7 research outputs found

    Dynamic Consistency of Conditional Simple Temporal Networks via Mean Payoff Games: a Singly-Exponential Time DC-Checking

    Full text link
    Conditional Simple Temporal Network (CSTN) is a constraint-based graph-formalism for conditional temporal planning. It offers a more flexible formalism than the equivalent CSTP model of Tsamardinos, Vidal and Pollack, from which it was derived mainly as a sound formalization. Three notions of consistency arise for CSTNs and CSTPs: weak, strong, and dynamic. Dynamic consistency is the most interesting notion, but it is also the most challenging and it was conjectured to be hard to assess. Tsamardinos, Vidal and Pollack gave a doubly-exponential time algorithm for deciding whether a CSTN is dynamically-consistent and to produce, in the positive case, a dynamic execution strategy of exponential size. In the present work we offer a proof that deciding whether a CSTN is dynamically-consistent is coNP-hard and provide the first singly-exponential time algorithm for this problem, also producing a dynamic execution strategy whenever the input CSTN is dynamically-consistent. The algorithm is based on a novel connection with Mean Payoff Games, a family of two-player combinatorial games on graphs well known for having applications in model-checking and formal verification. The presentation of such connection is mediated by the Hyper Temporal Network model, a tractable generalization of Simple Temporal Networks whose consistency checking is equivalent to determining Mean Payoff Games. In order to analyze the algorithm we introduce a refined notion of dynamic-consistency, named \epsilon-dynamic-consistency, and present a sharp lower bounding analysis on the critical value of the reaction time \hat{\varepsilon} where the CSTN transits from being, to not being, dynamically-consistent. The proof technique introduced in this analysis of \hat{\varepsilon} is applicable more in general when dealing with linear difference constraints which include strict inequalities

    Checking Dynamic Consistency of Conditional Hyper Temporal Networks via Mean Payoff Games (Hardness and (pseudo) Singly-Exponential Time Algorithm)

    Full text link
    In this work we introduce the \emph{Conditional Hyper Temporal Network (CHyTN)} model, which is a natural extension and generalization of both the \CSTN and the \HTN model. Our contribution goes as follows. We show that deciding whether a given \CSTN or CHyTN is dynamically consistent is \coNP-hard. Then, we offer a proof that deciding whether a given CHyTN is dynamically consistent is \PSPACE-hard, provided that the input instances are allowed to include both multi-head and multi-tail hyperarcs. In light of this, we continue our study by focusing on CHyTNs that allow only multi-head or only multi-tail hyperarcs, and we offer the first deterministic (pseudo) singly-exponential time algorithm for the problem of checking the dynamic-consistency of such CHyTNs, also producing a dynamic execution strategy whenever the input CHyTN is dynamically consistent. Since \CSTN{s} are a special case of CHyTNs, this provides as a byproduct the first sound-and-complete (pseudo) singly-exponential time algorithm for checking dynamic-consistency in CSTNs. The proposed algorithm is based on a novel connection between CSTN{s}/CHyTN{s} and Mean Payoff Games. The presentation of the connection between \CSTN{s}/CHyTNs and \MPG{s} is mediated by the \HTN model. In order to analyze the algorithm, we introduce a refined notion of dynamic-consistency, named ϵ\epsilon-dynamic-consistency, and present a sharp lower bounding analysis on the critical value of the reaction time ε^\hat{\varepsilon} where a \CSTN/CHyTN transits from being, to not being, dynamically consistent. The proof technique introduced in this analysis of ε^\hat{\varepsilon} is applicable more generally when dealing with linear difference constraints which include strict inequalities.Comment: arXiv admin note: text overlap with arXiv:1505.0082

    A Tractable Generalization of Simple Temporal Networks and its relation to Mean Payoff Games

    No full text
    Simple Temporal Networks (STNs) are used in many applications, as they provide a powerful and general tool for representing conjunctions of maximum delay constraints over ordered pairs of temporal variables.We introduce Hyper Temporal Networks (TNs), a strict generalization of STNs, to overcome the limitation of considering only conjunctions of constraints.In a Hyper Temporal Network a single temporal constraint may be defined as a set of two or more maximum delay constraints which is satisfied when at least one of these delay constraints is satisfied.As in STNs, a TN is consistent when a real value can be assigned to each temporal variable satisfying all the constraints.We show the computational complexity for this generalization and propose effective reduction algorithms for checking consistency of TNs unveiling the link with the field of Mean Payoff Games.TNs are meant as a light generalization of STNs offering an interesting compromise.On one side, as we show, there exist practical pseudo-polynomial time algorithms for checking consistency and computing feasible schedules for TNs.On the other side, TNs allow to express natural constraints that cannot be expressed by STNs like "trigger off an event exactly delta min after the occurrence of the last event in a set''

