
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

10-9-2019 1:30 PM 

Automated Segmentation of Temporal Bone Structures Automated Segmentation of Temporal Bone Structures 

Daniel Allen, The University of Western Ontario 

Supervisor: Ladak, Hanif M., The University of Western Ontario 

Co-Supervisor: Agrawal, Sumit K., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering 

Science degree in Electrical and Computer Engineering 

© Daniel Allen 2019 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biomedical Commons 

Recommended Citation Recommended Citation 
Allen, Daniel, "Automated Segmentation of Temporal Bone Structures" (2019). Electronic Thesis and 
Dissertation Repository. 6605. 
https://ir.lib.uwo.ca/etd/6605 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/267?utm_source=ir.lib.uwo.ca%2Fetd%2F6605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6605?utm_source=ir.lib.uwo.ca%2Fetd%2F6605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

 

ii 

 

Abstract 

Mastoidectomy is a challenging surgical procedure that is difficult to perform and 

practice. As supplementation to current training techniques, surgical simulators have been 

developed with the ability to visualize and operate on temporal bone anatomy. Medical 

image segmentation is done to create three-dimensional models of anatomical structures 

for simulation. Manual segmentation is an accurate but time-consuming process that 

requires an expert to label each structure on images. An automatic method for 

segmentation would allow for more practical model creation. The objective of this work 

was to create an automated segmentation algorithm for structures of the temporal bone 

relevant to mastoidectomy. The first method explored was multi-atlas based segmentation 

of the sigmoid sinus which produced accurate and consistent results. In order to segment 

other structures and improve robustness and accuracy, two convolutional neural networks 

were compared. The convolutional neural network implementation produced results that 

were more accurate than previously published work. 
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Summary for Lay Audience 

Surgeries in the area of the ear can be difficult to train and practice. There are many small 

important structures to be considered and there is a lot of variation between patients. If 

mistakes are made during the surgery, it can cause severe damage to the patient. By using 

a surgical simulator, surgical trainees can improve their skills before operating on real 

patients at a much lower cost than when using classical training methods. To create a 

surgical simulator, anatomical structures need to be labeled from images so that 3D 

models can be made. This is called image segmentation and can be done manually or 

automatically. Manual labelling is very accurate but takes a long time and requires an 

expert to do it. Automatic labelling is much easier and faster to do in a clinical setting. 

However, many parts of the anatomy that need to be labeled are small, variable in 

position and shape, and have low contrast edges (hard to distinguish from surrounding 

objects). These issues make automating the labelling of the structures very difficult. This 

work compares multiple methods for automatic image labelling. The first method tested 

and developed was done on the sigmoid sinus, a vein that passes near the ear. A set of 

high-resolution manually labelled examples of the vein were used and transformed to 

match the new lower resolution images to be labelled, and then these sets were combined. 

This method resulted in labels that were similar to the actual labels. The second method 

was done on several anatomic structures of the ear and used deep learning networks to 

learn patterns in the images and label them automatically. This method quickly and 

successfully created automatic labels from images that were also very close to the actual 

labels and showed better results than previous work on the same structures. This labelling 

method may be used to create 3D models for surgical simulators. 
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Chapter 1 

1 Introduction 

Hearing loss is a common and disabling health issue that can cause social-isolation, 

safety concerns, and many other potential consequences. The World Health Organization 

(WHO) estimates that there are approximately 466 million people worldwide with 

disabling hearing loss [1] and a Canadian survey on disability conducted in 2012 found 

that 3.2% of Canadians aged 15 years and older reported having a hearing disability [2], 

[3]. While hearing aids can treat a large portion of patients with hearing loss, they cannot 

be used in all patients. In these cases, other solutions such as cochlear implants or 

surgical interventions are needed to restore hearing. 

Mastoidectomy is a challenging surgical procedure in which the air cells of the mastoid 

located in the temporal bone are removed using a high-speed surgical drill. 

Mastoidectomy often precedes cochlear implantation or other procedures such as 

cholesteatoma removal [4]. Mastoidectomy is associated with many possible 

complications where permanent damage could occur such as facial nerve paralysis or 

balance problems [5], [6]. Therefore, it is important that surgical residents are well 

trained and able to sufficiently practice and be tested on their ability to perform the 

operation, as well as be knowledgeable of the temporal bone anatomy. Traditional 

training for mastoidectomy is done on cadavers, however this is expensive, and it is 

difficult to continually supply cadavers to labs. To address these problems, training may 

be supplemented through the use of surgical simulators. A mastoidectomy simulator 

allows for repeated practice on patient-specific models and a variety of cases. In order to 
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create visualizations of anatomical structures for a surgical simulator, it is necessary to 

delineate them in a process called medical image segmentation. However, it is 

impractical to create these segmentations manually for each case as it can take over an 

hour of expert time. Therefore, developing an accurate, automatic process for image 

segmentation is critical to being able to perform simulated mastoidectomies on patient 

specific anatomy in a clinical setting. 

1.1 Anatomy 

The temporal bones are located on either side of the head and contains the structures of 

the ear. The temporal bone consists of four major components shown from the interior of 

the skull in Figure 1.1: the petrous, squamous, tympanic, and mastoid parts. 

 

Figure 1.1: Diagram of the parts of the temporal bone displaying the squamous 

(yellow), tympanic (green), and the combined petrous and mastoid (brown) parts. 

