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Tight Probabilistic SINR Constrained Beamforming
Under Channel Uncertainties

Xin He and Yik-Chung Wu

Abstract—In downlink multi-user beamforming, a single bases-
tation is serving a number of users simultaneously. However,
energy intended for one user may leak to other unintended
users, causing interference. With signal-to-interference-plus-noise
ratio (SINR) being one of the most crucial quality metrics to
users, beamforming design with SINR guarantee has always
been an important research topic. However, when the channel
state information is not accurate, the SINR requirements become
probabilistic constraints, which unfortunately are not tractable
analytically for general uncertainty distribution. Therefore, ex-
isting probabilistic beamforming methods focus on the relatively
simple Gaussian and uniform channel uncertainties, and mainly
rely on probability inequality based approximated solutions,
resulting in conservative SINR outage realizations. In this paper,
based on the local structure of the feasible set in the probabilistic
beamforming problem, a systematic method is proposed to realize
tight SINR outage control for a large class of channel uncertainty
distributions. With channel estimation and quantization errors as
examples, simulation results show that the SINR outage can be re-
alized tightly, which results in reduced transmit power compared
to the existing inequality based probabilistic beamformers.
Index Terms—Probabilistic SINR constrained beamforming,

tight probabilistic control, channel uncertainty.

I. INTRODUCTION

D UE to diverse nature of data (e.g., video call, VoIP, on-
line game, instant message, etc) simultaneously transmit-

ting through modern wireless systems, different quality of ser-
vices (QoS) are needed from different users. Exact QoS control
is a desirable property for future heterogeneous networks with
dense small cell deployments [1], since over-satisfied QoS in-
evitably leads to interference leakage to unintended users.While
bit error rate (BER) is undoubtedly one of the most important
QoS criteria in a communication system, it is a highly non-
linear function of the beamformer, and various approximations
are needed in the beamformer optimization [2]. Therefore, com-
monly used surrogate QoS criteria in beamforming design in-
clude mean square error (MSE) of data, signal-to-interference-
plus-noise ratio (SINR) and channel capacity [3], [4]. Among
the above criteria, SINR is a compelling QoS criterion, due
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to the direct relationship between SINR and BER through the
Gaussian -function [4], while other criteria have only indirect
connections to BER.
However, the ideal case of exact SINR control in a multiuser

system is hindered by channel uncertainties [3], [8]. By mod-
eling the channel uncertainties lie in a bounded region, SINR
constrained robust beamforming and transceiver design are pro-
posed to tackle the worse-case error in [5], [6], [9] and [10]. Un-
fortunately, the bounded robust optimization is generally con-
servative owing to its worst-case criterion [13]. On the other
hand, probabilistic SINR constrained beamforming provides a
soft SINR control if the probability density function (PDF) of
the channel uncertainty is known. Previous probabilistic beam-
forming schemes mainly consider the Gaussian channel uncer-
tainty, and only approximation solutions are available by using
different probability inequalities, e.g., triangle inequality for the
array beamforming [11], Vysochanskii-Petunin inequality for
power allocation [12], [13], Bernstein-type inequality [14], [15]
and Bernstein approximation [16] for probabilistic SINR con-
strained beamforming. However, owing to the restricted fea-
sible set in those safe approximations, the SINR requirement
of these designs are over-satisfied, which leads to unnecessarily
high transmit powers. Although a bisection calibration method
is proposed in [17] to mitigate the high transmit power problem
under independent Gaussian and uniform channel uncertainties,
the bisection range might not exist and thus it is not guaranteed
to be implementable.
In this paper, a tight probabilistic SINR control is achieved

in multiuser beamforming under a large class of bounded or
unbounded channel uncertainties with known PDF. Facing the
challenge of intractable probabilistic constraints, a successive
method is proposed to reconstruct the feasible set. In particular,
we first find a feasible subset based on the moment and support
information of the channel uncertainty. Then, a joint feasible
subsets refinement and sequential optimization is proposed to
analyze the unexplored feasible subsets. In contrast to the os-
cillating convergence behavior of the bisection calibration [17],
the proposed iterative method ensures the transmit power de-
crease monotonically and achieves tight outage control quickly.
Simulation results under channel estimation and quantization
errors show that the probabilistic SINR requirements are ful-
filled tightly, which leads to improved performance on transmit
power compared to existing approximation based probabilistic
beamforming.
The rest of this paper is organized as follows. In Section II, the

probabilistic beamforming problem is formulated and a system-
atic way of finding a feasible subset is introduced. Joint feasible
subsets refinement and optimization is described in Section III.
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The computation details of the iterative procedure is presented
in Section IV. Simulation results are presented in Section V, and
conclusions are drawn in Section VI.
Notation: In this paper, , and denote sta-

tistical expectation, transposition and Hermitian, respectively.
In addition, and refer to the trace and Frobenius
norm of a matrix, respectively, while denotes the norm of
a vector. and extract real and imaginary parts of
the argument, respectively. Symbol denotes a diagonal
matrix with vector on its diagonal, and is a identity
matrix.

