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Abstract—In this paper, we address robust design of symbol-
level precoding (SLP) for the downlink of multiuser multiple-
input single-output wireless channels, when imperfect channel
state information (CSI) is available at the transmitter. In partic-
ular, we consider a well known model for the CSI imperfection,
namely, stochastic Gaussian-distributed uncertainty. Our design
objective is to minimize the total (per-symbol) transmission
power subject to constructive interference (CI) constraints as
well as the users’ quality-of-service requirements in terms of
signal-to-interference-plus-noise ratio. Assuming stochastic chan-
nel uncertainties, we first define probabilistic CI constraints in
order to achieve robustness to statistically known CSI errors.
Since these probabilistic constraints are difficult to handle, we
resort to their convex approximations in the form of tractable
(deterministic) robust constraints. Three convex approximations
are obtained based on different conservatism levels, among which
one is introduced as a benchmark for comparison. We show that
each of our proposed approximations is tighter than the other
under specific robustness settings, while both of them always
outperform the benchmark. Using the proposed CI constraints,
we formulate the robust SLP optimization problem as a second-
order cone program. Extensive simulation results are provided to
validate our analytic discussions and to make comparisons with
conventional block-level robust precoding schemes. We show that
the robust design of symbol-level precoder leads to an improved
performance in terms of energy efficiency at the cost of increasing
the computational complexity by an order of the number of users
in the large system limit, compared to its non-robust counterpart.

Index Terms—Downlink MU-MISO, imperfect CSI, symbol-
level precoding, stochastic optimization, stochastic robust design.

I. INTRODUCTION

MULTIUSER precoding is a well known technique to
enhance the achievable throughput and the reliability

of communication in a downlink multiuser multiple-input
single-output (MU-MISO) wireless system. In principle, this
improvement is brought by employing multiple antennas at
the transmitter, which enables more degrees of freedom to
manage the channel-induced multiuser interference (MUI). In
most applications, however, the system might be subject to
some crucial system-centric and/or user-specific requirements,
e.g., transmission power constraint or quality-of-service (QoS)
targets. In such scenarios, the precoding design problem needs
to be constrained by the given requirements while aiming at
optimizing a certain objective function; this type of design
is often called objective-oriented precoding optimization [1].
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Among a variety of design criteria, a frequently addressed one
is the QoS-constrained power minimization; see, e.g., [2]–[4].

In general, multiuser precoding schemes can be categorized
in two groups, namely, conventional (block-level) techniques
and symbol-level techniques. In the conventional precoding,
the precoder typically exploits the channel knowledge in order
to suppress/eliminate the MUI, regardless of the current users’
symbols [5], [6]. On the contrary, in the symbol-level design,
the basic idea is to convert the (potential) MUI into a desired
received signal component, i.e., into the so-called constructive
interference (CI), by means of processing the transmit signal
on a symbol-level basis [7], [8].

In reality, assuming perfect channel state information (CSI),
either statistically or instantaneously, is rather impractical due
to various inevitable channel impairments such as imperfect
channel estimation, limited feedback, or latency-related errors
[9]–[11]. However, potential performance improvements may
no longer be offered by multiuser precoding if accurate CSI
is not available at the transmitter, broadly because precoding
techniques are quite sensitive to channel uncertainties [10].
One may expect an even more adverse effect of imperfect
channel knowledge on the symbol-level precoder’s perfor-
mance due to the fact that the promised efficiency (extremely)
depends on the satisfaction of CI constraints in order to
successfully accommodate each (noise-free) received signal in
the correct CI region. To alleviate this reliance, the problem
of designing a multiuser precoder that is robust to channel
uncertainties becomes of practical interest.

The channel uncertainty region is commonly considered
to be either ellipsoidal or stochastic, or a combination of
both, e.g., see [12]. Under the ellipsoidal uncertainty model,
usually no assumption is made on the distribution of the CSI
error, but the error is assumed to always lie within a bounded
region. This kind of modeling, which ultimately leads to a
worst-case analysis, is known to appropriately capture the
bounded uncertainties resulted from quantization errors [13].
The stochastic uncertainty model, on the other hand, assume
that the statistical properties of the CSI error is known. In
scenarios with channel estimation at the transmitter/receiver
side, such modeling is particularly suitable since the error
in the estimation process can often be treated as a Gaussian
random variable [14].

With a particular focus on MU-MISO broadcast channels, a
wide variety of robust schemes can be found in the literature
on conventional multiuser precoding, addressing both bounded
and stochastic uncertainty models. In this line of work, most
of the existing research considers either the QoS-constrained
power minimization or the max-min fairness with power
constraints as the design formulation. Under norm-bounded
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CSI uncertainty, the QoS problem is typically constrained
by the worst signal-to-interference-plus-noise ratio (SINR)
among the users, resulting in highly conservative design ap-
proaches; see, e.g., [15]–[17] as some notable research in this
direction. These worst-case SINR requirements can also be
translated to worst-case minimum mean-square error (MMSE)
constraints [18], [19]. Assuming Gaussian-distributed stochas-
tic CSI errors, the QoS requirements are usually implied by
probabilistic SINR constraints as in [20]–[22], or in terms
of equivalent rate-outage probability constraints [23]–[25].
Given in either form, the stochastically robust schemes mostly
apply the robust (chance-constrained) optimization techniques
introduced in [26] and [27] in order to deal with the design
problem.

Robust design of symbol-level precoding (SLP) is not well
investigated in the literature. Worst-case robust approaches
are proposed in [28] and [29] for unsecured and secured
wireless systems, respectively, aiming to design the symbol-
level precoder with norm-bounded CSI errors based on power
minimization and max-min fairness criteria. It is, however,
important to notice that as far as the symbol-level power
minimization problem is concerned, the norm-bounded un-
certainty model might not yield an efficient solution. This
modeling ultimately leads to a worst-case conservatism which
inherently increases the transmission power, though enhancing
the users’ received SINR and symbol error probability. To
the best of the authors’ knowledge, there is no published
work to date with the aim of developing a stochastically
robust symbol-level design formulation. It is worth mentioning
that a precoding optimization problem with outage probability
constraints based on a symbol-level approach is presented in
[30], therein the goal is to achieve robustness to the receiver
noise, but not to any type of channel uncertainties.

In this paper, we address the problem of SLP design in
the presence of channel uncertainty. Our goal is to optimize
the (total) transmission power under joint CI and SINR
constraints. In the optimization problem, the CI constraints
are formulated based on the definition of distance-preserving
constructive interference regions introduced in [31]. Con-
sidering a stochastic uncertainty model, in order to obtain
a robust formulation for the original CI constraints, it is
essential to characterize the uncertain component in the CI
inequality which appears as a result of the imperfect available
CSI. Our primary challenge, however, is to obtain a tractable
(deterministic) convex approximation for the probabilistic
robust formulation, ensuring that the desired constraint is met
with a certain probability for any realization of the CSI error
within the uncertainty set. In such a conservative approach,
the relative tightness of the derived approximations, which
(roughly speaking) measures the cost of tractability, will be
of particular importance. Having the convex robust constraints,
the subsequent modification of the precoding design problem
is straightforward due to the fact that the only uncertain part
of the problem is the set of CI constraints. Accordingly, the
main contributions of this paper are listed as below:

1. We propose some modifications to the CI constraints
according to a stochastic (Gaussian) uncertainty model.
In particular, we redefine the CI constraints as chance-

constrained inequalities for which we derive two deter-
ministic convex robust alternatives based on the notion
of safe approximation. Both approximations are formu-
lated as convex second-order cone constraints, hence can
efficiently be handled. We further obtain a third robust
CI restriction as our benchmark for comparison, which
is based on the well known idea of sphere bounding. We
then compare the relative tightness of the obtained robust
approximations analytically and validate the discussion
through simulation results. Our results indicate that the
proposed robust approaches provide tighter approxima-
tions than the sphere bounding based method.

2. Using the robust safe approximations of CI constraints,
we propose robust design formulations in the form of
convex second-order cone program (SOCP) for the QoS-
constrained (symbol-level) power minimization problem.
We then analyze and compare the computational com-
plexities of the robust and non-robust precoding schemes,
thereby indicating that the proposed robust approaches
have higher computational cost (by a limiting order of
the number of users) compared to the original non-robust
problem, .