Image courtesy of Stanford Otolaryngology, Head and Neck Surgery [7]. 
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The petrous part is pyramidal in shape and located inside the skull and contains the 

structures of the inner ear. The squamous part is the mostly thin, superior part of the bone 

which covers a large surface of the skull. The lower portion of the squamous contains the 

zygomatic process jutting laterally and connecting to the zygomatic bone. The tympanic 

part is found below the squamous and in front of the mastoid part. The tympanic part 

surrounds the external auditory canal. The mastoid part is found at the posterior end of 

the temporal bone and contains a multitude of air cells which are drilled out during 

mastoidectomy. 

Figure 1.2 shows a coronal (frontal) view of the numerous structures within the temporal 

bone and the ear which must be considered during a mastoidectomy. Due to the close 

proximity, importance, and delicacy of the structures, an otologist (ear surgeon) 

performing a mastoidectomy must be aware of their precise locations and have a 

preoperative plan to avoid potentially severe complications. 
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Figure 1.2: Coronal (frontal) cross section view of the temporal bone and ear 

structures. Image courtesy of Stanford Otolaryngology, Head and Neck Surgery [7]. 

1.1.1 Sigmoid Sinus 

The sigmoid sinus (pictured in Figure 1.3) is a venous sinus that runs in an S-shaped 

groove through the temporal bone and is an important consideration in mastoidectomy. 

During the initial portion of the procedure the sigmoid sinus indicates the posterior 

boundary of where bone should be removed [4], [8]. An otologist must be able to locate 

and identify the sigmoid sinus without causing damage to it in order to avoid potential 

vascular complications and bleeding during the surgery. 
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Figure 1.3: Diagram of sigmoid sinus anatomy showing the sigmoid sinus and its 

relation to connected venous sinuses [9]. Copyright 2020, with permission from 

Elsevier.  

The sigmoid sinus is highly variable in terms of both location relative to other structures 

in the temporal bone as well as its shape, especially when considering that patients will 

have dominant and non-dominant (determined by relative size) sides [10], [11]. Most of 

the variation occurs in the transverse sinus where it connects to the sigmoid sinus [10] 

which can make this area especially difficult to segment. This means that any attempts at 

automating the segmentation of the sigmoid sinus should use development methods and 

datasets that cover as much of the variability as possible and include the ability to 

segment dominant and non-dominant sigmoid sinuses. Other than variability, the sigmoid 

sinus also presents challenges for automated segmentation in the form of poor contrast 

boundaries between the vessel and the surrounding areas on its medial side. This can be 

seen in the example CT scan of a temporal bone shown in Figure 1.4. 
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Figure 1.4: Micro-CT scan of temporal bone showing the sigmoid sinus (indicated 

with arrow). 

1.2 Mastoidectomy 

Mastoidectomy is a surgical procedure where the air cells in the mastoid are drilled away 

from the patient’s temporal bone. The mastoid is found behind the ear where an incision 

can be made, and drilling is then performed. While drilling, it is important to correctly 

locate and identify the structural landmarks without damaging them to avoid 

complications. Mastoidectomy is performed for a variety of reasons including treatment 

of cholesteatoma, clearing out infected air cells, gaining access for the insertion of 

cochlear implants, among others. After a mastoidectomy is completed the facial recess 

can be drilled out to gain access to the round window for cochlear implant insertion. 
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Completed mastoidectomies and facial recesses can be evaluated by using the Welling 

scale which provides a score to assess completed temporal bone dissections [12], [13].  

1.3 Simulation 

Surgical simulation is a growing field in medical training. Many surgical simulators are 

being developed with 3D visualization and haptic (touch) feedback to improve the 

immersion, intuitiveness, and translatability of the experience to real-life situations [14]–

[22]. While surgical simulators do not replace traditional training techniques, they do 

provide a helpful supplement to practice difficult procedures. Surgical simulation has the 

benefit of allowing trainees to practice on real anatomy while not introducing any risk to 

live patients or depleting expensive and difficult to procure cadavers. 

Furthermore, with medical imaging technology it is possible to produce a scan of a 

patient’s specific anatomy and import it for visualization in a surgical simulator. This 

provides the opportunity to practice on patient-specific cases repeated times for either 

training or preoperative planning, which is not possible with other methods. This also 

extends to the ability to simulate irregular temporal bone anatomy examples which may 

be difficult to obtain in cadaver labs. 

Mastoidectomy simulators also provide the opportunity to assess a user’s dissection with 

performance metrics and to provide the trainee with feedback. Applying the Welling 

scale to score a completed mastoidectomy is a quantifiable way of assessing a user’s 

dissection and could be incorporated into a surgical simulator. However, medical image 

segmentation has to be done for each new case to import patient CT scans into a 

simulator and provide 3D models for visualization and assessment. 
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1.4 Medical Image Segmentation 

Medical image segmentation is required to create models of anatomy for use in a surgical 

simulator. Image segmentation is the process of delineating objects or structures from an 

image [23]. When applied to medical image volumes this means creating labelmaps 

which paint the volumetric pixels (voxels) of each separate 3D structure with individual 

integer values. An example axial slice of a labelmap of several segmented temporal bone 

structures can be seen overlaid on a micro-CT image in Figure 1.5. 

 

Figure 1.5: Labelmap of temporal bone structures overlaid on a micro-CT image. 

