain level. The duration of the play-out buffer

can be visualized over the Figure 4.30.

The conditions were not as good as delay based SFD for the length based

scheme. It slightly suffers from the rate that the video was encoded. However,

by discarding some of the low priority content it manages to match the rate of the

video to the available bandwidth. The window size variation of the transmission

is available in Figure 4.31. Quality adaptation buffer occupancy of the video

is available in Figure 4.32, and finally the play-out buffer duration is given in

Figure 4.33.

As the rate of channel falls below the video rate, the occupancy of the buffer

increases and over the threshold of 100 packets, frames start to be discarded.

63

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

sec
on

ds
Latency Estimate
Threshold for Latency Estimate

Figure 4.28: Comparison of the latency in server buffer vs. admission threshold

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
4 Real Window Size

sec

By
tes

Figure 4.29: Window variations of BCC that delay based SFD is employed, k=0.2
over 2.0 Mbits/sec fair share bottleneck

50 100 150 200 250

1

2

3

4

5

6

7

8

9

10

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.30: Play-out duration of BCC delay based SFD, k=0.2 over 2.0
Mbits/sec fair share bottleneck

64

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
4 Real Window Size

sec

By
tes

Figure 4.31: Window variations of BCC that length based SFD is employed,
k=0.2 over 2.0 Mbits/sec fair share bottleneck

50 100 150 200
0

20

40

60

80

100

Buffer Occupancy by Sequence

time

p
ack

ets

50 100 150 200
0

2

4

6

8

10

x 10
4 Buffer Occupancy by Byte

time

b
yte

s

Figure 4.32: Length based SFD output buffer occupancy of BCC k=0.2 over 2.0
Mbits/sec fair share bottleneck

50 100 150 200 250

1

2

3

4

5

6

7

8

9

10

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.33: Play-out buffer duration of BCC that length based SFD is employed,
k=0.2 over 2.0 Mbits/sec fair share bottleneck

65

Total HP frames of the Video 597

Total LP frames of the video 6069 40 Mbit Shared by 20 Connections

Total HP packets of the video 15442 Length Based Delay Based UDP

Total LP packets of the video 52246 count percent count percent count percent

HP frames Dropped at the Server 0 0 0 0 0 0

LP frames Dropped at the Server 1719 3 8 0 0 0

HP packets lost during transmission 1 0 1 0 118 0.10%

LP packets lost during transmission 8 0 8 0 1038 1.00%

HP packets rejected at the client 0 0 0 0 0 0

LP frames rejected at the client 0 0 0 0 0 0

Actual rate taken by each connection 1.98682Mbps 2.037 Mbps 2.000 Mbps

Table 4.3: Loss based statistics of different schemes over 2.0 Mbits/sec available
bandwidth channels

The loss statistics of the streaming results with techniques: delay based,

length based SFD and finally UDP is given in Table 4.3.

As we can see, UDP stream suffers some losses even though it is streamed at

the video rate. These losses are due to the burst of the packets created by the

video frames that are of larger sizes. A single frame is streamed at its output line

rate. Therefore at the bottleneck link as the packets face no other congestion,

they arrive instantly at higher rates than the bottleneck link can carry. However

their overall bit rate is matching to the line rate, some loss can be suffered over

the network.

4.3.4 Multi-bottleneck Network Scenario

For the multi-bottleneck scenario we will consider a dual-bottleneck network, as

in Figure 4.34. The first bottleneck link is shared with a total of 10 connections,

where the second bottleneck as it is also being shared by the 10 same connections,

and 10 more connections participating from this point on. This scenario will

provide us some insights on the effects of distance. The first bottleneck that

has the capacity of 16 Mbits per second, providing 1.6 Mbits/s capacity for each

connection. Second has 32 Mbits/sec capacity which also provides the connection

of 1.6 Mbits/sec for each.

The window size variation of a source that traverses the both bottlenecks is

given in Figure 4.35. As we can observe from the window size variations, the

source has never fallen into a timeout, this shows us that our parameter set is

66

Destination Nodes

Bottleneck

Link23

2

4

1

EDGE CORE EDGE

Source Nodes

1

2

Bottleneck

Link1

5 6 7

Figure 4.34: The Multi-bottleneck network topology

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.35: The window variations for multi-bottleneck topology

67

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
x 10

6 TCP Bit rate reached to the client

time (sec)

Th
rou

gh
pu

t (B
its/

sec
)

Figure 4.36: The resultant throughput for multi-bottleneck network topology

50 100 150 200 250

1

2

3

4

5

6

7

8

9

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.37: The resultant play-out duration for multi-bottleneck network topol-
ogy for delay based discarding

not only smooth but at the same time flexible enough to adapt the change in

the conditions. Therefore, it results in the necessary responsive behavior that is

necessary for a healthy transmission. The throughput resulting from the same

window size is visible through the Figure 4.36. The throughput is smoothly

varying over time, however it is little less than its fair share of the both bottleneck

links. This is because of the difference in the round trip times among the sources.

