2,081 research outputs found

    Temporal Locality in Today's Content Caching: Why it Matters and How to Model it

    Get PDF
    The dimensioning of caching systems represents a difficult task in the design of infrastructures for content distribution in the current Internet. This paper addresses the problem of defining a realistic arrival process for the content requests generated by users, due its critical importance for both analytical and simulative evaluations of the performance of caching systems. First, with the aid of YouTube traces collected inside operational residential networks, we identify the characteristics of real traffic that need to be considered or can be safely neglected in order to accurately predict the performance of a cache. Second, we propose a new parsimonious traffic model, named the Shot Noise Model (SNM), that enables users to natively capture the dynamics of content popularity, whilst still being sufficiently simple to be employed effectively for both analytical and scalable simulative studies of caching systems. Finally, our results show that the SNM presents a much better solution to account for the temporal locality observed in real traffic compared to existing approaches.Comment: 7 pages, 7 figures, Accepted for publication in ACM Computer Communication Revie

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks

    Unravelling the Impact of Temporal and Geographical Locality in Content Caching Systems

    Get PDF
    To assess the performance of caching systems, the definition of a proper process describing the content requests generated by users is required. Starting from the analysis of traces of YouTube video requests collected inside operational networks, we identify the characteristics of real traffic that need to be represented and those that instead can be safely neglected. Based on our observations, we introduce a simple, parsimonious traffic model, named Shot Noise Model (SNM), that allows us to capture temporal and geographical locality of content popularity. The SNM is sufficiently simple to be effectively employed in both analytical and scalable simulative studies of caching systems. We demonstrate this by analytically characterizing the performance of the LRU caching policy under the SNM, for both a single cache and a network of caches. With respect to the standard Independent Reference Model (IRM), some paradigmatic shifts, concerning the impact of various traffic characteristics on cache performance, clearly emerge from our results.Comment: 14 pages, 11 Figures, 2 Appendice

    A unified approach to the performance analysis of caching systems

    Get PDF
    We propose a unified methodology to analyse the performance of caches (both isolated and interconnected), by extending and generalizing a decoupling technique originally known as Che's approximation, which provides very accurate results at low computational cost. We consider several caching policies, taking into account the effects of temporal locality. In the case of interconnected caches, our approach allows us to do better than the Poisson approximation commonly adopted in prior work. Our results, validated against simulations and trace-driven experiments, provide interesting insights into the performance of caching systems.Comment: in ACM TOMPECS 20016. Preliminary version published at IEEE Infocom 201

    Cost-aware caching: optimizing cache provisioning and object placement in ICN

    Full text link
    Caching is frequently used by Internet Service Providers as a viable technique to reduce the latency perceived by end users, while jointly offloading network traffic. While the cache hit-ratio is generally considered in the literature as the dominant performance metric for such type of systems, in this paper we argue that a critical missing piece has so far been neglected. Adopting a radically different perspective, in this paper we explicitly account for the cost of content retrieval, i.e. the cost associated to the external bandwidth needed by an ISP to retrieve the contents requested by its customers. Interestingly, we discover that classical cache provisioning techniques that maximize cache efficiency (i.e., the hit-ratio), lead to suboptimal solutions with higher overall cost. To show this mismatch, we propose two optimization models that either minimize the overall costs or maximize the hit-ratio, jointly providing cache sizing, object placement and path selection. We formulate a polynomial-time greedy algorithm to solve the two problems and analytically prove its optimality. We provide numerical results and show that significant cost savings are attainable via a cost-aware design
    • …
    corecore