The structures shown are the sigmoid sinus (blue), facial nerve (yellow), external 

auditory canal (green), tegmen (white), cochlea and semicircular canals (brown), 

malleus (magenta), incus (red), and the stapes (orange). 
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There are three general approaches to the process of segmenting an image: manual, semi-

automatic, and automatic. Manual segmentation is the process of painting the voxel of 

each structure in every slice it appears in from the medical image volume. This is a very 

time-consuming process but produces the most accurate resulting segmentations when 

performed by an expert. Semi-automated methods use reduced user inputs such as 

painting only intermittent sections of the target structure or placing identifier points on 

landmarks for the algorithm to use for generating a full segmentation. Examples of semi-

automated methods include filling between slices [24] and fast grow cut [25]. Automatic 

methods seek to create segmentations with no user input. For the purpose of creating 

patient specific cases for surgical simulation, accurate automatic segmentations are 

optimal for ease of use and feasibility of implementation. However, many anatomical 

structures are challenging to segment automatically due to low contrast, patient variation, 

ambiguous boundaries, differing imaging protocols, etc. This means the process of 

selecting and optimizing an automatic method for segmentation must be done differently 

for each individual scenario and area of anatomy. While no semi-automated or automated 

methods for segmentation immediately produce segmentations of the same degree of 

accuracy as manual segmentation, they can be reviewed and edited after the algorithm is 

finished to reach the same level of accuracy. This is required for applications with very 

low error tolerance such as robotic surgery. 

Given the challenges of segmentation described above, two knowledge-based approaches 

appear to dominate recent literature and are selected for further description here: atlas-

based segmentation and convolutional neural networks (CNNs) [26], [27]. Both are 
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described next after a brief description of image registration which is particularly 

important for the former.  

1.4.1 Image Registration 

When working with medical images it is often necessary to align image volumes 

together. In order to perform atlas-based segmentation it is necessary to register the 

reference atlas image to the target image to be segmented. The transforms that result from 

these registrations are then applied to the reference atlas labelmap to transfer the labels to 

the target image and thus segment its components. The two categories of transforms that 

registrations can produce are linear transforms, including rigid and affine, which preserve 

points, straight lines, and planes; and non-rigid which can deform images. 

1.4.1.1 Linear Registration 

Rigid registration attempts to align two images by applying only translation and rotation 

operations. This is useful for aligning two identical images that are offset from each 

other. Affine registration expands on rigid registration by adding scaling and shear 

operations to the transformation. Linear registrations can act as an initial step to closely 

align two different images before non-rigid registration. 

1.4.1.2 Non-rigid Registration 

When aligning two different images from different samples such as in the atlas-based 

segmentation method it is common to follow a linear registration with a non-rigid 

registration. Non-rigid registrations are able to deform images locally to fit a target 

image’s geometry. One effective example of non-rigid registration for medical images is 

deformation with cubic B-splines [28], [29]. Cubic B-spline deformation is applied by 
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optimizing the positions of a 3D grid of control points which are applied to the image 

being registered. Non-rigid registrations require much more computational resources than 

linear registrations and can create poor quality registrations when too much deformation 

is applied. A method for managing these issues in a cubic B-spline registration is by first 

applying an affine linear registration and then using a pyramidal approach of 

progressively smaller grid spacing between control points [28]. 

1.4.2 Atlas-based Methods 

Atlas-based methods for medical image segmentation use labelled reference images to 

provide prior knowledge to make new segmentations. One or more known examples of 

the target anatomy are manually labelled and used as an atlas set which is registered to a 

new target medical image. Once the registration step is complete the image transform that 

corresponds to the movement of the registered atlas image is applied to the atlas 

labelmap. This transformed labelmap becomes the atlas segmentation for the target 

image. An example of this being applied to the 3D rendering of an atlas labelmap is 

shown in Figure 1.6. 

 

Figure 1.6: 3D rendering demonstrating an image transform being applied to an 

atlas. 
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Often the target structure has variable anatomy and one atlas does not provide the ability 

to cover the full scope of variation. In this case, multiple atlases can be used in 

conjunction to create a segmentation for the target image. When using a set comprised of 

multiple atlases for segmentation there are two general methods to use the information 

from them for the final segmentation. The first method is atlas selection where different 

approaches are used to select the most appropriate atlas for the target image [30]–[33]. 

The second approach is to use the segmentations from each atlas and combine them using 

label fusion methods [26], [34], [35]. Both of these multi-atlas methods allow for more 

consistent and accurate final segmentations than are usually possible with just a single 

atlas. 

Due to the registration transform being applied to the atlas labelmap, it is possible to use 

higher resolution atlases than the target image resolution. In the context of CT images 

this means that it is possible to use high-resolution micro-CT atlases for creating high-

resolution segmentations of low-resolution clinical-CT scans like those used on patients. 

1.4.2.1 Label Fusion 

Label fusion is an operation which takes multiple segmentations (labelmaps) as inputs 

and uses them to calculate an output segmentation. The simplest version of label fusion is 

majority voting in which each voxel output is decided by the value that holds the majority 

among the input segmentations. Simultaneous truth and performance level estimation 

(STAPLE) improves on majority voting by creating a probabilistic estimate of the true 

segmentation by estimating the performance of each individual atlas segmentation and 

using those performance estimates to determine the weighting of each segmentation for 

combination [35]. Joint label fusion (JLF) uses intensity values from each registered 
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image and the target image and also takes into account not only the similarity between 

the atlases and the target but between the atlases themselves in order to reduce similar 

label errors [34]. Using multiple atlases with label fusion can increase segmentation 

consistency and accuracy especially in cases with a lot of structural variability. However, 

more complex methods such as STAPLE and JLF can be computationally expensive and 

can increase the time an algorithm takes to complete a segmentation. 

