162 research outputs found

    PLM in SME, what are we missing? an alternative view on PLM implementation for SME

    Get PDF
    Part 10: PLM Maturity, Implementation and AdoptionInternational audienceToday, the concept of Product Lifecycle Management (PLM) is widely accepted as strategically important. It is used to manage the increasing complexity of products, processes and organizations. The need to adopt PLM is growing rapidly for Small to Medium-sized Enterprises (SME). PLM implementations are costly and require a lot of effort. The business impact and financial risks are high for SME. Also, SMEs seem to have relatively more difficulties to benefit from PLM. The study at hand addresses the question, based on literature research, why these difficulties exist and how they can be overcome. To answer that question, three sub questions are discussed in this paper. (1) A generic PLM implementation process structure. (2) A list of identified PLM implementation challenges, specific for SME. (3) A classification of PLM research for SME, related to the common PLM implementation process structure. A hypothesis for a PLM implementation failure mechanism in SMEs is formulated, based on the findings. Also, a potential research gap on operational implementation knowledge in SMEs is identified

    Virtual Factory:a systemic approach to building smart factories

    Get PDF

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    Set-Based Prototyping in the Context of the Configurable Virtual Product: The Construction of the Learning Value Streams (LVS) Model

    Get PDF
    RÉSUMÉ La présente thèse de doctorat est le résultat de sept années de recherche intervention dans les domaines de la conception et du développement de produits suivant le paradigme lean en aérospatial. Cette recherche action est motivée par la nécessité de développer les connaissances ainsi que les outils appropriés pour le développement de produits suivant l’approche lean (LPD pour Lean Product Development) et en particulier celle de l’ « ingénierie concourante fondée sur les options de conception » (SBCE pour Set-Based Concurrent Engineering) en aérospatial. Une telle nécessité se justifie par les facteurs socioéconomiques du 21ème siècle qui imposent des approches de conception et développement toujours plus robustes, résilientes, réactives, flexibles, innovantes et adaptables face aux fluctuations du marché et à la demande des consommateurs qui évolue rapidement, ceci afin de permettre aux compagnies de demeurer compétitives. L’objectif principal de la recherche, au vue de tels impératifs, est d’identifier, pour ensuite développer et intégrer dans un modèle holistique, les aspects, les caractéristiques et les catalyseurs essentiels des approches LPD et SBCE appliquées à l’industrie aérospatiale de façon à supporter l’implémentation à grande échelle de telles approches, et ce, dans une optique sousjacente de gestion de cycle de vie du produit (PLM pour Product Lifecycle Management). La planification et l’exécution du projet de recherche sont réalisées en respectant une méthodologie éprouvée en conception (DRM pour Design Research Methodology) afin de focaliser les résultats sur l’avancement des connaissances et de la pratique du LPD et SBCE en tant qu’approches de conception. La recherche apporte en conséquence des contributions majeures à ces champs d’étude tout en prescrivant une méthodologie de transformation des processus et outils de développement de produits dans l’industrie par le biais de l’implémentation du modèle de « chaines de valeur apprenantes » (LVS pour Learning Value Streams). Plus en détails, les contributions aux avancées scientifiques et pratiques dans le domaine vont comme suit : (1) La proposition d’un nouveau cadre d’analyse de la littérature SBCE, ainsi qu’une méthodologie de revue systématique fondée sur des données probantes; (2) L’avancement des connaissances théoriques et pratiques du LPD et SBCE des aspects les plus généraux aux plus significatifs; (3) L’avancement des connaissances théoriques et pratiques sur la modélisation et les structures de produit requises dans une optique de gestion de cycle de vie du produit----------ABSTRACT The work reported in this thesis is the result of seven years of participatory action research in the field of Lean Product Development (LPD) in aerospace engineering. This research is motivated by the necessity to develop understanding and support for practical implementations of lean product development and especially Set-Based Concurrent Engineering (SBCE) in industry. Such necessity is justified by 21st century compelling socioeconomic factors that demand robust, resilient, responsive, flexible, innovative, adaptable and lean product development processes in order for companies to stay competitive in rapidly changing markets. The main purpose of the research is to identify and develop the essential SBCE and LPD aspects, characteristics, features and catalysts as they relate to aerospace large-scale industrial product development in order to form a holistic model that can support practical implementations of LPD in industry from a product lifecycle perspective. A design research methodology (DRM) is used for planning and executing the design research project while ensuring that focus is placed on achieving progress with regards to understanding and implementation of SBCE and LPD as Design practices. As a result, this thesis work provides substantial contribution to understanding of LPD and SBCE and furthermore, entails valuable proposal for the practice in industry through the CCS model and the construction of the Learning Value Streams (LVS) model. Major contributions to the advancement of scientific knowledge and practice in the fields are as follows: (1) The proposal of a new SBCE dual analysis framework combined with an evidence-based systematic review methodology; (2) The advancement of theoretical and practical understanding of LPD and SBCE from the larger to the most significant aspects; (3) The advancement of theoretical and practical understanding of product models and product structure progression requirements for lean product lifecycle management; (4) the proposal of a new methodology, including new as-tested structure to support cross-collaboration during prototyping and testing in lifecycle management contexts; (5) The proposal of a new existential domain alongside the functional, technological and physical domains in order to address the lack of product modelling constructs and methodology when it comes to service or as-tested configurations, hardware testing transactions and prototype information tracking on the basis o