II. PROBLEM FORMULATION AND FINDING A FEASIBLE SUBSET
The downlink multiuser beamforming system under con-

sideration consists of one base station (BS) equipped with
transmit antennas and single-antenna active users, where

. The th user’s channel and beamformer are represented
as and , respectively, and the noise at the th user is
distributed as . The beamforming design aiming at
minimizing transmit power at BS with guaranteed probabilistic
SINR requirements can be formulated as

(1)

where

and outage
probability . To model channel uncertainty, it
is noted that , where is the obtained
channel information (e.g., through estimation or quantiza-
tion), and is the channel uncertainty with continuous PDF

. It is assumed that the mean vector 1. Fur-
thermore, the covariance matrix and the support

of are assumed
to be available. Notice that the quadratic support covers
the unbounded support from many
common distributions, e.g., Gaussian, Laplace and -distri-
bution, and ellipsoid bounded support ( and is
bounded).
Due to the unknown beamforming matrix , and the non-

linear SINR expression, the distribution of is
difficult to be determined for a general PDF . Therefore,

1Since the nonzero mean of the channel uncertainty can be shifted to the
estimated channel , without loss of generality, .

the closed-form expression for the constraints of (1), and subse-
quently the feasible set of problem (1) is not directly avail-
able. Even worse is that the location of the feasible set of (1),
which is the premise for solving the optimization problem, is
not known. An usual way to tackle the problem is to find a
tractable lower bound function of .
For Gaussian uncertainty in , Bernstein-type inequality pro-
vides a lower bound function of
[14]. However, it is not guaranteed to be a lower bound for
channel uncertainties with other distributions.
On the other hand, with the moment and support information

of the channel uncertainty, the inequality

(2)

holds for all channel uncertainty distributions. The rationale of
using this lower bound is that by only keeping the moment and
support information, an analytic expression can be obtained. To
see this, the lower bound is first reformulated as

(3)

where is a PDF satisfying the moment and support con-
straint of . With real Lagrangian multiplier and complex
Lagrangian multipliers Ξ (with Ξ Ξ ), it is shown in
Appendix A that the dual problem of (3) can be expressed as

(4)

where [see the equations at the bottom of the page], and
. Furthermore, with S-Lemma in the complex domain

Ξ
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[27], the dual problem (4) is equivalent to

(5)

By replacing the intractable function
in (1) with the dual problem (5), we have the beamforming

design problem shown in (6) at the bottom of the page. Obvi-
ously, the constraint functions in (6) are in analytic expressions.
However, since the bilinear formulation of and in (6)

hinders further analysis, simplification of (6) is needed by using
the following property.
Property 1: In problem (6), does not occur at zero for any

.
Proof: If any equals zero in problem (6), the first two

constraints of the th user become

(7)

(8)

Since is obtained. To-
gether with the positive semidefinite property in (8), we

have , which makes

. Furthermore, notice that

, we have

(9)

Owing to the Jensen’s inequality, we have

(10)
(11)
(12)
(13)

where the last inequality is due to the support set defini-
tion . Taking the result

and the constraint into (9) shows
that . Therefore, the constraint in (7) becomes

, which is infeasible since the outage target
.

Therefore, the equality part of in (6) is redun-
dant, and the constraint can be reduced to . The
nonlinear formulation of and in (6) is then removed by
letting and multiplying to the first three
constraints of the th user, and (6) becomes (14), shown at the
bottom of the page with new variables

and .

(6)

(14)
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Theorem 1: Any feasible solution in (14)
is a feasible solution of problem (1).

Proof: Since the objective and constraint functionals of the
primal problem (3) are linear functionals of the PDF ,
the primal problem (3) is a convex problem. Furthermore, since
the moment and support information belongs to the known PDF

, the primal problem (3) is feasible. Therefore, feasible
primal problem (3) guarantees the weak duality holds between
(3) and its dual (5), i.e., (5) is a lower bound of (3). Furthermore,
(5) is also a lower bound of , which
leads to the feasible set of (14) must be a feasible subset of (1).

Owing to the nonconvex quadratic constraint ,
solution for (14) is difficult to be obtained. A popular method to
solve (14) is semidefinite relaxation (SDR), i.e., replacing the
nonconvex constraint with and deleting the rank-one
constraint. Although the SDR converts (14) into an efficiently
solvable problem, and it is known that Gaussian randomization
procedure [19] can be used to mitigate the rank-one issue, there
is still a chance that rank-one feasible solution of (1) cannot be
obtained. Fortunately, owing to the special relationship between
SINR and MSE, a convex problem can be proposed to find the
feasible subset of (1) as follows.
Theorem 2: Any feasible solution in the convex

problem (15) is a feasible solution of problem (1). In (15),
and the vector

with the 1 appears at the th posi-
tion.