1.4.3 Convolutional Neural Networks 

CNNs, as applied to 3D medical image volumes, are fully connected deep neural 

networks which extract features and use them to learn patterns. Receptive areas of voxels 

of an image are taken as inputs, which then are fed through a hierarchy system of 

convolutional layers which extract features and pooling layers which reduce spatial size. 

The way CNN kernels sample images preserve some spatial information which is 

difficult to achieve in many other types of architectures. The hierarchy system of 

convolutional layers allows for extraction of low-level features such as edges and 

intensity values at the first layers and higher-level features in deeper layers. Due to these 

properties, CNNs are very suited to the task of medical image segmentation. 

In order to provide more data to a CNN during training as well as improving robustness 

when presented with a variety of inputs, image augmentation is often done. Some 

common and easy-to-implement methods of augmentation for CNN medical image 

segmentation are based on transforms: rotation, axis flipping, scaling, and elastic 

deformations. These augmentations can be tuned to the level of generalization required as 

well as the expected input images that inference will be run on.  
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When using CNNs for medical image segmentation it is necessary to sample both the 

images and labelmaps. However, with the large size of medical images, memory 

constraints are an important consideration when loading image data onto a graphic 

processing unit (GPU). Therefore, it is often necessary when working with larger datasets 

to sample only parts of images. Samples can be drawn uniformly across the images or 

weights can be applied such as in a balanced sampling method, where each label has the 

same probability of being sampled [36], [37]. The order these image samples are 

processed can then be mixed randomly and trained in batches to update the optimizer 

function. 

A major problem that often occurs in the development of a CNN is overfitting. 

Overfitting is when the model produced by training the network becomes too specific to 

the training dataset and fails to make optimal predictions on data that is unseen in the 

training process. One method to prevent this when training a CNN for image 

segmentation is to portion part of the dataset to be used as validation images. The 

validation images are evaluated with the loss function at set intervals in the training to 

determine if the CNN has the ability to make generalizations outside the training set. 

Validation can be an indicator of when to perform early stopping of the training if the 

validation loss increases. Another method for preventing overfitting is regularization. 

Regularization attempts to bias the training towards developing simpler models which are 

more likely to be better at generalization. L2 regularization is a common method of 

regularization that adds to the value of the loss function based on the complexity 

represented by the sum of the squares of the current network weights. The amount of 
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regularization applied can be tuned by changing a lambda weight variable. This can be a 

small value in medical image segmentation applications [38].  

1.4.3.1 DeepMedic 

DeepMedic is a 3D CNN combined with a conditional random field that acts as a filter 

for incorrect results and was originally developed for brain lesion segmentation [39]. The 

DeepMedic network architecture shown in Figure 1.7 uses two different resolution scale 

pathways through eight convolutional layers each to capture local and wider regional 

information about the image. This makes it possible to learn the features such as edges 

and intensities locally while simultaneously learning relative positions of structures. The 

results of the two pathways are then fed through a fully connected conditional random 

field that attempts to remove any false positive segmentations. After passing through the 

conditional random field, the output is fed through a classification layer to generate the 

final segmentation. 

 

Figure 1.7: DeepMedic 3D CNN architecture with two convolutional pathways 

followed by a fully connected conditional random field [39]. Licensed under CC BY 

4.0. 
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1.4.3.2 DenseVNet 

DenseVNet is another CNN originally developed for multi-class abdominal structure 

segmentation [40]. The DenseVNet architecture is shown in Figure 1.8. The image is first 

downsampled to a given size and then fed through dense feature stacks which each output 

a skip as well as a downsampled output to go into the next dense feature stack. This is 

done three times. All outputs and skips are then upsampled back to the original size. If 

there is a spatial prior map which provides the log-probability of a certain label being at 

given spatial coordinates [40], [41], it is added to the output prediction. DenseVNet has 

been shown to produce high-accuracy empirical results when compared to other methods 

on the multi-class abdominal segmentation problem, while being memory-efficient [40]. 

 

Figure 1.8: DenseVNet network architecture [40]. © 2017 IEEE. 

1.4.4 Objective Functions 

In order to guide an optimization problem such as image registration or CNN training it is 

necessary to provide an objective function (also known as a loss function when 

minimized). A loss function returns a numerical value, which when minimized will 

approach the optimum solution. 
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In the case of image registration there are several loss functions available to describe how 

similar images are. Normalized cross-correlation (NCC) and normalized mutual 

information (NMI) are examples of objective functions which use different approaches to 

evaluate the similarity between two overlapped images [42]. NCC uses the intensity of 

overlapping regions to perform a comparison. The method for calculating the NCC value 

from images A and B is shown in Equation 1.1. 

 ( )
( )( ) ( )( ), , , ,1

,
x y z

A B

A x y z A B x y z B
NCC A B

N

− −
=

 
    Equation 1.1 

where ( , , )x y z are the voxel coordinates, and 
A and

B  denote the variances for A and B. 

While NCC is accurate and fast, it is only usable when there is a linear dependency 

between the intensity values in the two images [43]. Since a value of 1.0 indicates perfect 

image correlation, an optimizer for NCC should attempt to maximize the value. 