The far sources need more time to understand the network conditions. However,

closer sources take advantage of being close to the destination and can respond

to the events in the network earlier. The resultant play-out buffer occupancy is

given in Figure 4.37.

The resultant play-out buffer occupancy with the length based scheme is given

in Figure 4.38, for the window size variations in Figure 4.39.

68

50 100 150 200 250

1

2

3

4

5

6

7

8

9

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.38: The resultant play-out duration for multi-bottleneck network topol-
ogy of delay based system

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.39: The window size variations for multi-bottleneck network topology
of delay based system

69

50 100 150 200 250

0.5

1

1.5

2

2.5

3

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.40: The resultant play-out duration for single-bottleneck network topol-
ogy for delay based discarding

4.4 Effect of pre-buffering period

In this section we will consider the effect of the initial waiting period before

starting the play-out. The network considered is the single bottleneck topology

in Figure 4.1, for which 20 sources are sharing the 32 Mbits/sec bottleneck link.

For all the above simulations, the initial waiting period before the play-out of

the content to start was chosen to be 10 seconds. This duration is observed to be

sufficiently large for the continuity of the content in the long timeout situations.

However, lower period of waiting for the play-out may be achieved. First we

chose 3 seconds as the alternative period. The resultant play-out duration of

this scheme shown in Figure 4.40, for the window size variations in Figure 4.41.

As we can see the play-out duration over the transmission period is kept at the

level of 3 seconds.

The window size is continuously dropping which results in decreasing of the

throughput, however as a merit of our SFD mechanism, the playout buffer dura-

tion stays around the 3 seconds all through the transmission.

Although the 3 seconds period is successful enough, some larger values may

be more suitable in order to provide some extra caution for the video streaming.

6 second case is considered and the resultant play-out duration is shown in Figure

4.42. The window size variations for this transmission is shown in Figure 4.43.

As we can observe, even though there are some small variations on play-out

duration, it is set to 6 seconds which is exactly the time that the client waits

to play the video content. Also 10 seconds and larger waiting periods will have

70

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.41: Window size variations for the transmission that the client waits 3
seconds in order to start the play-out of the video

50 100 150 200 250

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

sec

Se
con

ds

Pre−roll Buffer time at client

Figure 4.42: The resultant play-out duration for single-bottleneck network topol-
ogy for delay based discarding

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Real Window Size

sec

By
tes

Figure 4.43: Window variations for the transmission that the client waits 6
seconds in order to start the play-out of the video

71

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Simulation Time (seconds)

(se
con

ds)

Pre−roll Buffer time at client

γ
LP

=0.9
γ
LP

=0.5
γ
LP

=0.1

Figure 4.44: Play-out buffer lengths for bottleneck link of 10 Mbits and γLP =
0.9, 0.5, 0.1

similar results. Therefore whatever the network conditions are, it is possible to

maintain a steady play-out duration, if there is a transmission going on.

4.5 Effect of γLP parameter

Under the assumption of sufficient bandwidth conditions for High priority frames,

at this section we will investigate the effect of the γLP . According to this as-

sumption γHP was selected to be infinite. The γLP parameter effects the bound

on the delay at the quality adaptation buffer. Therefore, adaptation of stream

under different conditions are effected by the value of this parameter.

If γLP parameter is set close to 1, the probability of packets missing their

play-out times is high. In such a case the play-out buffer length in seconds will

also decrease drastically and buffer will underflow. By setting smaller values

to this parameter it is possible to control the delay at the server. The smaller

values will perform even better. In order to observe the differences between

these parameters, we have evaluated a very limited bandwidth scenario. We

fixed the bottleneck link to 10 Mbits/sec. This bottleneck is again shared by 20

sources. Since the bandwidth requirement for High Priority frames is around 450

KBits/sec, there is enough bandwidth for this type of packets. However, there

will be very little of available bandwidth for the low priority frames.

Under the same bandwidth conditions, we evaluated different γLP parameters.