Organization: The rest of this paper is organized as follows.
We describe the system and uncertainty models in Section II.
In Section III, first we briefly explain the original SLP problem
with non-robust CI constraints. We then define probabilistic
robust counterparts for the CI constraints and derive new
formulations in the form of approximate convex restrictions
in Section IV, which is followed by analytic discussions
on the tightness of these approximations. In Section V, we
cast the robust SLP optimization problem and analyze the
computational complexity. Our simulation results are provided
in Section VI. Finally, we conclude the paper in Section VII.
Notations: We use uppercase and lowercase bold-faced letters
to denote matrices and vectors, respectively. The sets of real
and complex numbers are represented by R and C. For a
complex input, Re{·} and Im{·} respectively denote real and
imaginary parts. For matrices and vectors, [ · ]T denotes trans-
pose. For a (square) matrix A, |A| and Tr(A) respectively
denote the determinant and the trace of A, vec(A) stands for
the vector obtained by stacking the columns of A, and A � 0
(or A � 0) means that A is positive semidefinite (or negative
semidefinite). For two square matrices A and B with identical
dimensions, A � B means A − B is positive semidefinite.
Given two vectors x ∈ Rn and y ∈ Rn, x ≥ y (or x � y)
denotes the entrywise inequality. ‖ · ‖2 and ‖ · ‖F represent
the vector Euclidean norm and the matrix Frobenius norm,
respectively. I, 0 and 1 respectively stand for the identity
matrix, the zero matrix (or the zero vector, depending on
the context) and the all-one vector of appropriate dimension.
The probability function and the statistical expectation are
respectively denoted by P{·} and E{·}. The operators ⊗
and ◦ stand for the Kronecker and the Hadamard products,
respectively.

II. SYSTEM AND UNCERTAINTY MODEL

We consider an MU-MISO wireless broadcast channel in
which a common transmitter (e.g., a base station), equipped
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with N antennas, serves K single-antenna users by sending
independent data streams, where K ≤ N . We denote by
the row vector hk ∈ C1×N , k = 1, ...,K, the instantaneous
(frequency-flat) fading channel of the kth transmit/receive
antenna pair. In the downlink transmission, at any symbol time
t = 0, 1, 2, ..., independent data symbols sk(t), k = 1, ...,K,
are to be conveyed to the users, with sk(t) denoting the
intended symbol for the kth user. To simplify the notation,
we focus on a specific symbol time and drop the time index
t throughout the paper. Each symbol sk is drawn from a
finite equiprobable constellation set with unit average power.
We confine ourselves to constellation sets with unbounded
(Voronoi) decision regions, including single-level modulation
schemes, e.g., phase-shift keying (PSK). We further assume,
without loss of generality, identical modulation schemes for
all the users.

We collect the intended symbols for all K users in a vector
denoted by s = [s1, . . . , sK ]T ∈ CK×1. The symbol vector s
is then mapped to N transmit antennas yielding the transmit
vector u = [u1, . . . , uN ]T ∈ CN×1. This mapping is done
with the use of an appropriately designed multiuser precoding
module. In this paper, we adopt a symbol-level precoding
(SLP) scheme based on a particular type of constructive
interference regions, which will be discussed in more detail
later. It is worth noting that unlike conventional (block-level)
linear precoding schemes, e.g., (regularized) zero-forcing or
minimum mean square error, the nonlinear-precoded signal u
might not be explicitly decomposed as a linear combination
of distinct users’ signatures (i.e., precoding vectors). Instead,
the optimal transmit signal u is obtained as a result of an
objective-oriented precoding design on a symbol-by-symbol
basis. Under the above assumptions, the baseband represen-
tation of the received signal at the receiver of the kth user is
given by

rk = hku + zk, k = 1, ...,K, (1)

where zk denotes the additive circularly symmetric complex
Gaussian noise with distribution zk ∼ CN (0, σ2

k). At the
receiver side, the kth user may use the conventional optimal
single-user detector based on a maximum-likelihood (ML) de-
cision rule to detect its intended symbol sk, i.e., the structure
of the receiver is independent of the precoder design.

While it is assumed that all the users have perfect knowl-
edge of their own channels, the transmitter normally has inac-
curate CSI due to several reasons such as imperfect channel
estimation, limited (or delayed) feedback and quantization
errors. By adopting a perturbation-based uncertainty model,
the actual channel of user k can be expressed as

hk = ĥk + ek, k = 1, ...,K, (2)

where ĥk ∈ C1×N is the erroneous channel of user k and
ek ∈ C1×N represents the additive CSI error, while only ĥk
is assumed to be known to the transmitter. The actual channel
hk, the estimate channel ĥk, and the CSI error vector ek are
assumed to be mutually uncorrelated for all k = 1, ...,K. We
consider a stochastic uncertainty model according to which
the channel error vectors are distributed as ek ∼ CN (0, ξ2

k I)
for all k = 1, ...,K, where ξ2

k denotes the variance of the CSI

error and is assumed to be available at the transmitter. Note
that the available channel ĥk can be viewed as the estimated
channel resulting from an imperfect estimation process, while
ek captures the Gaussian estimation error. In general, the error
variance ξ2

k depends on the quality of the estimated channel
and the imperfections in the estimation process. The stochastic
error model specifically corresponds to time-division duplex
systems, where the transmitter exploits the estimated uplink
channel for the downlink precoding [21]. It is worth noting
that the uncertainty model (2) may also appear in a different
scenario with statistical CSI where the channel statistics are
assumed to be (partially) known at the transmitter, e.g., either
the channel’s mean or covariance (or both) is (are) available;
see, e.g., [20], [32], [33]. In such a case, one may model the
statistical CSI as hk ∼ CN (ĥk, ξ

2
k I), which ultimately leads

to similar results.
From now on, it is more convenient to use equivalent real-

valued notations instead of the complex-valued ones, i.e.,

ũ =

[
Re(u)
Im(u)

]
∈ R2N×1, sk =

[
Re(sk)
Im(sk)

]
∈ R2, k = 1, ...,K.

Furthermore, by defining the operator

T(x) ,

[
Re(x) −Im(x)
Im(x) Re(x)

]
,

for any given complex vector x, we denote

Hk = T(hk), Ĥk = T(ĥk), Ek = T(ek), k = 1, ...,K,

where all the above defined matrices belong to R2×2N . From
the newly introduced notations, it is immediately apparent that

Hk = Ĥk + Ek, k = 1, ...,K. (3)

and

Hkũ =

[
Re(hku)
Im(hku)

]
. (4)

Note also that Ek(j, :) ∼ N (0, 1
2ξ

2
k I), k = 1, ...,K, j = 1, 2,

where Ek(j, :) refers to the jth row of Ek. In the rest of this
paper, we unify the norm notations such that ‖·‖ denotes either
the Frobenius norm of a matrix or the Euclidean norm of a
vector. In addition, for each user k = 1, ...,K, by “received
signal” we mean the noise-free received signal, i.e., Hkũ.

III. SINR-CONSTRAINED SLP POWER MINIMIZATION

A crucial design consideration for SLP is to accommodate
the received signal of each user k into a pre-specified re-
gion, called constructive interference (CI) region, correspond-
ing to the intended symbol sk. The CI regions, which are
modulation-specific regions, have been defined in several ways
in the literature; see, e.g., [8], [28], [31]. As mentioned earlier,
we focus on the so-called distance-preserving CI regions [31],
which are defined in a generic form that is applicable to any
given (two-dimensional) modulation scheme.

In order to design the symbol-level precoder, we are partic-
ularly interested in an SINR-constrained power minimization
problem. Let us, for the moment, assume that the downlink
channels are perfectly known to the transmitter, i.e., Ĥk = Hk

for all k = 1, ...,K. In this perfect CSI case, it has been shown
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in [34] that the design problem of interest can be expressed
as

P1 : minimize
ũ

ũT ũ

s.t. AkHkũ ≥ σk
√
γk Aksk, k = 1, ...,K,

(5)
where AkHkũ ≥ σk

√
γk Aksk refers to the CI constraint

for the kth user. Further, Ak ∈ R2×2 describes the distance-
preserving region associated with sk (notice that each symbol
sk corresponds to a constellation point), and γk denotes the
given SINR requirement of user k. Note that each matrix
Ak contains the normal vectors of the two ML decision
boundaries of symbol sk. More details on the formulation of
distance-preserving CI regions as in (5) can be found in [34],
[35].

The SLP design formulation in (5) aims to minimize the
total (per-symbol) transmit power while satisfying certain CI
constraints and given target SINRs γk for all K users. In
the presentation of the design problem P1, it is assumed that
all the users’ channels are perfectly known to the transmitter.
However, with imperfect CSI, the design constraints are no
longer guaranteed by the optimal solution of P1. To be
more specific, in case Ĥk 6= Hk, the region described by
AkĤkũ ≥ σk

√
γk Aksk is a distorted version of the accurate

CI region. Consequently, a received signal Hkũ is no longer
guaranteed to lie within the desired CI region, which may
cause severe performance degradation. Further to this error-
induced distortion of the CI regions, the users might not be
provided with the minimum required SINRs given by the
target values γk, k = 1, ...,K. Therefore, having a robust
formulation for the symbol-level precoding design problem
is essential in order to ensure the CI constraints as well as the
minimum SINR requirements of the users in any realizable
case of the statistically known CSI. To this end, one first needs
to properly reformulate the CI constraints in accordance with
the uncertainty model.