Proof: See Appendix B.
The tradeoff between SINR criterion (14) and MSE crite-

rion (15) can be analyzed from the conservativeness and com-
plexity perspectives. From the conservativeness aspect, since
the MSE constraint is only a sufficient condition to guarantee
the SINR constraint, the MSE criterion (15) is generally more
conservative than the SINR criterion (14). From the computa-
tional complexity aspect, the convex problem (15) enables effi-
cient method to obtain a feasible solution, while the SDR based
(14) needs an extra Gaussian randomization process to obtain a
rank-one solution if a higher rank solution is obtained. There-
fore, the complexity of obtaining a guaranteed rank-one solution
from (14) is generally higher than that of (15).
The connections of problems (14) and (15) with existing ro-

bust optimization problems are revealed as follows.

Property 2: When , (14) is degen-
erated to the robust beamforming problem in [5]

(16)

Proof: When , the th user’s constraints in (14)
become

(17)

(18)

(19)

(20)

Since , (19) implies

. Combining this result with (17), we have

(21)

Taking the two ends of the inequalities in (21), we have
. Since was proved

in (10)–(13) and is a constraint from (20), is
obtained.

has two consequences. Firstly, makes (19)
become . Making use of the definition

, we have Ξ , which implies

Ξ (22)

Secondly, makes (21) become .
Expanding this condition gives

Ξ Ξ ,
which leads to

Ξ (23)

(15)



3494 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 13, JULY 1, 2015

Since and Ξ in (22), we have Ξ .
Together with , it is obvious that only Ξ and

satisfy (23). Taking Ξ and into
Ξ reveals , which even-

tually leads to . Putting and
into (17)–(20), it can be easily shown that

(17) and (19) can be eliminated and the simplified constraints
become

(24)

Since is not involved in the objective function of (14), the
largest feasible set of in (24) occurs at the limit
condition . Therefore, make the
problem (14) degenerate to the robust optimization problem
(16).
Similarly, in (15) also leads to

and , and (15) degenerates
into the robust transceiver design problem in [8].
Property 3: When the channel uncertainty is unbounded, i.e.,

, we have and in
(14).

Proof: Since (14) is equivalent to (6), we start from (6)
instead. The first and the third constraints of the th user in (6)
are

Ξ (25)

Ξ (26)

First, (25) is simplified to Ξ owing
to the outage probability . Furthermore, since the
diagonal elements and the principle submatrices of a positive
semidefinite matrix must be nonnegative and positive semidef-
inite respectively, (26) implies

(27)
Ξ (28)

where denotes the largest eigenvalue of a Hermitian
matrix, and (28) is due to the fact that for Ξ , we
have Ξ [21, p. 162]. Putting

from (27) into Ξ , we have

Ξ (29)

With the covariance matrix , we have
Ξ Ξ [20]. Putting this result into

(29), we obtain

Ξ (30)

Combining (28) with (30), we have

(31)

Since from the constraint of (6), in the following, we
divide the discussion into and . If , (31) is
equivalent to , which
is infeasible when as and is a matrix
with bounded elements. On the other hand, satisfies the
constraint in (31). Therefore, in (6) becomes ,
i.e., in (14). Similar contradiction proofs can
be used to prove in (14) when .
Similarly, in (15) leads to and

, and (15) degenerates into the moment-con-
strained transceiver design problem in [18].
Remark 1: In practice, the parameters of the support set

can be determined as follows. For channel estimation error,
since the noise is generally modelled as a Gaussian random
variable, the estimation error is unbounded. Therefore, the
parameters of the support set are and . On
the other hand, a finite bound is more appropriate for quantiza-
tion error. In particular, in such case, it is a common practice
to choose the covariance matrix as . Furthermore, with

independent error sample , an estimator for
is . According to the

one-sided Chernoff bound in [22, p. 115, (8.16)],
independent error samples guarantee the estimated support set
cover percent channel uncertainty with reliability

.

III. JOINT FEASIBLE SUBSETS REFINEMENT AND OPTIMIZATION

Since the lower bound function in (2) is only a conservative
bound, the obtained feasible set is a conservative feasible subset
of (1). Although other lower bound functions might exist, con-
servativeness is still the key problem. In this section, the local
structure of a given feasible solution is utilized systematically
to explore other feasible subset of (1). For any given feasible
solution , we first define

, where the Minkowski sum in the
set means . Ob-
viously, is a support subset of satisfying the SINR
requirement with the given . Then, we define another set.
Definition 1:

.
An important property of can be obtained as follow.
Property 4:
Proof: See Appendix C.