Unlike NCC, NMI does not require intensity values to be linearly dependent between 

images. NMI uses the difference in information between the two images. The NMI of 

images A and B is given in Equation 1.2 [43], [44]. 

 
( ) ( )

( )
( , )

,

H A H B
NMI A B

H A B

+
=  Equation 1.2 

where ( )H A  and ( )H B  are the marginal entropies of images A and B and ( , )H A B  is 

the joint entropy of the images. The entropies act as information measurements which 

estimate the probability of values occurring at each point and then averages the 

information across the image(s). The marginal entropy of an image A is defined in 
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Equation 1.3 and following a similar method except for the overlap of two images, the 

joint entropy of images A and B is shown in Equation 1.4 [44]. 

    ( )( ) log
a A

H A p a p a


= −  Equation 1.3 

    ( )( , ) , log ,
b B a A

H A B p a b p a b
 

= −  Equation 1.4 

The NMI value when perfect overlap occurs is 2.0; meaning ( ) ( ) ( , )H A H B H A B= = and 

the lowest value possible is 1.0, indicating no overlap. NMI presents a robust and 

accurate similarity metric for image registration even when done across different imaging 

modalities such as CT and magnetic resonance imaging (MRI) [43]. 

While the objective functions for image registration focus on determining the amount of 

difference between images, objective functions for CNNs focus on the difference 

between the ground truth segmentations and the predicted results. Two common loss 

functions used for CNNs are Dice loss and cross entropy. Dice loss for a binary case 

between a ground truth segmentation G , and predicted segmentation P , is shown in 

Equation 1.5 where DL denotes Dice loss. Dice loss is based on the Dice coefficient 

evaluation metric used to determine the overlap between segmentations [45], [46]. 
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 Equation 1.5 

In Equation 1.5 p is the predicted probability voxel values, g is the ground truth voxel 

values, N is the number of image elements, and  is a term used to avoid dividing by 0 if 

P and G are empty. 
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When training for segmenting multiple structures at once, changes can be made by 

manually adding weights to the Dice loss function; or when dealing with highly 

imbalanced classes (i.e. some structures have much larger volumes than others), weights 

can be determined based on the inverse of their volume [45]. Dice loss is often used 

because minimizing it is directly increasing the value of the Dice coefficient evaluation 

metric for determining segmentation overlap accuracy, and it naturally performs well at 

class imbalanced problems. 

Cross entropy is a common alternative loss function for CNN image segmentation 

training  [27], [47], [48]. It compares the predicted probability to the actual label and 

follows a logarithmic scale which rapidly reaches high levels of penalization (i.e. high 

cost value) as probability increases for incorrect labels. The cross entropy for a binary 

segmentation problem is denoted in Equation 1.6 as CE. 

 ( ) ( ) ( )( )log 1 log 1CE g p g p= − + − −  Equation 1.6 

where g is the ground truth voxel values and p is the predicted probability voxel values. 

Cross entropy has the advantage of having generally better gradients than Dice loss 

which is what must be traversed by an optimizer when attempting to minimize the loss 

function. Loss functions for segmentation should be selected on a case by case basis 

depending on the structures being segmented by the CNN and through iterative testing. 

1.4.5 Optimizers 

While traversing an optimization problem with a loss function, an optimizer is used to 

move towards a local minimum solution. Gradient descent attempts to move down the 
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steepest path of a gradient iteratively in steps. The Newton method also uses a gradient 

but also computes the Hessian matrix at every step. This can be extremely 

computationally intensive and is often not practical, especially in the context of large 

CNNs. Quasi-Newton methods are similar to Newton’s method but use processes such as 

approximating the Hessian matrix by updating it instead of fully recalculating it in order 

to reduce the computational power needed [49]. 

A very efficient and effective implementation of gradient descent often recommended for 

large CNN applications is Adam [50], [51]. Adam stores past squared gradients and also 

exponentially decaying averages of past gradients. This results in a method of traversing 

the gradient that is adaptive during training while requiring minimal computational 

resources. 

When using an optimizer, it is necessary to set a learning rate which determines the 

amount the optimization problem will update on each step of the function. If this is set 

too high the training can become unstable and not converge; if set too low the training 

will take excessively long and may get stuck at a small minimum. Therefore, it is 

important to tune the learning rate of an optimizer depending on the progress of training 

runs and the application of the network. 

1.4.6 Post-Processing Methods 

After the main portion of an automated segmentation is run it is often useful to run post-

processing operations to clean and smooth the segmentation. Island removal is a common 

post-processing method which is used to delete separate components from the 

segmentation. Since the structures in the temporal bone are all each separate single 
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connected components, the most useful form of island removal is largest connected 

component analysis. Largest connected component analysis only keeps the largest 

component of the segmentation for each structure measured by volume and can be 

applied automatically without user intervention. 

Another useful post-processing operation for automated segmentations is smoothing. 

Smoothing can improve the aesthetics and clean the contour of the segmentation. 

Morphological hole filling is a form of smoothing which uses surrounding information 

selected by an adjustable size and shape kernel to smooth and fill holes in a segmentation. 

This is especially useful for post-processing thin structures that are more likely to have 

holes in the surface, such as the tegmen. 

1.4.7 Segmentation Evaluation 

While developing an algorithm for medical image segmentation it is necessary to 

determine its accuracy. Aside from manual visual inspection, the results have to be 

quantitatively compared to ground truth manual segmentations. There are a variety of 

quantitative metrics that can be used. 