IV. STOCHASTIC ROBUST CI FORMULATION

We start off by restating the accurate CI constraint to be
met for user k, i.e.,

AkHkũ ≥ σk
√
γkAksk, k = 1, ...,K,

By substituting (3) for Hk, we have

AkĤkũ ≥ σk
√
γkAksk −AkEkũ, k = 1, ...,K. (6)

A stochastic robust CI constraint must satisfy (6) with a
certain probability for any possible realization of the CSI
error Ek within the uncertainty region. Assuming statistically
known CSI errors, the CI constraint in (6) turns into an
uncertain inequality with the uncertainty arising from the
stochastic CSI error Ek. Although the feasible set of this
uncertain inequality is always convex, the major difficulty is
to efficiently check whether this convex constraint is satisfied
at a given point, which is highly computationally demanding.
In such a case, the (deterministic) constraint in (6) can be
reformulated as a probabilistic constraint (commonly known
as chance constraint). The chance constraint then implies that

the kth user will experience the event of CI failure only with
a constrained small probability, i.e.,

P
{

AkĤkũ � σk
√
γkAksk −AkEkũ

}
< υ, (7)

which can be equally expressed as

P
{

AkĤkũ ≥ σk
√
γkAksk −AkEkũ

}
≥ 1− υ, (8)

where υ ∈ (0, 1/2] denotes the violation probability threshold
which is a system design parameter controlling the desired
level of conservatism. Remark that the SINR requirement γk
translates to an achievable target rate of Rk = log2(1 + γk),
under ergodic conditions on the channel [36]. Therefore, the
constraint (8) can also be read as a rate-outage probability
constraint, ensuring that the transmission rate Rk is achievable
for the kth user with probability (at least) 1− υ. For the sake
of notation, we denote the stochastic uncertain component of
the CI constraint by

qk , AkEkũ = (ũT ⊗Ak) vec(Ek), (9)

which can be simply verified using the well-known property
vec(XYW) = (WT ⊗ X) vec(Y), for any given matrices
X,Y,W with appropriate dimensions, along with the fact
that AkEkũ = vec(AkEkũ). Let Ak = [ak,1,ak,2]T , then
using (9), we can write

qk =

[
(ũT ⊗ aTk,1) vec(Ek)

(ũT ⊗ aTk,2) vec(Ek)

]
,

[
qk,1
qk,2

]
, (10)

from which is clear that qk is a bivariate (correlated) Gaussian
random variable. We further denote the certain part of the CI
inequality (6) by

wk(ũ) , σk
√
γkAksk −AkĤkũ, (11)

which is affine in ũ, where wk(ũ) = [wk,1, wk,2]T . Using the
new notations, the chance constraint (8) can then be written,
in a simpler form, as

P {qk ≥ wk(ũ)} ≥ 1− υ, k = 1, ...,K. (12)

The constraints in (12) belong to chance-constrained vector
inequalities, which are generally known to be computationally
intractable [26], as we will also see later. In what follows,
the goal is to derive equivalent deterministic expressions for
(12). For this purpose, we first need to study the statistical
properties of the uncertain vector qk.

We begin with the Gaussian error vector vec(Ek) of which
the mean and the covariance matrix are respectively given by
E{vec(Ek)} = 0 and

E
{

vec(Ek)vec(Ek)T
}

=
1

2
ξ2
k

[
I2N J
JT I2N

]
, (13)

where

J = IN ⊗ J2, J2 ,

[
0 1
−1 0

]
.

From (9), it is straightforward to show that qk is a (possibly
correlated) Gaussian random vector with mean

E{qk} =
(
ũT ⊗Ak

)
E {vec(Ek)} = 0, (14)
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and covariance

Ck = E{qkqTk }
(a)
= (ũT ⊗Ak) E

{
vec(Ek)vec(Ek)T

}
(ũ⊗AT

k )

(b)
=

1

2
ξ2
k

(
ũT ũ⊗AkA

T
k

)
=

1

2
ξ2
k ‖ũ‖2 AkA

T
k ,

(15)

where the equality (a) can be verified using the property (X⊗
Y)T = (XT ⊗YT ), for any given matrices X,Y,W,Z, and
the equality (b) has been verified in Appendix A.
Remark 1. Using the fact that qk has a symmetric distribution
around zero, it is trivial to verify that the chance constraint
(12) is feasible for every υ ∈ (0, 1/2] if and only if (iff)
we have E{qk} ≥ wk(ũ). Therefore, under the assumption
υ ∈ (0, 1/2], a necessary and sufficient condition for (12) to
have a nonempty feasible region is wk(ũ) ≤ 0. For every k ∈
{1, ...,K}, this condition must be considered as a constraint in
the formulation of the robust precoding optimization problem.

Using the first two moments of qk, the probability in (12)
can be precisely evaluated as the integral of the joint Gaussian
probability distribution of qk,1 and qk,2, i.e.,

P{qk ≥ wk(ũ)} = P {qk,1 ≥ wk,1, qk,2 ≥ wk,2}

=

∞∫
wk,2

∞∫
wk,1

1

2π
√
|Ck|

exp

{
−1

2
qTkC−1

k qk

}
dqk,1dqk,2.

(16)
However, no explicit closed-form expression is known for the
integral in (16). It becomes even more challenging to imply
the constraint (16) in the precoding optimization problem. In
order to resolve the difficulty of finding a tractable (convex)
expression for (16), a straightforward approach is to eliminate
the (possible) correlation between the entries of qk through
applying a whitening transform. In this regard, the optimal
whitening matrix (in the sense of minimum mean-square error)
is shown in [37] to be

C
−1/2
k =

√
2

ξk ‖ũ‖
(AkA

T
k )−1/2, (17)

where (·)−1/2 denotes the inverse square root. It is worthwhile
to mention that in [34], the 2×2 matrix AkA

T
k is proven to be

always non-singular, and thus, Ck is positive definite and has
a unique (invertible) square root. As a result, the probability
expression in (16) can be equally written as

P {qk ≥ wk(ũ)} = P
{

C
1/2
k C

−1/2
k qk ≥ wk(ũ)

}
= P

{
q̄k ≥ C

−1/2
k wk(ũ)

}
= P {q̄k ≥ w̄k(ũ)} ,

(18)

where q̄k , C
−1/2
k qk and w̄k(ũ) , C

−1/2
k wk(ũ). It can

immediately be seen that q̄k is an uncorrelated zero-mean
Gaussian random vector with unit diagonal covariance matrix,
i.e.,

C̄k , E
{
q̄kq̄

T
k

}
= E

{
C
−1/2
k qkq

T
kC
−1/2
k

}
= C

−1/2
k E

{
qkq

T
k

}
C
−1/2
k

= C
−1/2
k CkC

−1/2
k = I.

(19)

Consequently, the chance constraint (12) is equivalent to

P {q̄k ≥ w̄k(ũ)} ≥ 1− υ, (20)

with q̄k ∼ N (0, I). This probability may appear to be
easily handled as it can be expressed by the product of
two (complementary) error functions. In the context of con-
vex optimization, however, we essentially need to reach a
convex representation for (20). This could be in general an
intricate task since the joint probability in (20) does not
admit a tractable convex expression. An alternative approach
to tackle this intractability is to replace (20) with its safe
tractable approximation, resulting in an efficiently computable
convex constraint. Such an approximation lies within the
literature of robust optimization techniques [26], [27]. The
term safe is used here in the sense that the feasible points
of the safe approximation must be necessarily feasible also
for (20). Therefore, in what follows the goal is to propose
computationally tractable (but possibly not equivalent) convex
approximations implying the CI chance constraint (20).
Remark 2. Similar to Remark 1, since q̄k is symmetrically
distributed around zero, the chance constraint (20) is feasible
for υ ∈ (0, 1/2] iff E{q̄k} ≥ w̄k(ũ), or equivalently iff
w̄k(ũ) ≤ 0. For practical modulation schemes, however, using
the definition of w̄k(ũ), one can verify that the condition
wk(ũ) ≤ 0 is also sufficient to have w̄k(ũ) ≤ 0; see [34].