Therefore, each feasible solution of (1) can generate a
feasible subset which contains itself. Although op-
timization over may find better solution than , ob-
viously, an even larger feasible subset than is highly
desirable.
More specifically, from the coupling effect between the sup-

port subset and the feasible subset in Defini-
tion 1, it can be seen that reducing the number of elements in the
support subset may enlarge the feasible subset .
Therefore, we consider a squeezed support subset as

(32)
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where , and we have

(33)

Then the corresponding set generated from is

(34)

where . In order to make a fea-
sible subset of , the parameters should be chosen
such that for any , it must satisfy the constraints
in (1), i.e., . With similar
derivations to (60) of Appendix C, it can be easily established
that ,
where is always nonnegative. Since increasing would
decrease , in order to guarantee

, the maximum is
chosen to satisfy . Fur-
thermore, since

and ,
we have be selected such that

.
To reveal the inter-relationship between and

, we consider

(35)

(36)
(37)

where the second equality comes from the inclusive relation-
ship in (33) and the final equality comes from the Definition 1.
Therefore, an important property of those constructed feasible
subsets is

(38)

That is, the squeezed support subsets in (32)
enlarge the corresponding feasible subset in (34).
With the largest feasible subset tuned by , owing

to , better feasible solution than can be
found via . With the obtained
new solution, we can construct another feasible subset of
and perform another optimization, and so on. That makes iter-
ative improvement of the objective function becomes possible.
The proposed iterative procedure begins with finding a feasible
solution from (14) or (15) (or the solution in [13],
[14], [16] under Gaussian channel uncertainty), followed by it-
erations between the following two steps until convergence.
• P-step: Finding such that

.
• O-step: Solving the th subproblem

, denoting the
solution as . Increment by one.

Lemma 1: If generated from the th O-step does
not activate the th inequality constraint in the original problem
(1), then does not activate the th inequality constraint of
the th O-step subproblem.

Proof: If the th O-step solution does not
activate the th constraint in (1), i.e.,

, the parameter is needed
to make at
P-step. Together with the definition

, we
have is satisfied for all

. Therefore, does not activate the
th constraint in the th O-step sub-

problem.
Lemma 1 reveals the connection between the original

problem (1) and the O-step subproblem, which facilitates the
convergence analysis of the iterative procedure presented as
follows.
Proposition 1: If every O-step generates descent solution, the

iterative procedure converges. With strictly descent solution in
every O-step, the limit solution activates all users’ constraints
in problem (1).

Proof: First, since is established in
(38), a descent solution with is pos-
sible. With the monotonic decreasing property of , and
the transmit power is bounded below by zero, the convergence
of iterative procedure is guaranteed.
Second, if does not activate the th constraint in the

original problem (1), according to Lemma 1, does not
activate the th constraint in

th O-step subproblem. This implies directly scaling down
the th beamformer (the th column of ) until

would reduce transmit power

strictly, hence becomes possible.
Furthermore, scaling down reduces interference leakage to
other users, and other SINR constraints would remain valid.
Therefore, the iterative procedure with strictly decreasing
transmit power in successive O-steps would not stop, as long
as any of the user’s constraint in (1) is not active. That is, the
limit solution activates all constraints in (1).

IV. COMPUTATION DETAILS OF THE ITERATIVE PROCEDURE
In the previous section, the framework of sequential opti-

mization is established. The details of P-step and O-step are de-
rived in this section.

A. P-Step
The P-step is to find the quantile such that

. Owing to the
monotonic increasing property of the continuous cumulative
distribution function (CDF) of , the param-
eter can be found in by bisection. However,
even if the PDF of channel uncertainty is known, due to
the complicated dependence of SINR with respect to , the
exact CDF of SINR in general is difficult to be obtained. One
straightforward way is to use Monte Carlo methods, in which
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samples are generated, and fed into the SINR
expression to obtain its empirical distribution. Then can be
found by bisection. To make the realized outage probability

approach the target
outage probability with accuracy and reliability , i.e.,

, the number of independent samples
needed is [22, p. 114]. Since the Monte Carlo
method involves vector multiplications and a sorting process,
the complexity is .
Although Monte Carlo methods are general and easily be im-

plemented, the computational complexity is high, e.g., a mild
accuracy requirement % makes on the order of .
On the other hand, notice that the SINR outage probability can
be equivalently written as

(39)

where . If the cumulant-generating function
(CGF) of is known, saddlepoint approximation [23] provides
accurate and efficient way to evaluate the left hand side of (39).
In particular, with CGF of denoted by , the second-order
saddlepoint approximation of the probability in (39) is [24, p.
53]