The obtained play-out buffer durations are given in Figure 4.44. The transmission

72

rates obtained by each evaluation of the γLP are smooth and similar. As we can

observe in the figure, during the period between 20 and 30 seconds the buffer

durations for the γLP = 0.9 γLP = 0.5 are exhausted. During this period

play-out will pause due to the absence of the content that might be displayed.

Many packets would miss their play-out deadline if we were not applying a lower

threshold for the drainage of this buffer. By use of this mechanism already

transmitted content is prevented from being lost. Since some level of frame rate

changes are not noticable to humans [25] inefficient use of bandwidth is prevented.

This method prevents the packets missing their play-out times by pausing the

play-out. In the previous results this mechanism did not have any effect since the

play-out buffer durations were high enough. As we can see γLP = 0.5 recovers

more quickly from the buffer underflow situation and does not fall into such a

situation during the simulation period. However, the γLP = 0.9 exhausts its

buffer again after 70 seconds of the simulation. Also on the average its buffer

duration is generally below the other two parameter set. The γLP = 0.1 does

not lose many of its buffer length during the transmission period and recovers

from the situations, by maintaining its buffer level at some level, that other two

parameter values are performing worse.

73

Chapter 5

Conclusions

The inherent uncooperative behavior of UDP used currently as the transport

protocol of choice for video networking applications, is known to be leading to

congestion collapse of the Internet. Congestion collapse can be prevented by

using mechanisms in networks that penalize uncooperative flows like UDP or

employing end-to-end congestion control. Since today’s vision for the Internet

architecture is based on moving the complexity towards the edges of the networks,

employing end-to-end congestion control for video applications has recently been

a hot area of research. One alternative is to use a TCP-friendly end-to-end con-

gestion control scheme. Such schemes, similar to TCP, probe the network for

estimating the bandwidth available to the session they belong to. The average

bandwidth available to a session using a TCP-friendly congestion control scheme

has to be the same as that of a session using TCP. Some TCP-friendly congestion

control schemes are highly responsive as TCP itself leading to undesired oscilla-

tions in the estimated bandwidth and thus fluctuating quality. Slowly responsive

TCP-friendly congestion control schemes to prevent this type of behavior have

recently been proposed in the literature.

However, throughout the previous work done, it was observed that the slowly

responsive algorithms lose throughput against faster ones (like TCP) under dy-

namic network conditions. This reduction in throughput is the price that needs

to be paid in return for the smoothness. Our experimental studies lead to similar

results. BCC may still be deployed since it does not take any throughput away

from the existing TCP connections. The interaction between TCP and slowly

responding congestion control mechanisms are still an open issue that need to

be considered and researched in great depth. Even though some parameter sets

74

for the BCC may result in unfair interactions in some network scenarios, the

parameter set that we are using provides the necessary responsiveness and the

smoothness.

We have proposed an architecture for video streaming in IP networks using

slowly responding TCP-friendly end-to-end congestion control. In particular, the

congestion control algorithm used is based on BCC. In this architecture, the video

streaming device intelligently discards some of the video packets of lesser priority

before injecting them in the network in order to match the incoming video rate to

the estimated bandwidth using BCC and to ensure a high throughput for those

video packets with higher priority.

In this thesis, major work done was the development of a simulation testbed

using ns-2 that would be used for simulations of Internet video streaming. We

have shown the efficacy of the proposed architecture using simulations in a variety

of scenarios on the developed test-bed. However, the functionality of the system

may not yet be optimal. Further investigation and analysis of the system will

provide more insight for improving system performance.

Since pre-stored video is coded at a fixed rate, a rate shaping mechanism

is required in order to match the rate of the video content to the dynamically

determined rate by the congestion control mechanism. The scheme that we

have developed provides necessary adaptation by discarding the parts of video

in respective order of their importance. By employing such a mechanism, it is

possible to stream a presentable video with lower quality but at rates that are

much lower than the original bit rate requirement of the video. Our mechanism

provides a good performance even in the conditions that normally streaming by

UDP would not result in acceptable video play-out. The delay based scheme that

we have developed has the best means of adaptation according to the network

conditions. Although not analytically, this has been shown by the mean opinion

scores that we have obtained for an audience of 10 people. The basic length based

thresholding scheme also provides the adaptability but with a lower quality.

75

Bibliography

[1] D. Wu, Y. Hou, W. Zhu, Y. Zhang, and J. Peha, “Streaming Video over the

Internet: Approaches and Directions,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 11, no. 3, pp. 282–300, March, 2001.

[2] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control

in the Internet,” IEEE/ACM Transactions on Networking, vol. 7, no. 4,

pp. 458–472, 1999.

