70 research outputs found

    Robust SINR-Constrained Symbol-Level Multiuser Precoding With Imperfect Channel Knowledge

    Get PDF
    In this paper, we address robust design of symbol-level precoding (SLP) for the downlink of multiuser multiple-input single-output wireless channels, when imperfect channel state information (CSI) is available at the transmitter. In particular, we consider a well known model for the CSI imperfection, namely, stochastic Gaussian-distributed uncertainty. Our design objective is to minimize the total (per-symbol) transmission power subject to constructive interference (CI) constraints as well as the users’ quality-of-service requirements in terms of signal-to-interference-plus-noise ratio. Assuming stochastic channel uncertainties, we first define probabilistic CI constraints in order to achieve robustness to statistically known CSI errors. Since these probabilistic constraints are difficult to handle, we resort to their convex approximations in the form of tractable (deterministic) robust constraints. Three convex approximations are obtained based on different conservatism levels, among which one is introduced as a benchmark for comparison. We show that each of our proposed approximations is tighter than the other under specific robustness settings, while both of them always outperform the benchmark. Using the proposed CI constraints, we formulate the robust SLP optimization problem as a second-order cone program. Extensive simulation results are provided to validate our analytic discussions and to make comparisons with conventional block-level robust precoding schemes. We show that the robust design of symbol-level precoder leads to an improved performance in terms of energy efficiency at the cost of increasing the computational complexity by an order of the number of users in the large system limit, compared to its non-robust counterpart

    Robust SINR-Constrained Symbol-Level Multiuser Precoding with Imperfect Channel Knowledge

    Get PDF
    In this paper, we address robust design of symbol-level precoding for the downlink of multiuser multiple-input multiple-output wireless channels, in the presence of imperfect channel state information (CSI) at the transmitter. In particular, we consider two common uncertainty models for the CSI imperfection, namely, spherical (bounded) and stochastic (Gaussian). Our design objective is to minimize the total (per-symbol) transmission power subject to constructive interference (CI) constraints as well as users' quality-of-service requirements in terms of signal-to-interference-plus-noise ratio. Assuming bounded channel uncertainties, we obtain a convex CI constraint based on the worst-case robust analysis, whereas in the case of Gaussian uncertainties, we define probabilistic CI constraints in order to achieve robustness to statistically-known CSI errors. Since the probabilistic constraints of actual interest are difficult to handle, we resort to their convex approximations, yielding tractable (deterministic) robust constraints. Three convex approximations are developed based on different robust conservatism approaches, among which one is introduced as a benchmark for comparison. We show that each of our proposed approximations is tighter than the other under specific robustness conditions, while both always outperform the benchmark. Using the developed CI constraints, we formulate the robust precoding optimization as a convex conic quadratic program. Extensive simulation results are provided to validate our analytic discussions and to make comparisons with existing robust precoding schemes. We also show that the robust design increases the computational complexity by an order of the number of users in the large system limit, compared to its non-robust counterpart.Comment: 19 pages, 9 figures, Submitted to IEEE Transactions in Signal Processin

    Optimal and Robust Transmit Designs for MISO Channel Secrecy by Semidefinite Programming

    Full text link
    In recent years there has been growing interest in study of multi-antenna transmit designs for providing secure communication over the physical layer. This paper considers the scenario of an intended multi-input single-output channel overheard by multiple multi-antenna eavesdroppers. Specifically, we address the transmit covariance optimization for secrecy-rate maximization (SRM) of that scenario. The challenge of this problem is that it is a nonconvex optimization problem. This paper shows that the SRM problem can actually be solved in a convex and tractable fashion, by recasting the SRM problem as a semidefinite program (SDP). The SRM problem we solve is under the premise of perfect channel state information (CSI). This paper also deals with the imperfect CSI case. We consider a worst-case robust SRM formulation under spherical CSI uncertainties, and we develop an optimal solution to it, again via SDP. Moreover, our analysis reveals that transmit beamforming is generally the optimal transmit strategy for SRM of the considered scenario, for both the perfect and imperfect CSI cases. Simulation results are provided to illustrate the secrecy-rate performance gains of the proposed SDP solutions compared to some suboptimal transmit designs.Comment: 32 pages, 5 figures; to appear, IEEE Transactions on Signal Processing, 201

    Tight Probabilistic SINR Constrained Beamforming Under Channel Uncertainties

    Get PDF
    In downlink multi-user beamforming, a single bases- tation is serving a number of users simultaneously. However, energy intended for one user may leak to other unintended users, causing interference. With signal-to-interference-plus-noise ratio (SINR) being one of the most crucial quality metrics to users, beamforming design with SINR guarantee has always been an important research topic. However, when the channel state information is not accurate, the SINR requirements become probabilistic constraints, which unfortunately are not tractable analytically for general uncertainty distribution. Therefore, ex- isting probabilistic beamforming methods focus on the relatively simple Gaussian and uniform channel uncertainties, and mainly rely on probability inequality based approximated solutions, resulting in conservative SINR outage realizations. In this paper, based on the local structure of the feasible set in the probabilistic beamforming problem, a systematic method is proposed to realize tight SINR outage control for a large class of channel uncertainty distributions. With channel estimation and quantization errors as examples, simulation results show that the SINR outage can be re- alized tightly, which results in reduced transmit power compared to the existing inequality based probabilistic beamformers.published_or_final_versio

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog
    corecore