    Set-based design: a review and new directions

    Get PDF
    ABSTRACT: Set-based design (SBD), sometimes referred to as set-based concurrent engineering (SBCE), has emerged as an important component of lean product development (LPD) with all researchers describing it as a core enabler of LPD. Research has explored the principles underlying LPD and SBCE, but methodologies for the practical implementation need to be better understood. A review of SBD is performed in this article in order to discover and analyse the key aspects to consider when developing a model and methodology to transition to SBCE. The publications are classified according to a new framework, which allows us to map the topology of the relevant SBD literature from two perspectives: the research paradigms and the coverage of the generic creative design process (Formulation–Synthesis–Analysis–Evaluation–Documentation–Reformulation). It is found that SBD has a relatively low theoretical development, but there is a steady increase in the diversity of contributions. The literature abounds with methods, guidelines and tools to implement SBCE, but they rarely rely on a model that is in the continuum of a design process model, product model or knowledge-based model with the aim of federating the three Ps (People–Product–Process) towards SBCE and LPD in traditional industrial contexts

    Data-based sustainability performance assessment in product development with maturity model

    Get PDF
    Abstract. Including sustainability into product development process is one of the key challenges what manufacturing companies are facing today. The objective of this research is to understand what sustainability means in product development and how companies could improve their performance in it. This is constructive research by its nature, it combines a quantitative online survey and data analysis with a qualitative analysis based on semi-structured interviews and themed written answers. This research obtained the following main conclusions: (1) companies can increase their sustainability performance in product development by i) setting sustainability policy and targets which are clear and measurable, ii) increasing stakeholder collaboration during product development process and iii) ensuring strict and uniform data policy. (2) The most significant pain points were i) a company-specific understanding what sustainability means in product development, ii) ability to define and measure component level sustainability effects, iii) and finding balance with customer expectations and viable business. (3) Finnish manufacturing companies sustainability performance in product development is succeeding in more conceptual level but clear deficiencies are observed in practical level. (4) Key characteristics of sustainable product development are: i) it is internally driven and proactive, ii) it considers whole product and process life cycle, and iii) its performance is evaluated as combination of economic, environmental and social sustainability dimensions.Dataan perustuva kestävän kehityksen suorituskyvyn arviointi tuotekehityksessä kypsyysmallilla. Tiivistelmä. Vastuullisuuden sisällyttäminen tuotekehitysprosessiin on yksi keskeisistä haasteista, jonka valmistavan teollisuuden yritysten on kohdattava nykyään. Tämän tutkimuksen tavoitteena on ymmärtää, mitä vastuullisuus tarkoittaa tuotekehityksessä ja miten yritykset voivat parantaa siihen liittyvää suorituskykyään. Tämä on luonteeltaan rakentava tutkimus, joka yhdistää kvantitatiivisen verkkokyselyn ja data-analyysin, sekä kvalitatiiviseen analyysiin, joka perustuu puolistrukturoituihin haastatteluihin ja teemoitettuihin kirjallisiin vastauksiin. Tästä tutkimuksesta saadut keskeisimmät johtopäätökset olivat seuraavat: (1) yritykset voivat parantaa vastuullisuuden suorituskykyään tuotekehityksessä i) määrittelemällä vastuullisuuspolitiikan ja -tavoitteet, jotka ovat selkeitä ja mitattavia, ii) lisäämällä sidosryhmien välistä yhteistyötä tuotekehitysprosessin aikana ja iii) varmistamalla tiukan ja yhtenäisen datapolitiikan. (2) Merkittävimmät haasteet olivat i) yrityskohtainen ymmärrys siitä, mitä vastuullisuus tarkoittaa tuotekehityksessä, ii) kyky määritellä ja mitata komponenttitason vastuullisuusvaikutuksia, iii) sekä tasapainon löytäminen asiakkaiden odotusten ja kannattavan liiketoiminnan kanssa. (3) Suomalaisten valmistavan teollisuuden yritysten vastuullisuuden suorituskyky tuotekehityksessä onnistuu käsitteellisemmällä tasolla, mutta käytännön tasolla on havaittavissa selviä puutteita. (4) Vastuullisen tuotekehityksen keskeiset ominaisuudet ovat: i) se on sisäisesti ohjautuva ja ennakoiva, ii) se ottaa huomioon tuotteen ja prosessin koko elinkaaren ja iii) sen suorituskykyä arvioidaan taloudellisen, ympäristöllisen ja sosiaalisen vastuullisuusulottuvuuden yhdistelmänä