(40)

where and are the CDF and PDF of the standard
normal distribution, with

,
and the saddlepoint is determined from

(41)

For Gaussian channel uncertainty, it is shown inAppendix D that
the CGF of is
with domain , where being the
th element of vector , and
come from the eigendecomposition

with descending eigenvalue order. Furthermore, the unique-
ness of the saddlepoint in (41) is guaranteed by the
fact that in its domain. The relative error

by using (40) can be calculated in
[25], then pre-distorting the relative error in the outage target
ensures tight outage probability control even under saddlepoint

approximation error. Note that the saddlepoint method involves
one eigenvalue decomposition in each bisection iteration, the
overall complexity is , where is the ratio of
bisection range divided by required accuracy. Since
represents the bisection iteration number and is generally
smaller than 100, the complexity of the saddlepoint method is
generally smaller than that of the Monte Carlo method.

B. O-Step

With , the th O-step subproblem is

(42)

With , the th constraint of (42) is refor-
mulated as (43) at the bottom of the page. After applying the
S-Lemma in complex domain [27], (43) is equivalent to

(44)

Therefore, the O-step subproblem (42) can be transformed to

(45)

A popular approach to solve the nonconvex rank-one con-
strained problem (45) is SDR, i.e., deleting the rank-one con-
straints in (45), and the property of the SDR solution of (45) is
described as follows.

(43)
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Theorem 3: If with , the SDR solution of (45)
guarantees to be low rank as
and .

Proof: See Appendix E.
Theorem 3 reveals that when the number of BS antenna
, the SDR solution is equivalent to the solution of the non-

convex problem (45) provided that the product of SINR targets
is larger than one (0 dB). When , although the SDR so-
lutions are still forced to be low ranks, the rank-one property in
general cannot be guaranteed. Fortunately, according to Propo-
sition 1, we only need a descent solution for (45) in order to
guarantee the proposed procedure to converge. By observing the
special structure of (45), a rank-one descent solution at O-step
can be obtained for any number of BS antenna as follow.
Property 5: Let , where is a feasible

solution from (1). A descent solution with respect to in (45)
is .

Proof: First, it can be checked that
and satisfy the positive semidefinite constraint in

(45). Second, since the initial solution (required by (14) or
obtained from (15)) is rank-one, later iterative solutions

are also rank-one. Finally, the P-step requirement
ensures the objective value of (45) decrease monotonically.
To solve the O-step subproblem (45), the complexity of the

SDR method is in each interior-point iteration
[26], while that of the descent method in Property 5 is only

. Therefore, the descent method is simpler than the SDR
method in terms of complexity. However, if the SDR is tight, the
SDRmethod gives the optimal solution in (45) and is better than
the descent method.
Remark 2: Let us consider the case when the channel uncer-

tainty is unbounded, i.e., in (45). From (44), the
positive semidefinite constraint implies

(46)

(47)

If , the constraint (46) would result in when
. However, putting into (47) leads to in-

finite power in , which cannot be the optimal solution owing
to the existence of finite power solution in Property 5. There-
fore, must be equal to zero and (45) is degenerated to the
following problem

(48)

Since (48) is the limiting case of (45), problem (48) naturally
inherits the properties in Theorem 3 and Property 5.

C. Summary and Convergence Properties

The proposed iterative procedure for the probabilistic beam-
forming problem starts with any feasible solution of (1), and fol-
lows iterations between (40) for P-step and (45) for O-step until
the difference between successive transmit power is smaller
than a pre-defined threshold.
Suppose the O-step is solved using the descent solution from

Property 5. At the th iteration, if the O-step solution does not
activate the th constraint of (1), the P-step will en-
force , which ensures the O-step solution
from Property 5 being a strictly descent solution. According to
Proposition 1, the iterative procedure converges, and the limit
solution activates all constraints of (1). Therefore, with any fea-
sible solution of (1) as initialization, the iterative procedure with
descent solution at O-step guarantees monotonic transmit power
improvement and tight outage control under any continuous
channel uncertainty.
Remark 3: The comparisons between the proposed iterative

procedure and the bisection calibration [17] are given as fol-
lows. From the theoretical perspective, with a feasible solu-
tion as initialization, the proposed iterative procedure is appli-
cable to any continuous channel uncertainty with guaranteed
tight outage realization. However, since the parameter in [17]
needs to be obtained from a nonconvex optimization or a non-
linear equation, the uniqueness or existence of is not guaran-
teed and the bisection in is not guaranteed to be imple-
mentable. From the computational complexity perspective, the
subproblem in [17] is a semidefinite programming problem (for
uniform channel uncertainty) with positive semidefinite con-
straints of dimension or a second order cone
programming problem (for Gaussian channel uncertainty). The
corresponding complexity orders in each interior-point iteration
are and [26], respectively. On the other
hand, for the proposed method, the complexity is
in each interior-point iteration if SDR is used in the O-step, and