A. Proposed Safe Approximation I

One may simply exploit the fact that the two random entries
of q̄k are uncorrelated, hence independent. Consequently,
denoting q̄k = [q̄k,1, q̄k,2]T and w̄k(ũ) = [w̄k,1, w̄k,2]T , by
using the Gaussian cumulative distribution function, the joint
probability in (20) can be separated as

P {q̄k ≥ w̄k(ũ)} = P {q̄k,1 ≥ w̄k,1} P {q̄k,2 ≥ w̄k,2}

=
1

2
erfc

(
w̄k,1√

2

)
× 1

2
erfc

(
w̄k,2√

2

)
,

(21)

where erfc(·) is the complementary error function defined by
erfc(z) , 2√

π

∫∞
z
e−t

2

dt. Due to the decreasing monotonicity
of the complementary error function, the desired probability
is always bounded from below by

P {q̄k ≥ w̄k(ũ)} ≥ 1

4
erfc2

(
max{w̄k,1, w̄k,2}√

2

)
. (22)

Using (22), in order to imply the chance constraint (20), it is
sufficient to consider the deterministic constraint

1

4
erfc2

(
max{w̄k,1, w̄k,2}√

2

)
≥ 1− υ, (23)

which can be written as

−max [w̄k(ũ)] ≤ ρ(υ), (24)

where ρ(υ) , −
√

2 erfc−1
(
2
√

1− υ
)

with erfc−1(·) denoting
the inverse complementary error function, and max[·] denotes
the elementwise maximum. It can be verified that the elemen-
twise maximum of affine functions in (24) is convex; see [38,
p. 80]. Therefore, replacing w̄k(ũ), the conservative robust
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approximation (24) can be rewritten in the form of a convex
second-order cone (SOC) constraint as

A1 : ‖ũ‖ ≤ −
√

2

ρ(υ) ξk
max

[
(AkA

T
k )−1/2wk(ũ)

]
, (25)

It should be remarked that, in general, the feasible region of
A1 is a convex subset of that of (20). Therefore, the convex
approximation A1 may not exactly imply the desired chance
constraint (20), but any feasible solution to (25) is guaranteed
to be feasible also for (20).

B. Proposed Safe Approximation II

Our subsequent derivation of a second safe tractable ap-
proximation for (20) is essentially based on the well-known
Schur complement lemma and the following theorem [26, Th.
4.1].

Lemma 1. (Schur complement) Let W be a symmetric matrix
given by

W =

[
X Y

YT Z

]
. (26)

Then, W � 0 if and only if X � 0 and ∆X � 0, where
∆X = Z−YTX−1Y is the Schur complement of X in W.

Theorem 2. Let Σ0,Σ1, ...,ΣL be diagonal n× n matrices
with Σ0 � 0, and ζ1, ..., ζL be mutually independent random
variables where ζl ∼ N (0, 1),∀l ∈ {1, ..., L}. Then, the
semidefinite constraint

Arw (Σ0,Σ1, ...,ΣL) � 0,

implies, for every υ ∈ (0, 1/2], that

P

{
−ψ(υ)Σ0 �

L∑
l=1

ζlΣl � ψ(υ)Σ0

}
≥ 1− υ,

with ψ(υ) = erfc−1
(
υ
2n

)
, where

Arw (Σ0,Σ1, ...,ΣL) ,


Σ0 Σ1 Σ2 · · · ΣL

Σ1 Σ0 0 · · · 0
Σ2 0 Σ0 · · · 0

...
...

...
. . .

...
ΣL 0 0 · · · Σ0

 .
We recall that our goal here is to find a tractable sufficient

(convex) condition for the CI inequality in (20) to be satisfied
with probability at least 1− υ. The inequality of interest, i.e.,
q̄k ≥ w̄k(ũ), can be equivalently expressed by a linear matrix
inequality (LMI) as

ψ(υ)Σ0,k + q̄k,1Σ1 + q̄k,2Σ2 � 0, (27)

Σ0,k,
1

ψ(υ)

[
−w̄k,1 0

0 −w̄k,2

]
,Σ1,

[
1 0
0 0

]
,Σ2,

[
0 0
0 1

]
,

Since q̄k,1 and q̄k,2 are both symmetric in distribution and
the violation probability υ is (typically) small, a sufficient
condition for

P {ψ(υ)Σ0,k + q̄k,1Σ1 + q̄k,2Σ2 � 0} ≥ 1− υ, (28)

is also sufficient for

P {−ψ(υ)Σ0,k � q̄k,1Σ1 + q̄k,2Σ2 � ψ(υ)Σ0,k} ≥ 1− υ.
(29)

By a direct application of Theorem 2 with n = 2 and L = 2,
it follows that the chance constraint (29) is met if

Arw(Σ0,k,Σ1,Σ2) � 0, (30)

holds true with ψ(υ) = erfc−1
(
υ
4

)
. Notice that a necessary

condition for Theorem 2 to be valid is Σ0,k � 0. The
matrix Arw(Σ0,k,Σ1,Σ2) is symmetric, and further, can be
partitioned as required in (26). As a result, using Lemma 1
with X = Σ0,k and W = Arw(Σ0,k,Σ1,Σ2), it can be
immediately verified that the following implication holds:

Arw(Σ0,k,Σ1,Σ2) � 0 =⇒ Σ0,k � 0. (31)

Therefore, the safe convex constraint (30) sufficiently implies
our desired chance constraint in (29). Finally, by replacing
Σ0,k, Σ1 and Σ2 in (30), the safe convex approximation is
obtained as the semidefinite constraint

− w̄k,1

ψ(υ) 0 1 0 0 0

0 − w̄k,2

ψ(υ) 0 0 0 1

1 0 − w̄k,1

ψ(υ) 0 0 0

0 0 0 − w̄k,2

ψ(υ) 0 0

0 0 0 0 − w̄k,1

ψ(υ) 0

0 1 0 0 0 − w̄k,2

ψ(υ)


� 0. (32)

It is routine to check that the LMI in (32) is not convex in the
given form with respect to ũ. Nevertheless, it has been shown
in Appendix B that, using the implication wk ≤ 0 provided
in Remark 1, it is possible to recast the semidefinite constraint
(32) as an equivalent SOC constraint given by

A2 : ‖ũ‖1 ≤ −
√

2

ψ(υ) ξk
(AkA

T
k )−1/2wk(ũ), (33)

which is indeed convex in ũ, and can efficiently be handled
by standard convex optimization tools [38].

C. Sphere Bounding Method (Benchmark)

In order to gain some insight into the proposed safe convex
approximation A2, and further for comparison purposes, we
also formulate a benchmark approximation based on the so-
called sphere bounding method. The idea (in some sense) is
borrowed from the worst-case robust design approach. More
specifically, the goal is basically to find a bounded uncertainty
set to which the stochastically uncertain component in (20)
belongs with a certain probability; subsequently, the worst-
case approach can be applied. The following lemma from [25]
helps us to proceed with the formulation.

Lemma 3. Let S ⊂ Rn be an arbitrary set with the property
f(x) ≥ 0,∀x ∈ S , where f(·) is in general a vector-valued
function. Then, for a given y ∈ Rn, the restriction

P {f(y) ≥ 0} ≥ 1− υ,

is implied sufficiently by satisfying P {y ∈ S} ≥ 1− υ.

In order to imply the chance constraint (20), one may use
the implication provided by Lemma 3 to obtain a (preferably)
tight convex restriction, as long as the resulting constraint is
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efficiently computable. This requires to properly choose the
set S ⊆ R2 in such a way that the condition

f(q̄k) ≥ 0, f(q̄k) , q̄k − w̄k(ũ), (34)

is met for all q̄k ∈ S , while satisfying P {q̄k ∈ S} ≥ 1 − υ.
We recall that q̄k ∼ N (0, I), and that q̄k has a symmetric
distribution. Thus, the condition (34) can be equally expressed
as

f(q̄k) ≤ 0, f(q̄k) , q̄k + w̄k(ũ). (35)

A common (convex) choice for the set S to reach a compu-
tationally tractable formulation is the ball represented by

S ,
{
x ∈ R2 : ‖x‖ ≤ α(υ)

}
, (36)

with a radius of
α(υ) =

√
Φ−1

2 (1− υ) ,

where Φ−1
n (·) is the inverse cumulative distribution function

of the central Chi-square random variable with n degrees of
freedom. It is then straightforward to verify that

P {q̄k ∈ S} = 1− υ, (37)

from which it can be presumed that q̄k is norm-bounded by
α(υ) with a probability of 1− υ. As a result,

α(υ)1 + w̄k(ũ) ≤ 0, (38)

implies that (35) holds true for all q̄k ∈ S. Finally, the worst-
case robust approximation (38) can be expressed by an SOC
constraint as

B : ‖ũ‖1 ≤ −
√

2

α(υ) ξk
(AkA

T
k )−1/2wk(ũ). (39)

In particular, the convex approximationR is able to control the
radius α(υ) according to the tolerable violation probability. It
can immediately be inferred by comparing (33) and (39) that
A2 resembles the sphere bounding based approximation B
in form. Based on this resemblance, the safe approximation
method for υ ∈ (0, 1/2] can be treated as defining the convex
set S as a ball with a radius different from α(υ), therefore
with a different level of conservatism. In the next subsection,
we compare the tightness of the proposed approximations with
respect to the sphere bounding approach.