One of the most common metrics for medical image segmentation evaluation is the Dice 

coefficient [30], [31], [41], [52]–[55]. Dice values range between 0 and 1, with 1 being 

perfect overlap and 0 indicating no overlap. An important property to note is the 

correlation between region size and the Dice coefficient value [45]. Figure 1.9 shows the 

overlap between two segmentations A and B which is used to calculate the Dice 

coefficient. 
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Figure 1.9: Venn diagram showing overlap between sets A and B. 

Equation 1.7 shows the method for calculating the Dice value between segmentations A 

and B. 

 
2 A B

DICE
A B


=

+
 Equation 1.7 

Volumetric similarity (VS) is a measure that compares the volumes of the segmentations 

without comparing the overlap or their positions [52]. VS has been used often in medical 

image segmentation literature [52], [56], [57] and in two studies by Powell et al. [55], 

[58] on temporal bone structures. Similar to the Dice coefficient, VS ranges between 

values of 0 and 1. Equation 1.8 shows the calculation for the VS between segmentations 

using the true positives (TP), false negatives (FN), and false positives (FP). 
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FN FP
VS

TP FN FP

−
= −

+ +
 Equation 1.8 

While comparing segmentations it is also necessary to use metrics for the distance 

between them. This can be done comprehensively using two metrics, the Hausdorff 

distance (HD) and the average Hausdorff distance (AHD). HD gives a value for the 

maximum distance between two segmentations [52]. The Hausdorff distance between 

segmentations A and B is shown in Equation 1.9. 

 ( ) ( )( )( , ) max , , ,HD A B h A B h B A=  Equation 1.9 

where h(A, B) is the directed HD given in Equation 1.10. 

 ( , ) max min
b Ba A

h A B a b


= −  Equation 1.10 

HD gives an understanding of the maximum distance error between segmentations, but it 

is very sensitive to outliers and noise. It is best used on segmentations of single 

component structures that have had noise removed and are cropped to a region of interest 

(ROI) that matches the ground truth. 

While HD is useful for determining the maximum errors in distance, AHD gives a value 

for the overall distance between the segmentations. AHD is the HD averaged over all 

points in the segmentation [52]. The AHD between segmentations A and B is given in 

Equation 1.11. 

 ( ) ( )( )( , ) max , , ,AHD A B d A B d B A=  Equation 1.11 

where d(A, B) is the directed AHD described in Equation 1.12. 
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= −  Equation 1.12 

The AHD is much less sensitive to noise and outliers and is useful for describing the 

overall distance between the segmentations. 

When used in comparison to a ground truth, the set of quantitative metrics described 

above provide an understanding of the accuracy of an automatically generated 

segmentation through overlap, similarity of volumes, and distances between 

corresponding points. 

1.5 Objectives 

The main objective of this thesis was (1) to develop an automated segmentation 

algorithm for accurate delineation of temporal bone structures relevant to the creation of 

3D models for use in a mastoidectomy surgical simulator. Secondary objectives of this 

work were (2) to determine the best label fusion method for multi-atlas based 

segmentation of the sigmoid sinus and (3) to explore the capabilities of CNNs for 

simultaneous segmentation of temporal bone structures relevant to mastoidectomy. 

Initially, Chapter 2 explores the use of multi-atlas based methods to segment one 

temporal bone structure, the sigmoid sinus; however, as it was realized that developing an 

atlas-based approach to segment all structures would be difficult because spatial inter-

relationships between structures need to be modeled and the portability of the solution is 

low. To address these issues, CNNs were adapted to the problem of segmenting multiple 

temporal bone structures and are presented in Chapter 3. 
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1.6 Novelty 

A CNN based automated segmentation algorithm was developed that quickly produces 

segmentations with minimal user intervention. The novel algorithm is more accurate than 

those developed in previous works while also being the first to include segmentations of 

the digastric ridge. This work is also the first to use multiple micro-CT atlases with label 

fusion to generate high quality segmentations of the sigmoid sinus. 
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Chapter 2 

2 Automated Segmentation of the Sigmoid Sinus using a 
Multi-Atlas Approach 

2.1 Introduction 

Mastoidectomy is a complex surgical procedure that requires extensive knowledge of the 

anatomy of the temporal bone and is often required in cochlear implantation surgery. 

However, due to its complexity, mastoidectomy is a difficult procedure for trainees to 

master. Traditional training methods for surgical residents utilize cadavers, which can be 

expensive and difficult to access. To provide more consistent and accessible training for 

surgery involving the temporal bone, surgical simulators have been developed that 

provide haptic (touch) feedback and three-dimensional (3D) visualization [1]–[10]. 

Surgical simulation is becoming a widely accepted tool in Otolaryngology since it offers 

the ability to model difficult and varied cases and allows trainees to practice on patient-

specific models.  