if the descent method is used in the O-step. There-
fore, the proposed method with descent solution in the O-step
has the least complexity, while the complexity of the proposed
method with SDR O-step lies between the two bisection cali-
bration methods.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the iterative procedure
is illustrated under different channel uncertainties. The down-
link channel for each user is modeled as , where
the elements of are standard complex Gaussian variables,
and the channel correlation matrix is with cor-
relation coefficient . The BS is equipped with four
antennas, and there are two active users unless stated other-
wise. The variance of the complex Gaussian noise at every user
is . The SINR requirement for the second user is
fixed as (dB) and %, while that
for the first user is specified in the figures presented below.
Except for Fig. 1, each point in the figures is an average per-
formance under 500 independent feasible channel realizations.
The proposed iterative procedure is initialized from the convex
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Fig. 1. The convergence performance of the proposed iterative procedure and
bisection calibration in a single channel realization.

problem (15) unless stated otherwise, and relative power differ-
ence is used to ter-
minate the iterative procedure. The bisection accuracy in finding

is , and the bisection accuracy in finding the saddle-
point is . For fair comparison with other existing beam-
forming schemes, under a particular QoS setting, the generated
channel realizations should be feasible for all methods under
consideration.

A. Gaussian Estimation Error
With the training sequence from the th user being

, the received signal at BS is
with . By using the linear min-
imum mean square error channel estimator

, it is easy to prove that the
channel estimation error is zero mean with covariance matrix

[29]. In the following, the uplink
training-to-noise ratio is set to be 20 dB.

Fig. 2. The convergence performance of the proposed iterative procedure and
bisection calibration in multiple channel realizations.

The convergence performances of the proposed iterative pro-
cedure and the bisection calibration [17] are compared with a
single channel realization in Fig. 1. From Fig. 1(a), it is clear
that the realized outage probability of the proposed iterative pro-
cedure monotonically increases toward the outage target, while
that of the bisection calibration oscillates around the outage
target. The same convergence behaviors in transmit power can
also be observed in Fig. 1(b). The reason is that the proposed it-
erative procedure finds the largest feasible subset at P-step and
descends at O-step, which makes the transmit power monoton-
ically decrease and the realized outage probability monotoni-
cally increase toward the outage target. On the other hand, the
bisection calibration only calibrates the outage probability to-
ward the outage target, which causes the oscillation phenom-
enon in the realized outage and transmit power.
In order to compare the convergence rate of the proposed

method and the bisection calibration method, Fig. 2(a) shows
the averaged over 500 feasible channel realizations.
From Fig. 2(a), it can be seen that the proposed method needs 5
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Fig. 3. The convergence performance of the proposed iterative procedure with
different safe approximations as initialization.

iterations to converge, while the bisection calibration needs 10
iterations due to the oscillating behavior during convergence.
Furthermore, Fig. 2(b) shows the convergence of transmit
power for the two methods. It is clear that the proposed itera-
tive procedure converges faster than the bisection calibration
method.
From Figs. 1 and 2, it can be noticed that the proposed iter-

ative procedure with SDR and descent solution (Property 5) in
O-step exhibit similar transmit power performance, which can
be explained as follows. Although the safe approximation (15) is
a restricted beamforming problem, the beamformers align well
with their own channel information and avoid most of the inter-
ference. Once the feasible solution is found, the beamforming
directions are relatively good directions, and subsequently in
every O-step, the solution is significantly affected by the power
allocation rather than the beamforming direction adjustment.
Therefore, the final transmit powers of SDR and descent solu-
tion based O-step are similar. Due to its simplicity and good

Fig. 4. The feasible rate of different safe approximations under Gaussian
channel uncertainty.

performance, only descent solution in O-step is implemented
for the rest of the paper.
Next, the performance of the iterative procedure with the

proposed initializations, Bernstein-type inequality initialization
[14], and the Vysochanskii-Petunin inequality initialization
[13] are compared in Fig. 3 under different outage probability
targets with (dB). It can be seen from
Fig. 3(a) that converged solutions with different initializations
all realize the outage probability targets tightly. As a result
of the tight outage probability control, the proposed iterative
procedure reduces transmit power for all initializations as
shown in Fig. 3(b). In particular, 0.5 to 1 dB transmit power is
saved from the Bernstein-type inequality initialization, and 0.6
to 2 dB transmit power is saved from the Vysochanskii-Petunin
inequality initialization. Notice that since the feasible channels
are determined by the worst performing MSE criterion (15), the
feasible channels for the setting have higher average
channel gain than that of . Thus, the former setting in
Fig. 3(b) shows less transmit power than the latter setting.
In Fig. 4, the feasibility rates of different safe approxi-