D. Relative Tightness Comparison

Up until this point, we have derived deterministic tractable
convex approximations that, though not exactly, sufficiently
ensure the satisfaction of the robust CI constraint of interest.
This tractability led us to sacrifice tightness with respect to
the originally intractable chance constraint (20). It is therefore
desirable to find the formulation provides the tightest approx-
imation among all the other ones.

Having rather similar conic representations for the three
stochastic robust CI constraints, which are summarized in
Table I, enables us to compare the relative tightness of the
derived convex approximations. Here, we specifically define
the relative tightness from the transmit power point of view
according to which a convex approximation is a tighter one
if it admits lower optimal transmit powers ‖ũ‖2. We use

TABLE I
SUMMARY OF THE PROPOSED ROBUST CI FORMULATIONS.

Method Robust CI constraint (k = 1, ...,K)

Safe Approx. I A1 : ‖ũ‖ ≤ −
√
2

ρ(υ) ξk
max

[
(AkA

T
k )−1/2wk(ũ)

]
with ρ(υ) = −

√
2 erfc−1

(
2
√

1− υ
)

Safe Approx. II A2 : ‖ũ‖1 ≤ −
√
2

ψ(υ) ξk
(AkA

T
k )−1/2wk(ũ)

with ψ(υ) = erfc−1
(
υ
4

)
Sphere Bounding B : ‖ũ‖1 ≤ −

√
2

α(υ) ξk
(AkA

T
k )−1/2wk(ũ)

with α(υ) =
√

Φ−1
2 (1− υ)

the following two lemmas in the sequel. The proofs are
straightforward.

Lemma 4. Let ũ∗ be feasible to

‖ũ‖1 ≤ −
√

2

β ξk
(AkA

T
k )−1/2wk(ũ), (40)

with β > 0, and satisfy w̄k(ũ∗) ≤ 0 as a necessary condition.
Then, it is implied that

‖ũ∗‖ ≤ −
√

2

β ξk
max

[
(AkA

T
k )−1/2wk(ũ∗)

]
(41)

where max[ · ] is the entrywise maximum of an input vector.

Lemma 5. Consider the constraint

‖ũ‖ ≤ −
√

2

β ξk
max

[
(AkA

T
k )−1/2wk(ũ)

]
. (42)

where β > 0. Let ũ∗ be feasible to (42) with β = β1 > 0,
then for any β1 ≥ β2 > 0, the following chain of inequalities
holds:

‖ũ∗‖ ≤ −
√

2

β1 ξk
max

[
(AkA

T
k )−1/2wk(ũ∗)

]
≤ −
√

2

β2 ξk
max

[
(AkA

T
k )−1/2wk(ũ∗)

]
,

(43)

which implies that ũ∗ is feasible to (42) with β = β2.

It follows immediately from Lemma 4 and Lemma 5 that
a relative comparison of the convex approximations A1, A2
and B reduces to just comparing ρ(υ), ψ(υ) and α(υ). These
three functions, however, depend on the violation probability
υ, as depicted in Fig. 1 for υ ∈ (0, 1/2]. It can be observed
from Fig. 1 that for small values of υ below ∼ 0.12, which is
of high practical interest, we have ψ(υ) ≤ ρ(υ) ≤ α(υ). This
means that a feasible solution to B is also feasible for A1 and
A2, i.e., the optimal transmit power ‖ũ∗‖2 obtained from A1
and A2 is no larger than that obtained from B. Therefore, the
robust convex approximations A1 and A2 are tighter (hence
less conservative) than our benchmark B. In a more precise
order,

FB ⊆ FA1 ⊆ FA2, (44)

where F(·) denotes the feasible region. It also follows from
(44) that A2 is tighter than A1 in this range of υ, i.e., under
strict robustness settings. On the other hand, for higher values
of υ up to 1/2, which can be regarded as relaxed robustness
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Fig. 1. Plot of ρ(υ), α(υ) and ψ(υ) as a function of the violation probability.

conditions (but of course might be of less importance in a real
system), we have ρ(υ) ≤ ψ(υ) ≤ α(υ). This implies that A1
provides a tighter convex approximation than A2 in the high
violation probability regime, but still A2 is tighter than the
benchmark approximation.

V. ROBUST SLP OPTIMIZATION PROBLEM

We formulate robust optimization problems for the power
minimizing symbol-level precoder using the proposed robust
implications of the CI constraints obtained in the previous
section. First, recall the original (non-robust) formulation of
the SLP design problem in (5). By introducing a slack variable
p ≥ 0, it is further possible to recast (5) as

P1 : minimize
ũ,p≥0

p

s.t. AkHkũ ≥ σk
√
γk Aksk, k = 1, ...,K,

ũT ũ ≤ p,
(45)

which is a more convenient form for the subsequent compu-
tational complexity discussion in this section.

On the other hand, the robust counterpart of P1 can simply
be expressed by replacing the actual CI constraints with any of
the robust constraints A1, A2, or B for all the users, i.e., all K
CI constraints must be implied through same type of convex
restrictions. For instance, by adopting safe approximations of
type A2, the resulting stochastic robust design formulation can
be expressed as

P2 : minimize
ũ,p≥0

p

s.t. ‖ũ‖1 ≤ −
√

2

ψ(υ) ξk
(AkA

T
k )−1/2wk(ũ),

wk(ũ) ≤ 0,

ũT ũ ≤ p,
(46)

The robust constraints A1, A2 and B, as summarized in Table
I, can all be represented as second-order cone (SOC) con-
straints. Therefore, the robust optimization problem P2 can
be classified as a second-order cone programming (SOCP).
It is, however, important to notice that while the non-robust
formulation P1 is always feasible, its robust counterpart P2
may not share this property. To be more specific, there would
be situations (e.g., with extremely small υ or large ξ2

k) in
which the robust CI constraints cannot all be satisfied with
a finite transmit power p, meaning that the robust design is
practically infeasible. In such cases, the intersection of all K
robust CI constraints would be an empty set.

Computational Complexity Analysis: We evaluate the com-
putational complexity of the proposed robust design formu-
lations based on the worst-case complexity analysis provided
in [39], and compare the results with those of the original
non-robust formulation. All the stochastic robust formulations
are presented as SOCPs, which can efficiently be solved via
interior-point methods. In general, the arithmetic complexity
of a generic interior-point method entails the Newton com-
plexity as well as per-iteration computation cost. The Newton
complexity basically refers to the number of steps required
to reduce the duality gap by a constant factor, while the per-
iteration complexity involves finding a new search direction at
each step, and is subsequently dominated by the computation
effort to assemble and solve a linear system of equations. In
particular, we briefly overview the complexity bound for an
SOCP given in a generic form containing linear and (conic)
quadratic constraints, to reach an ε-solution (i.e., an ε-optimal
feasible solution) via a generic interior-point method.

For the second-order cone program

minimize
x

cT0 x

s.t. ‖Fix + bi‖ ≤ fTi x + gi, i = 1, ...,m,

cTj x ≤ dj , j = 1, ..., l,

(47)

where Fi ∈ Rni×n,bi ∈ Rni , fi ∈ Rn, gi ∈ R for all
i = 0, 1, ...,m, and cj ∈ Rn, dj ∈ R for j = 1, ..., l, the
complexity bound of an ε-solution is of order

C(P, ε) = n
√
l + 2m

(
n2 + l(n+ 1) +

m∑
i=1

n2
i

)
O(1).

(48)
In the SOCP formulation (47), n can be read as the total

number of optimization variables, and ni determines the size
of the ith cone constraint, which is related to the dimension
of the ith second-order cone, for all i = 1, ...,m. Notice
that this generic form of SOCP encompasses also the non-
robust formulation in (45). Based on the above analysis, we
are able to analyze the complexity of the robust SOCP design
formulation (46), and compare it to that of its non-robust
counterpart in (45). We also remark that

i. There are two real-valued second-order cone constraints
associated with each user.

ii. The slack variables p in (46) can be merged into the
vector ũ, increasing the ith cone’s dimension by one for
all i = 1, ...,m.
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TABLE II
COMPLEXITY COMPARISON OF THE NON-ROBUST AND THE PROPOSED ROBUST DESIGN APPROACHES.

