9 research outputs found

    Virtual Reality Simulator for Training in Myringotomy with Tube Placement

    Get PDF
    Myringotomy refers to a surgical incision in the eardrum, and it is often followed by ventilation tube placement to treat middle-ear infections. The procedure is difficult to learn; hence, the objectives of this work were to develop a virtual-reality training simulator, assess its face and content validity, and implement quantitative performance metrics and assess construct validity. A commercial digital gaming engine (Unity3D) was used to implement the simulator with support for 3D visualization of digital ear models and support for major surgical tasks. A haptic arm co-located with the stereo scene was used to manipulate virtual surgical tools and to provide force feedback. A questionnaire was developed with 14 face validity questions focusing on realism and 6 content validity questions focusing on training potential. Twelve participants from the Department of Otolaryngology were recruited for the study. Responses to 12 of the 14 face validity questions were positive. One concern was with contact modeling related to tube insertion into the eardrum, and the second was with movement of the blade and forceps. The former could be resolved by using a higher resolution digital model for the eardrum to improve contact localization. The latter could be resolved by using a higher fidelity haptic device. With regard to content validity, 64% of the responses were positive, 21% were neutral, and 15% were negative. In the final phase of this work, automated performance metrics were programmed and a construct validity study was conducted with 11 participants: 4 senior Otolaryngology consultants and 7 junior Otolaryngology residents. Each participant performed 10 procedures on the simulator and metrics were automatically collected. Senior Otolaryngologists took significantly less time to completion compared to junior residents. Junior residents had 2.8 times more errors as compared to experienced surgeons. The senior surgeons also had significantly longer incision lengths, more accurate incision angles, and lower magnification keeping both the umbo and annulus in view. All metrics were able to discriminate senior Otolaryngologists from junior residents with a significance of p \u3c 0.002. The simulator has sufficient realism, training potential and performance discrimination ability to warrant a more resource intensive skills transference study

    Surgical GPS Proof of Concept for Scoliosis Surgery

    Get PDF
    Scoliotic deformities may be addressed with either anterior or posterior approaches for scoliosis correction procedures. While typically quite invasive, the impact of these operations may be reduced through the use of computer-assisted surgery. A combination of physician-designated anatomical landmarks and surgical ontologies allows for real-time intraoperative guidance during computer-assisted surgical interventions. Predetermined landmarks are labeled on an identical patient model, which seeks to encompass vertebrae, intervertebral disks, ligaments, and other soft tissues. The inclusion of this anatomy permits the consideration of hypothetical forces that are previously not well characterized in a patient-specific manner. Updated ontologies then suggest procedural directions throughout the surgical corridor, observing the positioning of both the physician and the anatomical landmarks of interest at the present moment. Merging patient-specific models, physician-designated landmarks, and ontologies to produce real-time recommendations magnifies the successful outcome of scoliosis correction through enhanced pre-surgical planning, reduced invasiveness, and shorted recovery time

    Automated Segmentation of Temporal Bone Structures

    Get PDF
    Mastoidectomy is a challenging surgical procedure that is difficult to perform and practice. As supplementation to current training techniques, surgical simulators have been developed with the ability to visualize and operate on temporal bone anatomy. Medical image segmentation is done to create three-dimensional models of anatomical structures for simulation. Manual segmentation is an accurate but time-consuming process that requires an expert to label each structure on images. An automatic method for segmentation would allow for more practical model creation. The objective of this work was to create an automated segmentation algorithm for structures of the temporal bone relevant to mastoidectomy. The first method explored was multi-atlas based segmentation of the sigmoid sinus which produced accurate and consistent results. In order to segment other structures and improve robustness and accuracy, two convolutional neural networks were compared. The convolutional neural network implementation produced results that were more accurate than previously published work
    corecore