    Dynamics of Long-Life Assets: From Technology Adaptation to Upgrading the Business Model

    Get PDF
    Knowledge management; Business information system

    A Novel Virtual Product Modelling Framework for Design Automation in a Knowledge-Based Engineering Environment

    Get PDF
    Computer Aided Design (CAD) has been widely used for product modelling in the industry, where multiple issues arise, such as lack of product data representation and capturing and reusing the existing design knowledge in the modelling process. Existing CAD systems only provide geometric data within the CAD models and require users to have knowledge of the product to judge the correctness of the modelling process. Knowledge-Based Engineering (KBE) has been introduced to assist product design with the capabilities of knowledge capturing and reusing. However, there is always a “black box” problem in understanding the existing KBE applications, and the substantiation steps for the implementation of KBE frameworks are still limited. To address this, the author proposed and implemented a Virtual Product Modelling (VPM) framework that helps capture and reuse existing product information to enhance the modelling process for design automation. This framework was built as a knowledge-based product modelling environment using a gaming engine. It was further evaluated through three use cases, where the proposed framework was applied to simple parts with primitive geometric features, a hex bolt, and a wheel assembly. The results of the use case evaluation indicate that this framework satisfies all the identified measurement parameters and achieves the aim of the research. This research enhances the product modelling process with the capabilities of generative representation, knowledge capturing and reusing. It provides design engineers with the knowledge reasoning capability when they are making changes to the product model and, therefore, saves time and prevents engineers from making mistakes. This research also presents a KBE implementation framework with detailed substantiation steps, where the knowledge is structured and reusable within the product model. Further, the findings of this research have shown the potential of the developed VPM framework in aspects such as standard development in product modelling, extending to non-engineers and integration with VR/AR visualisation techniques

    Integrating technology and organization for manufacturing sector performance: evidence from Finland

    Get PDF
    This dissertation investigates the complex factors shaping the future of manufacturing, focusing on innovation, competitiveness, and employment trends within the European context. Leveraging the extensive 2022 European Manufacturing Survey dataset, it models relationships between critical technological and organizational variables impacting manufacturing resilience using cross-lagged panel path analysis. Against the 2019–2021 economic and environmental backdrop, the research examines manufacturers’ integral survival strategies derived from challenges faced. Factors like business innovation models, organizational concepts, key technologies, and relocation approaches are assessed for performance. The study reveals competitive standards: automation, robotics, additive manufacturing, accessbased business models, maintenance services, and production organization. These discoveries have profound implications for enabling the transition to next-generation sustainable manufacturing through technology integration frameworks. The research marks the need for investments in cross-sectoral research coordination. As climate change intensifies, reimagining manufacturing is critical. While acknowledging limitations like sample size and scope, the dissertation offers a detailed understanding of the manufacturing system’s components and the relationships of success, forward strategies, and human-technology-environment interlinkages. This multidimensional perspective provides insight to catalyze the creation of integrated manufacturing ecosystems worldwide
    • …
    corecore