Design problem Complexity order
[
× ln( 1

ε
)
]

Dominating term [as N,K →∞]

P1 2
√

2K + 2 .O
(
(2N + 1)3 + 2K(N + 1)(2N + 1)

) √
K .O

(
N3
)

ln( 1
ε
)

P2 2
√

6K + 2 .O
(
(K + 1)(2N + 1)3 + 2K(2N + 1)(N + 1)

)
K
√
K .O

(
N3
)

ln( 1
ε
)

Accordingly, for all design problems, the number of variables
is equal to 2N+1. The non-robust formulation (45) has 2K+1
linear inequalities plus one cone constraint of size 2N + 1,
while the robust design formulation (46) involves 2K conic
constraints of size 2N and one conic constraint of size 2N+1
which corresponds to the power constraint. In Table II, the
final complexity results obtained from (47) are reported, where
the dominating terms represent the largest complexity growth
rate as N,K →∞ under the assumption K ≤ N . It follows
from Table II that for both design problems, the proposed
robust formulations increase the computational complexity of
precoding design by an order of O(K), compared to that
of their non-robust counterpart. Nonetheless, the increase in
complexity is negligible for practical values of K.

VI. SIMULATION RESULTS

In this section, we present our simulation results to evaluate
the performance of the proposed robust SLP schemes, and
further to validate the analytic discussions provided in earlier
sections. The optimization problems have been solved using
MATLAB software and SeDuMi solver [40]. The following
setup is adopted in all the simulation scenarios. We con-
sider a downlink multiuser MISO system with N = 6 and
K = 4, employing an 8PSK modulation scheme with uncoded
transmission. For all the users k = 1, ...,K, we assume unit
noise variances σ2

k , σ2 = 1 and equal SINR requirements
γk , γ. The erroneous channel vectors {ĥk}Kk=1 are randomly
generated according to a zero-mean unit variance circularly
symmetric complex Gaussian distribution, where the channels
of any two distinct users are uncorrelated, i.e., E{ĥHk ĥj} =
0,∀k, j = 1, ...,K, k 6= j. We consider identical uncertainty
regions for all the channels, i.e., ξ2

k , ξ2, k = 1, ...,K. All
the presented simulation results have been averaged over 500
fading block realizations, each of 500 symbols. We evaluate
the performance of the symbol-level precoded downlink trans-
mission under stochastically known CSI errors through various
measures. The SLP approaches with robust CI constraints
“safe approximation I”, “safe approximation II”, and “sphere
bounding” are referred to as SA1-SLP, SA2-SLP and SB-SLP,
respectively.

In Fig. 2, a scatter plot of the noise-free received signals
is shown for the non-robust and robust SLP schemes. The
average transmission powers for the non-robust SLP scheme
with erroneous CSI and the robust SA2-SLP approach are
13.22 dBW and 15.08 dBW, respectively. It can be observed
from the figure that this ∼ 2 dBW extra power is consumed to
satisfy the CI constraints with the given violation probability,
thereby providing more safety to the subsequent additive
Gaussian noise. The cloud of received signals corresponding

Fig. 2. Scatter plot of the noise-free received signals for 1000 trials with a
fixed channel, γ = 10 dB, ξ2 = 0.005 and υ = 0.05.

to the non-robust SLP scheme, however, shows deviations
from the intended symbols towards the corresponding ML
decision boundaries, which may result in a higher symbol
error probability (as we will see later in this section). Fur-
thermore, the non-robust scheme may fail to satisfy the users’
SINR requirements. This issue is depicted in Fig. 3 and Fig.
4, where we respectively plot the average per-user received
SINR versus target SINR and the average received SINR for
each user at a target value of γ = 15 dB. Given Hk, we define
the received SINR of the kth user for the SLP scheme with
perfect CSI, the non-robust SLP with imperfect CSI and the
stochastic robust SLP, respectively, as

SINRk ,
Eũ

{
ũTHT

kHkũ
}

σ2
k

, (49)

SINRk ,
Eũ

{
ũTHT

kHkũ
}

σ2
k + Eũ,Ek

{
ũTET

kEkũ
} , (50)

and

SINRk , (1− υ)×
Eũ

{
ũTHT

kHkũ
}

σ2
k

+ υ ×
Eũ

{
ũTHT

kHkũ
}

σ2
k + Eũ,Ek

{
ũTET

kEkũ
} . (51)

where the expectations with respect to ũ and Ek are computed
numerically. The SINR quantities in (49), (50) and (51) are
then averaged over several realizations of Hk, resulting in
the values depicted in Fig. 3 and Fig. 4. We can see from
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Fig. 3. Average per-user received SINR versus target SINR with ξ2 = 0.005
and υ = 0.05.

Fig. 3 that the given target SINR is likely to not be met by
all the users, particularly at high SINR values, when using
the non-robust scheme. In fact, the separate bar plot of the
received SINR for each user in Fig. 4 shows that at γ = 15
dB, the SINR requirement has not been satisfied for none of
the users by employing the non-robust SLP method. On the
other hand, when employing either of the robust approaches,
the received SINR of each user is well above the target value.
This, however, means that the users are provided with higher
SINRs than the required value γ, which may not be efficient
in general. In a practical system design, one needs to reach a
compromise based on a specific power-performance tradeoff,
according to which the most efficient robust transmission
scheme is preferred. We will introduce such a tradeoff and
investigate the efficiencies of different approaches later in this
section.

In addition to the average received SINR, we are interested
in evaluating the probability with which the given target SINR
of each user is met. For this purpose, we define “outage event”
as a situation in which the minimum required SINR of a user
can not be guaranteed. Accordingly, we define the probability
of outage for user k as

Pout,k , P{SINRk < γ}. (52)

The probability of SINR outage can be equally translated to a
rate-outage probability, i.e., the probability that a given target
rate log2(1 + γ) is not achievable. This quantity is calculated
over many transmissions with different channel realizations
and plotted in Fig. 5 as a function of the target SINR γ
for the non-robust/robust SLP schemes under two different
scenarios with υ = 0.05, ξ2 = 0.005 and υ = 0.2, ξ2 = 0.01.
Note that Fig. 5 shows the average probability over all users,
i.e., P̄out , (1/K)

∑K
k=1 Pout,k. As it can be observed, the

outage probability increases with γ and ξ2. The increasing
behavior of Pout with respect to γ can be justified from the
definitions of SINRk in (50) and (51). A larger γ results in a

Fig. 4. Average received SINR for different SLP schemes with a target value
of γ = 15 dB, ξ2 = 0.005 and υ = 0.05.

Fig. 5. Probability of outage versus target SINR under two different settings
with ξ2 = 0.005, υ = 0.05 and ξ2 = 0.01, υ = 0.2.

higher transmission power, and subsequently, a greater deal of
uncertainty at the receiver side (note that Ekũ is the uncertain
component at the receiver of user k). It can be seen that the
conservative approach to satisfying the CI constraints taken
by the robust methods can lead to significant improvement in
the probability of outage compared to the non-robust scheme,
i.e., the given target SINR is more probably achievable when
employing a robust SLP scheme. Moreover, Fig. 5 shows
that each of the SA1-SLP and SA2-SLP methods provides
a lower probability of outage compared to the other under
different uncertainty settings, while the benchmark SB-SLP
approach achieves the lowest outage probability among all in
both scenarios.

The higher received SINR and the lower outage probability
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Fig. 6. Average transmission power versus target SINR in a scenario with
ξ2 = 0.005 and υ = 0.05.

Fig. 7. Energy efficiency comparison of different SLP schemes versus target
SINR with ξ2 = 0.005 and υ = 0.05.

provided by the robust SLP approaches are, however, results of
consuming larger amounts of power for downlink transmission
which is inevitable to achieve the desired level of robustness.
In Fig. 6, the average total transmit power is depicted versus
target SINR, where it is shown that the robust SLP approaches
require higher transmission powers than that of the non-robust
scheme. A common observation from Fig. 4-6 is that among
the robust SLP approaches, the more conservative method with
larger transmit power results in higher average received SINR
and a lower outage probability for each user.

In order to have a fair and meaningful comparison between
the non-robust and robust SLP schemes, we need a measure
that incorporates both received SINR and transmit power in
evaluating the downlink performance. Inspired by [41], we

Fig. 8. Average symbol error rate per user versus target SINR for two different
scenarios with ξ2 = 0.005, υ = 0.05 and ξ2 = 0.01, υ = 0.2.

define “energy efficiency” as the ratio between the expected
throughput and the average transmit power. Accordingly, the
energy efficiency for the kth user, denoted by ηk, is obtained
as

ηk ,
(1− Pout,k)R(γ)

‖ũ‖2
, (53)

where R(γ)=log2(1+γ) refers to the achievable transmission
rate corresponding to the target SINR γ. This quantity can be
interpreted as the amount of information bits per unit of energy
that can be reliably transmitted to each user in one channel
use. The average per-user energy efficiency, obtained as η̄ ,
(1/K)

∑K
k=1 ηk, is compared for different SLP schemes in

Fig. 7. The results show that the proposed robust SLP designs
SA1-SLP and SA2-SLP are more energy efficient than the
SLP scheme with imperfect CSI as well as the benchmark
SB-SLP method. Furthermore, the SA2-SLP design is slightly
more energy efficient than SA1-SLP for this particular choice
of υ, as it is suggested by our tightness analysis in Section
IV. We should, however, note that this superiority is obtained
in exchange for higher transmitter complexity, as discussed in
Section V.