mation schemes under outage range % % and
(dB) are shown. The scenario with is

also included in Fig. 4, and the SINR requirements of the third
and fourth users are the same as that of the second user. Without
utilizing the Gaussian density information, the proposed safe
approximation in (14) and (15) do not perform as well as other
existing schemes. However, (14) and (15) are applicable to
general uncertainty distributions, which have no alternative
solution at this moment. Therefore, the proposed safe approx-
imations (14) and (15) are valuable in terms of generality, and
they become indispensable in the next subsection, where mixed
estimation and quantization error is considered.

B. Mixed Estimation and Quantization Error

For downlink beamforming in frequency-division duplexing
(FDD) system, the channel estimation has to be done in the
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downlink direction, and then fedback to the BS. Since the feed-
back cannot afford infinite precision, in addition to the channel
estimation error, quantization error also exists. In particular, for
channel estimation, the estimator is still but now is a

vector received at the th user, and is a matrix
with each column represents a training sequence from one BS
antenna. For simplicity, we consider orthogonal training with

. Furthermore, for simple illustration, the scalar quanti-
zation [30] in every dimension of the estimated channel is used
in this subsection. More specifically, for a random variable dis-
tributed as , the maximum entropy quantization crite-
rion [31] leads to the codebook

, where is the number of quantization bits and
is the inverse CDF of the standard normal distribution.

Since the estimated channel is distributed as
with , the mixed estimation and
quantization error is

(49)

where quantizes the real and imaginary parts of each el-
ement of the input vector, and is for whitening the
estimated channel such that its covariance matrix becomes .
For a given channel correlation and noise statistics, samples of

can be generated offline, and an empirical distribu-
tion can be obtained. In order to guarantee probability evalua-
tion accuracy within 1% from the outage target with reliability
99.999%, samples of are generated. Notice that
the support of the mixed error is theoretically unbounded, so we
have and . Since the convergence behavior
of the proposed algorithm under mixed error is similar to that of
Gaussian case, the convergence figures are not repeated here. In
the following, only the performance of the initialization using
(15) and that of the converged iterative solution are reported.
In Fig. 5, the performance of the proposed iterative proce-

dure is illustrated under different quantization bits, with the first
user’s SINR requirement being and
%. Fig. 5(a) shows that the realized outage probability of

the non-robust method ([3], (18.29)) is about 50% owing to
the ignorance of the channel uncertainty. Furthermore, although
the initialization using (15) is conservative, the iterative pro-
cedure always approaches the outage target. Correspondingly,
Fig. 5(b) shows that, while the transmit power of the initializa-
tion is large, the proposed iterative procedure significantly re-
duces the transmit power, with the converged power becomes
very close to that of the non-robust method. It is interesting
to see in Fig. 5(b) that the power gap between the non-robust
method and the iterative procedure is almost constant. This is
due to the almost constant gap in the SINR outage realizations in
Fig. 5(a). Furthermore, for the initialization, owing to its worst
case design criterion, its transmit power performance is sensi-
tive to the channel error. This explains why the required transmit
power decreases when increases. On the other hand, notice
that the feasible channels are determined by the initialization,
and the feasible rate increases as increases. This leads to a
decrease in the average channel gain of the feasible channels,

Fig. 5. Performance of the proposed algorithm under different quantization
bits.

and thus more transmit power for the non-robust method and
the iterative procedure, as increases. Finally, Fig. 6 shows the
performance of the proposed algorithm under different SINR
requirements with quantization bits . It can be seen that,
similar to the conclusions of Fig. 5, although the initialization is
conservative, the iterative procedure always realizes the outage
target tightly, resulting in much reduced transmit power.

VI. CONCLUSION
In this paper, probabilistic SINR constrained beamforming

under channel uncertainties was studied, and a novel method
was proposed to achieve tight outage probability control under
a large class of bounded or unbounded channel uncertainties. In
particular, a systematic method for finding a feasible subset of
the probabilistic beamforming problem was proposed based on
the moment and support of channel uncertainties. Then, with an
iterative procedure, the local structure of the obtained feasible-
subset is utilized systematically to explore other feasible sub-
sets of the original problem, leading to tight outage control tai-
lored for the specific channel uncertainty distribution. Simula-
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tion results showed that, as a result of tight SINR outage control,
transmit power was saved compared to existing approximation
based probabilistic beamformers.