Simulators such as CardinalSim [10] are able to import patient images and can be used 

for both training and in pre-operative planning. To maximize the variety and relevance of 

the anatomical cases available in the simulator, many clinical scans need to first be 

segmented (i.e., the anatomy needs to be delineated) for use. A major drawback to VR 

simulators is the need for manual image segmentation, which can take hours per scan and 

is infeasible in a clinical setting. Automated segmentation methods are preferred to be 

able to rapidly and automatically produce a variety of 3D digital models of the temporal 

bone. 
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One challenge associated with the development of simulators in Otolaryngology is the 

complex anatomy of the temporal bone. For example, in mastoidectomy one of the vital 

anatomical structures is the sigmoid sinus. The sigmoid sinus is a venous sinus that 

travels down an S-shaped groove in the temporal bone. During the initial portion of the 

procedure the sigmoid sinus represents the posterior boundary of bone removal [11]. It is 

critical for surgeons and trainees to be able to identify the sigmoid sinus to avoid 

catastrophic vascular complications during surgery. 

Currently, creating 3D models of the sigmoid sinus requires manual delineation of 

structural boundaries by an individual with expertise in both the anatomy and the 

software tools used to segment medical image volumes. In addition, the sigmoid sinus is 

a highly variable structure in both shape and relative position to other structures in the 

temporal bone, and previous work has focused on evaluating its variability through 

statistical shape analysis [12]. Due to this variability, it is very time-consuming for an 

expert to manually perform segmentation (often taking up to 45 minutes).  Therefore, an 

automated algorithm is required to produce sigmoid sinus segmentations accurately and 

quickly with minimal expert intervention. However, due to the vast anatomic variability 

and low contrast at the medial wall, purely intensity-based methods such as thresholding 

are inconsistent, making development of an automated segmentation method of the 

sigmoid sinus uniquely challenging.     

Several approaches to automated segmentation of anatomical structures have been 

described in the literature. One of the simplest approaches is thresholding. Thresholding 

is a fast and effective method for delineating structures that have high contrast from the 

surrounding objects, but as noted above this is generally ineffective for many anatomical 
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structures such as the sigmoid sinus which has similar intensity values to its surrounding 

areas on its medial side. Atlas-based methods are far more promising for capturing 

variability in difficult to delineate anatomical structures due to their ability to capture the 

anatomical information and their relative robustness to poor contrast. One effective 

application of atlas-based segmentation on various structures of the temporal bone that 

excludes the sigmoid sinus has been presented by Powell. et al [13].  

The present work describes the development and evaluation of a multi-atlas based 

segmentation algorithm that compares a variety of label fusion methods on clinical CT 

scans of cadaveric temporal bones with the goal of accurately segmenting the sigmoid 

sinus. The multi-atlas method presented herein has been applied previously to segment 

medical images in a variety of fields [14]–[16], and has been adapted in this work to 

allow for the usage of highly detailed micro-CT (µCT) atlases to segment low resolution 

and poorly delineated clinical CT scans. This method was able to capture the high 

variability of the anatomy of the sigmoid sinus. 

2.2 Materials and Methods 

2.2.1 Data 

Thirty-eight anonymized adult cadaveric temporal bones with normal anatomy were 

used. Samples had not been operated on in any previous surgeries and were scanned 

using a General Electric (GE) Healthcare eXplore Locus µCT scanner at a resolution of 

154μm x 154μm x 154μm and a voltage of 80kV. Clinical-CT scans of the same thirty-

eight samples were also collected using a resolution of 234μm x 234μm x 625μm and a 
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voltage of 120kV on a Discovery CT750 HD Clinical Scanner with GE’s Gemstone CT 

detector. 

 All cadaveric specimens were obtained with permission from the body bequeathal 

program at Western University, London, Ontario, Canada in accordance with the 

Anatomy Act of Ontario and Western's Committee for Cadaveric Use in Research 

(approval number: #19062014). 

2.2.2 Ground Truth Segmentations and Atlas Creation 

The sigmoid sinus was manually segmented from the µCT images by an expert anatomist 

(KV) using a combination of semi-automated and manual tools in 3D Slicer, an open-

source software for medical image processing and visualization [17]. Consensus 

interpretation of the segmentations was achieved by an experienced surgeon (SKA), the 

anatomist (KV), and the lead author (DA). Details of the segmentations and anatomic 

analysis have been previously described in [12]. 

Twelve segmentations were used to define atlases to drive the segmentation algorithm 

and the remainder formed the ground truth and were used to evaluate the segmentation 

algorithm. Two sets of atlases were defined from the 12 segmentations: 6 atlases for left 

temporal bones and 6 for right temporal bones. This number of atlases managed to 

capture the variability of the sigmoid sinus while producing results comparable to using 

36 atlases. The use of µCT images resulted in higher resolution and detail for both the 

ground truth and the algorithm-generated segmentations. The difference in resolution can 

be seen in Figure 2.1.  
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Figure 2.1: Clinical-CT (left) compared to Micro-CT (right) with sigmoid sinus 

shown in blue. 

As the algorithm is applied to clinical-CT volumes, the µCT segmentations were 

registered using a combination of rigid and affine techniques to their corresponding 

clinical-CT volumes and then reviewed by the research team to be used as a high-

resolution ground truth. 

2.2.3 Segmentation Algorithm 

Figure 2.2 depicts the operation of the segmentation algorithm. All steps are completely 

automatic with the exception of basic rough cropping of the image. The major steps of 

the algorithm are described next in further detail. The algorithm was implemented as one 

single script written in Bash shell script. 
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Figure 2.2: Block diagram displaying the multi-atlas segmentation algorithm. User 

specifies either left or right ear and appropriate atlases are chosen by algorithm. 