We also plot in Fig. 8 the average per-user symbol error
probability obtained by different SLP schemes as a function
of SINR requirement γ. Having imperfect CSI, it can be seen
that the non-robust and robust methods both show an error
floor at high target SINRs. However, in the whole depicted
range of SINR, the robust SLP approaches have lower symbol
error rates compared to the non-robust scheme. Furthermore,
as it might be expected, increasing ξ2 and υ results in a
degraded symbol error rate for the users. In fact, the lower
symbol error rate achieved by the robust SLP methods is an
advantage of introducing the (robust) CI constraints into the
precoder optimization problem.

In order to evaluate the effect of the environment parameter
ξ2 on the performance of the symbol-level precoded downlink
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Fig. 9. Average transmission power as a function of uncertainty variance
with γ = 10 dB and υ = 0.05.

Fig. 10. Per-user energy efficiency as a function of uncertainty variance with
γ = 10 dB and υ = 0.05.

transmission, in Fig. 9 and Fig. 10, we respectively plot the
average transmit power and the energy efficiency versus ξ2 in
an inverse logarithmic scale. From Fig. 9, it can be inferred
that for large noise variances, i.e., more severe uncertainty
conditions, the robust SLP approaches consume relatively high
powers for transmission to ensure a certain level of robustness,
while the required transmit power tends to that of the case
with perfect CSI as ξ2 decreases. Fig. 10, on the other hand,
shows that the energy efficiency under imperfect CSI has an
inverse relation to ξ2, i.e., the smaller the noise variance is,
the more efficient the SLP scheme will be. This statement
is true for both non-robust and robust designs. Although the
non-robust scheme shows a superior energy efficiency for
large values of ξ2, the SA2-SLP design outperforms the non-

Fig. 11. Feasibility rate as a function of violation probability with γ = 10
dB and ξ2 = 0.01.

robust scheme for ξ2 < 0.025, i.e., 10 log10(1/ξ2) > 16 dB
in logarithmic scale. Indeed, all the robust approaches are
more energy efficient than the non-robust case for relatively
small values of the uncertainty variance, i.e., ξ2 < 0.005
corresponding to 10 log10(1/ξ2) > 23 dB.

It was previously mentioned in Section V that the robust
optimization problem P2 might be infeasible for some values
of the violation probability υ and the noise variance ξ2. In
particular, having υ → 0 and/or a relatively large value for
ξ2 (compared to the spectral norm of the overall channel
matrix, i.e., ‖H‖2) increases the probability of P2 being
infeasible. In a practical system, a higher rate of feasibility
may be reflected in higher service availability to the users. We
evaluate this issue through approximating the feasibility rate of
the robust SLP approaches over several channel/error/symbol
realizations, as shown in Fig. 11 as a function of υ. We can
see from the figure that both proposed robust SLP designs are
feasible, on average, above %99 of the time even for rather
small values of υ (i.e., higher levels of conservatism). Apart
from the robust design approach, this high feasibility rate
is one of the advantages of the symbol-level precoder over
conventional block-level techniques, which is mainly due to
higher available degrees of freedom in designing the precoder.

Finally, we compare our results with those obtained from
the robust block-level precoding scheme proposed in [22], re-
ferred to as “robust BLP”, which solves a convex semidefinite
programming (SDP) to minimize the average transmit power
for a given target SINR γ. It is important to note that the
robust BLP approach is barely feasible for large γ and ξ2

as well as small values of υ (as we will show in Fig. 15).
Therefore, in what follows, we present the results for some
limited scenarios with sufficiently small γ and ξ2 and large
enough υ. Furthermore, we average the results obtained form
the robust BLP scheme only over those realizations for which
the SDP optimization problem in [22] is feasible.
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Fig. 12. Scatter plot of the noise-free received signals for 1000 trials with a
fixed channel, γ = 5 dB, υ = 0.1 and ξ2 = 0.001.

The scatter plot of the noise-free received signals resulted
from the block-level and symbol-level precoding approaches
of interest is shown in Fig. 12 for a given target SINR of
γ = 5 dB. In this figure, the average transmit powers of the
robust BLP, non-robust SLP and robust SA2-SLP schemes are
equal to 8.16 dBW, 8.85 dBW and 11.14 dBW, respectively.
The centroids of the received signal clouds corresponding to
the robust BLP approach are farther away from the original
constellation points which is an expected result of conserva-
tive precoding design. This, in turn, increases the consumed
transmit power and accordingly reduces the energy efficiency
for high target SINR values, as we will see later.

In Fig. 13, we compare the energy efficiency of different
non-robust/robust precoding schemes as a function of the
target SINR γ. Using the robust BLP method, for given hk,
the received SINR of the kth user is given by

SINRk ,
tHk hHk hktk

σ2
k +

∑
j 6=k tHj hHk hktj

, (54)

where tk is the precoding vector that corresponds to user k.
It can be seen from Fig. 13 that the robust BLP scheme is
more energy efficient than all the robust SLP approaches at
low target SINRs up to ∼ 3 dB. Recall that the results are
averaged only over those realizations for which the robust
BLP is feasible, i.e., we do not take the infeasibility rate into
account in our performance comparisons. On the contrary, for
moderate-to-high SINR values, the proposed SLP approaches
outperform the robust BLP scheme. Notice also that the
optimization problem of the robust BLP scheme was infeasible
in all our trials with γ ≥ 14 dB. This in mainly due to the
fact that the robust BLP scheme requires an infinite transmit
power (i.e., the optimization problem is practically infeasible)
from a certain target SINR value on. However, the feasibility
of the proposed robust SLP approaches does not depend on γ.
Furthermore, the energy efficiency of the precoding schemes
of interest as a function of the violation probability is plotted

Fig. 13. Energy efficiency comparison of BLP and SLP schemes versus target
SINR with υ = 0.1 and ξ2 = 0.001.
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Fig. 14. Per-user energy efficiency as a function of violation probability with
γ = 5 dB and ξ2 = 0.001.

in Fig. 14, where it is shown that the proposed robust SLP
approaches outperform the robust BLP method for all values
of υ ∈ (0, 1/2] in the considered setting. It further follows
from Fig. 14 that the energy efficiency of the proposed robust
SLP approaches tend to that of the SLP scheme with perfect
CSI as υ increases.

The feasibility rates of the robust block-level and symbol-
level precoders are compared in Fig. 15 as a function of the
uncertainty variance ξ2 in an inverse logarithmic scale. As it
can be seen, both SA1-SLP and SA2-SLP methods are feasible
more than %93 of the time in the whole evaluated range of ξ2.
In particular, both our proposed robust approaches are %100
feasible for ξ2<0.015, or 10 log10(1/ξ2) > 18 dB. The robust
BLP scheme, on the other hand, is %50 or higher feasible only
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Fig. 15. Feasibility rate comparison of different robust precoding approaches
as a function of uncertainty variance with γ = 5 dB, υ = 0.1 and γ = 10
dB, υ = 0.05.

for ξ2 < 0.003, i.e, 10 log10(1/ξ2) > 25 dB, while it appears
to be barely feasible for uncertainty variances larger than 0.01.

It should be noted that the improved feasibility rate and
energy efficiency of an SLP scheme compared to a block-level
approach is obtained at the cost of per-symbol optimization
of the precoded signal, which may lead to higher transmitter
complexity. To have an illustrative comparison of complexity,
consider the robust BLP method in [22]. This method needs to
solve an optimization problem with SDP and SOC constraints
of dimension 2(2N + 1)(K + 1) and 4NK + 1, respectively.
Roughly speaking, the worst-case complexity of finding an ε-
optimal solution via a standard interior-point method is of
order O(K6N6) ln(1/ε), where such a solution has to be
obtained once the CSI is updated. On the other hand, the
arithmetic complexity of the proposed robust SLP approaches
have been shown to be O(K

√
KN3) ln(1/ε); see Table II. We

recall that the symbol-level precoded transmit signal needs to
be redesigned as many times as either the frame length or
the total number of possible symbol realizations for K users,
i.e., MK where M is the modulation order. Denoting by S the
number of information symbols per a single transmitted frame,
the overall (per CSI update) complexity of an SLP scheme
can be approximated as min{S,MK}.O(K

√
KN3) ln(1/ε).