[3] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based Con-

gestion Control for Unicast Applications,” in SIGCOMM 2000, (Stockholm,

Sweden), pp. 43–56, August 2000.

[4] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algorithms,”

in INFOCOM, pp. 631–640, 2001.

[5] R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-End Rate-Based

Congestion Control Mechanism for Realtime Streams in the Internet,” in

INFOCOM, pp. 1337–1345, 1999.

[6] R. Rejaie, M. Handley, and D. Estrin, “Layered Quality Adaptation for

Internet Video Streaming,” IEEE Journal on Selected Areas in Communi-

cations, vol. 18, no. 12, pp. 2530–2543, 2000.

[7] N. G. Feamster, “Adaptive Delivery of Real-Time Streaming Video,” M.

Eng. Thesis, Massachusetts Institute of Technology, May 2001.

[8] T. Liu, W. Qi, H. Zhang, and F. Qi, “A Systematic Rate Controller for

Mpeg-4 FGS Video Streaming,” in ICIP01, p. Layered and Scalable Video,

2001.

[9] Network Simulator Version 2, “www.isi.edu/nsnam/ns,”

[10] K. Ramakrishnan and S. Floyd, “RFC 2481 A Proposal to add an Explicit

Congestion Notification (ECN) to IP.”

76

[11] G. Armitage, “Quality of Service in IP Networks, Foundations for a Multi-

Service Internet,” Macmillan Technical Publishing,, April 2000.

[12] W. Stevens, “TCP/IP Illustrated, Volume 1: The Protocols,” Addison-

Wesley, 1994.

[13] J. F. Kurose and K. W. Ross, “Computer Networking,” Addison-Wesley,

2001.

[14] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic Behavior

of Slowly-Responsive Congestion Control Algorithms,” Proceedings of ACM

SIGCOMM ’01, 2001.

[15] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A Model Based TCP-

friendly Rate Control Protocol,” UMass-CMPSCI Technical Report TR 98-

04, 1998.

[16] D. Sisalem and H. Schulzrinne, “The Loss-Delay Based Adjustment Algo-

rithm: A TCP-friendly Adaptation Scheme,” in Proceedings of NOSSDAV,

(Cambridge, UK.), 1998.

[17] Y.-G. Kim, J. Kim, and C.-C. J. Kuo, “Smooth and Fast Rate Adaptation

Mechanism (SFRAM) for TCP-friendly Internet Video,” in Packet Video

Workshop, 2000.

[18] J. Crowcroft, J. Roberts, and M. I. Smirnov, eds., Quality of Future Inter-

net Services, First COST 263 International Workshop, QofIS 2000, Berlin,

Germany, September 25-26, 2000, Proceedings, vol. 1922 of Lecture Notes

in Computer Science, Springer, 2000.

[19] Y. Yang and S. Lam, “General AIMD Congestion Control,” Y. R. Yang

and S. S. Lam. General AIMD Congestion Control. Technical Report TR-

200009, Department of Computer Science, University of Texas at Austin,

May, 2000.

[20] K. Chandrayana, B. Sikdar, and S. Kalyanaraman, “Comparative Study of

TCP Compatible Binomial Congestion Control Schemes,” in Proceedings of

IEEE HPSR, Kobe, Japan, May, 2002.

[21] S. Jacobs and A. Eleftheriadis, “Streaming Video Using Dynamic Rate Shap-

ing and TCP Flow Control,” Journal of Visual Communication and Image

Representation, vol. 9, no. 3, pp. 211–222, 1998.

77

[22] C. Krasic, K. Li, and J. Walpole, “The Case for Streaming Multimedia with

TCP,” Lecture Notes in Computer Science, vol. 2158, pp. 213–.., 2001.

[23] M. Miyabayashi, N. Wakamiya, M. Murata, and H. Miyahara, “MPEG-

TFRCP: Video Transfer with TCP-friendly Rate Control Protocol,” Pro-

ceedings of IEEE International Conference on Communications (ICC2001),

Helsinki, vol. 1, pp. 137–141, 2001.

[24] M. Miyabayashi, N. Wakamiya, M. Murata, and H. Miyahara, “Implemen-

tation of Video Transfer with TCP-friendly Rate Control,” Proceedings of

International Technical Conference on Circuits/Systems, Computers and

Communications 2000, vol. 1, pp. 117–120, 2000.