    Hyper Temporal Networks: A Tractable Generalization of Simple Temporal Networks and its relation to Mean Payoff Games

    No full text
    International audienceSimple Temporal Networks (STNs) provide a powerful and general tool for representing conjunctions of maximum delay constraints over ordered pairs of temporal variables. In this paper we introduce Hyper Temporal Networks (HyTNs), a strict generalization of STNs, to overcome the limitation of considering only conjunctions of constraints but maintaining a practical efficiency in the consistency check of the instances. In a Hyper Temporal Network a single temporal hyperarc constraint may be defined as a set of two or more maximum delay constraints which is satisfied when at least one of these delay constraints is satisfied. HyTNs are meant as a light generalization of STNs offering an interesting compromise. On one side, there exist practical pseudo-polynomial time algorithms for checking consistency and computing feasible schedules for HyTNs. On the other side, HyTNs offer a more powerful model accommodating natural constraints that cannot be expressed by STNs like “Trigger off exactly δ min before (after) the occurrence of the first (last) event in a set.”, which are used to represent synchronization events in some process aware information systems/workflow models proposed in the literature

    21st International Symposium on Temporal Representation and Reasoning, TIME 2014, Verona, Italy, September 8-10, 2014

    No full text
    The proceedings contain 18 papers. The topics discussed include: a tractable generalization of simple temporal networks and its relation to mean payoff games; sound and complete algorithms for checking the dynamic controllability of temporal networks with uncertainty, disjunction and observation; a formal account of planning with flexible timelines; metric propositional neighborhood logic with an equivalence relation; checking interval properties of computations; approximate interval-based temporal dependencies: the complexity landscape; a framework for managing temporal dimensions in archaeological data; lean index structures for snapshot access in transaction-time databases; high-level operations for creation and maintenance of temporal and conventional schema in the tauXSchema framework; summarizability in multiversion data warehouse; fairness with EXPTIME bundled CTL tableau; and partially punctual metric temporal logic is decidable

    Temporal and Resource Controllability of Workflows Under Uncertainty

    Get PDF
    Workflow technology has long been employed for the modeling, validation and execution of business processes. A workflow is a formal description of a business process in which single atomic work units (tasks), organized in a partial order, are assigned to processing entities (agents) in order to achieve some business goal(s). Workflows can also employ workflow paths (projections with respect to a total truth value assignment to the Boolean variables associated to the conditional split connectors) in order (not) to execute a subset of tasks. A workflow management system coordinates the execution of tasks that are part of workflow instances such that all relevant constraints are eventually satisfied. Temporal workflows specify business processes subject to temporal constraints such as controllable or uncontrollable durations, delays and deadlines. The choice of a workflow path may be controllable or not, considered either in isolation or in combination with uncontrollable durations. Access controlled workflows specify workflows in which users are authorized for task executions and authorization constraints say which users remain authorized to execute which tasks depending on who did what. Access controlled workflows may consider workflow paths too other than the uncertain availability of resources (users, throughout this thesis). When either a task duration or the choice of the workflow path to take or the availability of a user is out of control, we need to verify that the workflow can be executed by verifying all constraints for any possible combination of behaviors arising from the uncontrollable parts. Indeed, users might be absent before starting the execution (static resiliency), they can also become so during execution (decremental resiliency) or they can come and go throughout the execution (dynamic resiliency). Temporal access controlled workflows merge the two previous formalisms by considering several kinds of uncontrollable parts simultaneously. Authorization constraints may be extended to support conditional and temporal features. A few years ago some proposals addressed the temporal controllability of workflows by encoding them into temporal networks to exploit "off-the-shelf" controllability checking algorithms available for them. However, those proposals fail to address temporal controllability where the controllable and uncontrollable choices of workflow paths may mutually influence one another. Furthermore, to the best of my knowledge, controllability of access controlled workflows subject to uncontrollable workflow paths and algorithms to validate and execute dynamically resilient workflows remain unexplored. To overcome these limitations, this thesis goes for exact algorithms by addressing temporal and resource controllability of workflows under uncertainty. I provide several new classes of (temporal) constraint networks and corresponding algorithms to check their controllability. After that, I encode workflows into these new formalisms. I also provide an encoding into instantaneous timed games to model static, decremental and dynamic resiliency and synthesize memoryless execution strategies. I developed a few tools with which I carried out some initial experimental evaluations
    corecore