Hence, a relative computation cost between the robust SLP
and BLP methods, in the limiting case, is given by the ratio
min{S,MK}/K4

√
KN3. In particular, for moderate number

of users and low-order modulation schemes, the computational
cost of a symbol-level precoder can be alleviated by an offline
optimization of the precoded signals and using a lookup table
for downlink transmission [8]. Moreover, it might be possible
to derive low-complexity (semi closed-form) solutions for the
robust SLP approaches, similar to those obtained in [42]–[44]
for the original SINR-constrained SLP power minimization
problem, which can be the topic of a future work.

VII. CONCLUSIONS AND FUTURE WORK

We addressed the robust design problem of symbol-level
precoded transmission scheme in a downlink MU-MISO sys-
tem under imperfect stochastic CSI knowledge at the transmit-
ter. We considered a QoS-constrained design criterion aimed
at minimizing the total instantaneous (per-symbol) transmit
power subject to constructive interference (CI) constraints as
well as given target SINRs. A probabilistic approach was
then adopted to imply the optimization constraints, which led
us to intractable expressions. We tackled this difficulty by
deriving two computationally tractable approximate convex
constraints with different levels of conservatism. A benchmark
approximation was also derived based on the sphere bounding
conservative method. Our analytical and simulation results
showed that both the proposed robust convex approximations
outperform the benchmark, while each of them is superior to
the other under different robustness settings. In comparison
with a conventional block-level robust scheme, the proposed
robust methods was shown to be more efficient at moderate-
to-high target SINR values. However, a more considerable
advantage of the proposed robust SLP approaches is their
higher feasibility rate for wide ranges of violation probability
and uncertainty variance, which is indifferent to the target
SINR. We also highlight from our complexity analysis that the
improved performances of the proposed robust SLP designs
come with an increased computational complexity by an order
of the number of users in the limiting case.

It would be an interesting problem to extend the current
results to a more general case, i.e., having inner points in the
constellation for which the distance preserving CI regions are
only the constellation points. In such a case, the CI chance
constraint corresponding to an inner constellation point will
always have an empty feasible region, so does the robust
SLP optimization problem. In order to generalize the current
approach to the case with multi-level modulation schemes, one
may define a relaxed CI region around an inner constellation
point, allowing the noise-free received signal to lie within the
relaxed region. This relaxation may affect the symbol error
rate performance at the receiver side, but on the other hand
may result in a lower transmission power. Therefore, one also
needs to carefully choose the amount of relaxation such that a
certain performance level is guaranteed. In general, this might
be rather challenging and the design approach may need to be
done analytically by taking the given system/user requirements
into account, which is beyond the scope of this paper and can
be considered as a future work.

APPENDIX A
PROOF OF EQUALITY (b) IN (15)

First, let Qk,E{vec(Ek)vec(Ek)T } denote the covariance
matrix of vec(Ek) as given in (13). It follows that

Qk =
1

2
ξ2
k

[
IN ⊗ I2 IN ⊗ J2

IN ⊗ JT2 IN ⊗ I2

]
, (55)
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where we have used the facts that (IN ⊗ J2)T = IN ⊗ JT2
and I2N = IN ⊗ I2. Now, the desired equality to be proven
can be written as

(ũT ⊗Ak) Qk(ũ⊗AT
k ) =

1

2
ξ2
k (ũT ⊗Ak)(ũ⊗AT

k ),

(56)
Using the property (ũT ⊗Ak)(ũ⊗AT

k ) = (ũT ũ)⊗(AkA
T
k ),

equivalently, it is desired that

(ũT ⊗Ak) Qk(ũ⊗AT
k ) =

1

2
ξ2
k ‖ũ‖2(AkA

T
k ), (57)

We proceed by focusing on the left-hand side of (57). Let
us denote (ũT ⊗ Ak)Qk(ũ ⊗ AT

k ) , G = [gij ]2×2 and
ũT = [uTR,u

T
I ], where uR = Re(u) and uI = Im(u). Thus,

considering Ak = [ak,1,ak,2]T , we have

G =
1

2
ξ2
k

[
uTR ⊗ aTk,1 uI ⊗ aTk,1
uTR ⊗ aTk,2 uI ⊗ aTk,2

]
×
[

IN ⊗ I2 IN ⊗ J2

IN ⊗ JT2 IN ⊗ I2

]
×
[
uR ⊗ ak,1 uR ⊗ ak,2
uI ⊗ ak,1 uI ⊗ ak,2

]
.

(58)
Foe the sake of simplicity, the term 1

2 ξ
2
k is omitted from the

next equation, but it will appear in the final derivation. The
matrix multiplication in the right-hand side of (58) can be
evaluated and simplified as

g11 =
(
uTRuR+uTI uI

)
aTk,1ak,1+2 uTRuI ⊗ aTk,1J2ak,1,

(59a)

g12 = g21 =
(
uTRuR + uTI uI

)
aTk,1ak,2

+ 2 uTRuI ⊗
(
aTk,1J2ak,2 + aTk,1J

T
2 ak,2

)
.

(59b)

g22 =
(
uTRuR+uTI uI

)
aTk,2ak,2+2 uTRuI ⊗ aTk,2J2ak,2,

(59c)

where in simplifications, we have frequently used the fact that
(X ⊗Y)(W ⊗ Z) = (XW ⊗YZ), for any given matrices
X,Y,W,Z with appropriate dimensions. It is easy to verify
that aTk,1J2ak,1 = aTk,1J

T
2 ak,1 = 0, and further aTk,1J2ak,2 +

aTk,1J
T
2 ak,2 = aTk,1(J2 + JT2 )ak,2 = 0. Moreover, it directly

follows from the definition of ũ that uTRuR + uTI uI = ũT ũ.
Applying all these notes to (59a)-(59c), the entries of G are
obtained as

g11 = ‖ũ‖2‖ak,1‖2, (60a)

g12 = g21 = ‖ũ‖2 aTk,1ak,2, (60b)

g22 = ‖ũ‖2‖ak,2‖2. (60c)

Merging the results in (60) yields

G =
1

2
ξ2
k ‖ũ‖2(AkA

T
k ), (61)

as required.

APPENDIX B
DERIVATION OF EQUIVALENT SOC FORMULATION FOR A2

The derivation is essentially based on Lemma 1. We denote

X ,

[
− w̄k,1

ψ(υ) 0

0 − w̄k,2

ψ(υ)

]
, Y ,

[
1 0 0 0
0 0 0 1

]
,

Z ,


− w̄k,1

ψ(υ) 0 0 0

0 − w̄k,2

ψ(υ) 0 0

0 0 − w̄k,1

ψ(υ) 0

0 0 0 − w̄k,2

ψ(υ)

 .
Accordingly, the constraint (32) can be equivalently implied
by the following two semidefinite restrictions:

X � 0, (62a)

Z−YTX−1Y � 0. (62b)

The second restriction in (62b), after doing the matrix products
and some simple algebra, can be written as
− w̄k,1

ψ(υ) + ψ(υ)
w̄k,1

0 0 0

0 − w̄k,1

ψ(υ) 0 0

0 0 − w̄k,2

ψ(υ) 0

0 0 0 − w̄k,2

ψ(υ) + ψ(υ)
w̄k,2

 � 0. (63)

from which it is clear that (62b) further implies the restriction
X � 0, hence it is necessary and sufficient for (32). We then
rearrange (63) in a more convenient form and decompose it
into two semidefinite constraints as

−1

ψ(υ)
Dw̄k

� 0, (64a)

−1

ψ(υ)
Dw̄k

+ ψ(υ) D−1
w̄k
� 0, (64b)

with Dw̄k
, diag(w̄k). It should be noticed that the restric-

tion (64a) is in fact equivalent to Dw̄k
� 0 or w̄k ≤ 0,

which is implied by the constraint wk ≤ 0; see Remark 1.
Further, note that erfc(·) is non-negative in the interval (0, 1],
so is ψ(υ). Now, multiplying both sides of (64b) by Dw̄k

, and
imposing the restriction (64a) which changes the direction of
the inequality, both of the constraints (64b) and (64a) can be
simultaneously expressed by

−1

ψ(υ)
D2

w̄k
+ ψ(υ) I � 0. (65)

Since Dw̄k
� 0 and diagonal, from (65) by taking square

root, we obtain
1

ψ(υ)
Dw̄k

+ I � 0, (66)

which can be written in the vector form as
−1

ψ(υ)
w̄k ≥ 1. (67)

Replacing w̄k with (
√

2/ξk‖ũ‖)(AkA
T
k )−1/2wk(ũ), it is

then routine to show that (67) is equivalent to

‖ũ‖1 ≤ −
√

2

ψ(υ) ξk
(AkA

T
k )−1/2wk(ũ), (68)
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