[25] M. Kalman, E. Steinbach, and B. Girod, “Adaptive Media Playout for Low

Delay Video Streaming over Error-prone Channels,” IEEE Transactions on

Circuits and Systems for Video Technology, Special Issue on Wireless Video,

2001.

[26] M. Kalman, E. Steinbach, and B. Girod, “Rate-Distortion Optimized Video

Streaming with Adaptive Playout,” in International Conference on Image

Processing, ICIP, Rochester, New York, 2002.

[27] K. Sripanidkulchai and T. Chen, “Network-adaptive Video Coding and

Transmission,” in Proc. Visual Communications and Image Processing, San

Jose, 1999.

[28] D. S. Turaga and T. Chen, “Classification Based Mode Decisions for Video

over Networks,” IEEE Transtions on Multimedia, vol. 3, no. 1, pp. 41–52,

2001.

[29] R. Puri, K.-W. Lee, K. Ramchandran, and V. Bharghavan, “An Integrated

Source Transcoding and Congestion Control Paradigm for Video Streaming

in the Internet,” IEEE Transactions on Multimedia, vol. 3, no. 1, pp. 18–32,

2001.

[30] S. H. Kang and A. Zakhor, “Packet Scheduling Algorithm for Wireless Video

Streaming,” in Proc. of PacketVideo ’02, 2002.

[31] S. Jacobs and A. Eleftheriadis, “Real-time Dynamic Rate Shaping and Con-

trol for Internet Video Applications,” Workshop on Multimedia Signal Pro-

cessing, pp. 23–25, June, 1997.

78

[32] A. Balan, O. Tickoo, I. Bajic, S. Kalyanaraman, and J. Woods, “Integrated

Buffer Management and Congestion Control for Video Streaming,” in Proc.

Globecom, 2002.

[33] Z. Jiang and L. Kleinrock, “A Packet Selection Algorithm for Adaptive

Transmission of Smoothed Video over a Wireless Channel,” Journal of Par-

allel and Distributed Computing, vol. 60, no. 4, pp. 494–509, 2000.

[34] W. Feng, M. Liu, B. Krishnaswami, and A. Prabhudev, “A Priority-based

Technique for the Best-effort Delivery of Stored Video,” Proc. of Multimedia

Computing and Networking, January 1999.

[35] A. Vetro, Y. Wang, and H. Sun, “Rate Distortion Optimized Video Coding

Considering Frameskip,” in ICIP01, pp. 534–537.

[36] W. Tan and A. Zakhor, “Packet Classication Schemes for Streaming MPEG

Video over Delay and Loss Differentiated Networks,” In 11th International

Packet Video Workshop, Kyongju, Korea, May, 2001.

[37] U. J. Daniel Forsgren and P. Österberg, “Objective End-to-End QoS Gain

from Packet Prioritization and Layering in MPEG-2 Streaming,” in Proc.

12th International Packet Video Workshop (PV-2002), Pittsburgh, USA,

24-26 April, 2002.

[38] J. K. Jitae Shin and C.-C. J. Kuo, “Quality-of-Service Mapping Mechanism

for Packet Video in Differentiated Services Network,” IEEE Transactions

on Multimedia, vol. 3, no. 2, pp. 219–231, 2001.

[39] Y.-G. Kim and C.-C. J. Kuo, “TCP-friendly Layered Video for Internet

Multicast,” in VCIP, 2002.

[40] N. Feamster, D. Bansal, and H. Balakrishnan, “The Interactions Between

Layered Quality Adaptation and Congestion Control for Streaming Video,”

11th International Packet Video Workshop, 2001.

[41] M. Hemy, U. Hengartner, P. Steenkiste, and T. Gross, “MPEG System

Streams in Best-Effort Networks,” in Proc. of PacketVideo ’99, New York,

April 1999.

[42] T. P. Chen and T. Chen, “Adaptive Joint Source-Channel Coding Using

Rate Shaping,” ICASSP, 2002.

79

[43] Z.-L. Zhang, S. Nelakuditi, R. Aggarwal, and R. P. Tsang, “Efficient Selec-

tive Frame Discard Algorithms for Stored Video Delivery across Resource

Constrained Networks,” in INFOCOM, pp. 472–479, 1999.

[44] M. Kalman, E. Steinbach, and B. Girod, “Adaptive Playout for Real-time

Media Streaming,” International Symposium on Circuits and Systems, IS-

CAS, Scottsdale Arizona, May 2002.

[45] G. Bozdagi and T. Sencer, “Preprocessing Tool for Compressed Video Edit-

ing,” International Workshop on Multimedia Signal Processing MMSP99.

80