APPENDIX A
With real Lagrangian multiplier and complex Lagrangian

multipliers Ξ (with Ξ Ξ ), the Lagrangian of problem
(3) in the complex domain is

Ξ

Ξ (50a)
Ξ

Ξ

Ξ (50b)

With the implicit PDF constraint , the Lagrange
dual function of the problem (3) is (51) at the bottom of the
page. Comparing the two conditions in (51) that make the dual
function equal Ξ , the second condition can be
replaced by Ξ .
Therefore, the dual of problem (3) can be formulated as

Ξ
Ξ

Ξ

Ξ
Ξ Ξ (52)

By using the expression of and a
quadratic reformulation of , i.e., [see

Fig. 6. Performance of the proposed algorithm under different SINR require-
ments.

the (53) at the bottom of the next page], with ,
(52) can be transformed to the compact quadratic form in (4).

APPENDIX B
PROOF OF THEOREM 2

According to Theorem 4 in [8], the feasible transceiver solu-
tion in guar-
antees with fixed channel realization .
Therefore, feasible solution in

guarantees

Ξ

Ξ

Ξ

Ξ (51)
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, and therefore a feasible subset of problem (1) can be ob-
tained from the feasible set of the following problem

(54)

In order to obtain a tractable feasible subset of (54) for
all possible channel uncertainty distribution, by using
the moment and support information, an upper bound of

is formulated as

(55)

Using a factorized equalizer with ,
the MSE requirement

can be reformulated as

, where
with

stands for the Hadamard product, and the vector
with the element 1 located at

the th position. With similar derivations in Appendix A,
the dual of problem (55) is [see (56) at the bottom of the
page], where was first defined after (4).
Since the primal problem (55) is a concave maximizing
problem and is feasible, (55) is upper bounded by its dual
problem (56). Therefore, putting (56) into (54) to replace

, and noticing that
can be proved similar to that in Property 1, a feasible
subset of (54) can be obtained from the feasible set of the
problem in (57) at the bottom of the page, with new variables

and .

(53)

(56)

(57)
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Introducing a slack variable with and using
Schur complement, (57) becomes (58), shown at the bottom
of the page. Since the constraints and
are equivalent to the second order cone programming form

and , problem (58) can be
transformed to the convex problem (15).

APPENDIX C
PROOF OF PROPERTY 4

According to the definition
, the constraint

is automatically satisfied for all
. Combining with the Definition 1

, then we
directly have . Furthermore, any in
satisfies the condition in (59)–(61) at the bottom of the page,
where is an indicator function. Therefore, any in

is a feasible solution of (1), i.e., .

APPENDIX D
With , we first write as

(62) at the bottom of the page, where the normalized

channel . Since
is a Hermitian matrix, the eigenvalue decomposition

with the descending
real eigenvalues and orthogonal eigenvec-

tors in leads to

. Since
, the statistical representation of

(62) is a weighted sums of independent noncentral Chi-squared
distributions with two degrees of freedom, i.e.,

(63)

where is the th element of the complex vector
. With the moment-generating function of

being with domain
, the CGF of (63) is

(64)

(58)

(59)

(60)

(61)

(62)
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with the domain of satisfying
. Since independent data streams are trans-

mitted simultaneously, have to be lin-
early independent. According to the Sylvester’s law of
inertia, the largest and smallest eigenvalue of

are positive and negative, respectively.
Therefore, the results and make the domain of

being .

APPENDIX E
PROOF OF THEOREM 3

First, the SDR formulation of (45) is

(65)

With Lagrange multipliers
, the dual of problem (65) is

(66)

We can establish two facts about (66).
1) Notice that the primal problem (65) is always feasible with

solution . Furthermore,

simple substitution verifies that

is a feasible solution for the dual problem (66). There-
fore, weak duality holds between (65) and (66), and
the lower bounded primal problem (65) makes the
dual problem (66) be upper bounded by a positive
number. Thus the nonnegative in the objec-
tive function of (66) are upper and lower bounded.
Since the bounded comes from the restriction

or

,

together with and are bounded.
Therefore, the compact feasible set of (66) makes its
optimal solution attainable.

2) In the dual problem (66), the zero solution
can be perturbed such that

and make the positive semidefinite constraints
strictly feasible owing to the identity matrix.

Combining the two facts above makes the strong duality hold
between convex problems (65) and (66).
Owing to the strong duality between (65) and (66), the com-

plementary slackness makes
. Furthermore, since the zero matrices are not the

optimal solutions in (65) and (66), the optimal primal
solutions satisfy . Let

, and put into
with , we have

(67)

Since and , the first two
terms of (67) are positive semidefinite. Without loss of gener-
ality, let has positive eigenvalues and nonpos-
itive eigenvalues. According to the Weyl’s inequality [28, p.
274], has at least nonnegative eigenvalues. There-
fore, and

. Owing to
, the optimal primal solutions and satisfy

and , which directly leads
to .
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