2.2.3.1 Cropping and Resampling 

The clinical-CT volumes were cropped around the area of the sigmoid sinus and 

resampled using linear interpolation from 0.234 mm x 0.234 mm x 0.625 mm to 0.154 

mm x 0.154 mm x 0.154 mm isotropic to be approximately the same resolution as the 

µCT volumes. This was done to reduce the loss of detail from the µCT atlas 
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segmentations during registration and resampling to the resolution of the target clinical-

CT volumes. 

2.2.3.2 Rigid and Affine Registration 

Prior to non-rigid registration, a rigid step and affine step were used to approximately 

align each atlas to the target clinical-CT volume. This two-step approach was taken to 

improve accuracy. By applying the rigid registration first, the time required for the affine 

transformation is reduced, which is needed to scale and skew the atlas to approximate the 

target image before non-rigid registration. This two-step registration approach was 

performed using the NiftyReg implementation of a symmetric (source to target and target 

to source, simultaneously) block-matching registration, applied in three pyramidal levels 

from coarse to fine, doubling the resolution on each step up to the original 0.154 mm 

isotropic voxel size [18]. 

2.2.3.3 Non-Rigid Registration 

Non-rigid registration for the µCT atlases was also accomplished using the NiftyReg 

implementation of a B-spline pyramidal approach in three progressively finer control 

point grids using 12 mm x 12 mm x 12 mm, 6 mm x 6 mm x 6 mm, and 3 mm x 3 mm x 

3 mm grid spacings, respectively [19]. The loss function used by NiftyReg for the non-

rigid registration was a combination of normalized mutual information (NMI) and 

bending-energy (BE), which was optimized using a conjugate gradient scheme. An 

example of the process of volume registration from rigid to the final non-rigid B-spline 

registration is given in Figure 2.3. 
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Figure 2.3: Axial images of the temporal bone showing target clinical CT (magenta) 

and the µCT atlas (green). The unregistered images are shown overlaid without 

registration (left) and the result of a complete registration (right). Observe the shift 

of the position and shape of the sigmoid sinus. 

2.2.3.4 Label Fusion 

Individually, the accuracy when comparing Dice and Hausdorff distance values of the 

results of the single-atlas segmentations varied, but consistency and overall accuracy 

were greatly improved by combining the information from each of the six single-atlas 

segmentations for a given clinical-CT volume using label fusion methods. 

Three established and widely available label fusion methods were applied to the 

completed registrations: majority voting, STAPLE [20], and joint label fusion [14]. The 
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registrations were then compared to determine the differences between the methods as 

they related to the sigmoid sinus. 

2.2.3.4.1 Majority Voting 

The first label fusion method applied was majority voting. Majority voting counts the 

value (either 0 or 1) of each individual binary segmentation at each voxel in the image 

volume and takes the majority decision as the result. This method is fast and simple to 

apply and improves the consistency of the segmentation quality when compared to 

single-atlas segmentations. A disadvantage of this method is that inaccurate and outlying 

segmentations are given the same weight as the more accurate segmentations. 

2.2.3.4.2 STAPLE 

STAPLE is an expectation maximization algorithm for evaluating the performance of 

multiple separate segmentations and produces a final probabilistic segmentation. As 

opposed to majority voting, STAPLE aims to use the data from all the individual 

segmentations to determine performance levels of each individual segmentation and then 

uses that information to find a final segmentation deemed closest to the true segmentation 

by the algorithm [20]. On average, STAPLE produces much better results compared to 

majority voting; however, it takes more time especially when evaluating multiple atlases.  

2.2.3.4.3 Joint Label Fusion 

The third and final label fusion method used was the Advanced Normalization Tools 

(ANTs) implementation of joint label fusion. Joint label fusion adopts a similar statistical 

approach to STAPLE, but also uses information from each registration image volume 
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result along with the generated label map. Joint label fusion applies the probability that 

multiple atlases would make the same error at a particular voxel [14].  

2.2.3.5 Largest Connected Component 

After the multi-atlas procedure was completed with label fusion, island removal was 

performed to remove noise and disconnected voxels from the segmentation usually 

caused by the label fusion methods. Largest connected component island removal is 

quick to apply and has been applied in previous segmentation applications [13]. Since the 

sigmoid sinus is one connected blood vessel, the approach used for island removal was to 

discard all but the largest connected component of the segmentation. This resulted in a 

clean single label with no noise that was ready for use in a surgical simulator.  

2.3 Evaluation and Metrics 

The automated segmentations generated by the multi-atlas based method were evaluated 

by comparing to the ground truth, manual segmentations completed by the anatomist 

using a variety of metrics. The segmentation algorithm was applied to clinical-CT 

volumes, but the assessment was done with comparison to ground truth µCT which were 

registered to their corresponding clinical-CT since label maps are higher resolution in 

µCT as well as boundaries being more visible in µCT. 

The first metric used was the Dice coefficient, which determines the overlap between the 

automated and manual segmentations. The second metric used was the Hausdorff 

distance, which measures the maximum distance from one segmentation to another. The 

Hausdorff distance is extremely sensitive to noise, such that algorithms which segment a 
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smaller or larger portion of the structure than the ground truth will return larger values 

while segmenting the correct areas. Island removal completed in post-processing is 

reasonably effective at negating this sensitivity to noise as it removes the unconnected 

components of the segmentation. The final metric used was the average Hausdorff 

distance (AHD), which considers the mean of all the Hausdorff distances between the 

two segmentations. The AHD metric is less sensitive to outliers than the Hausdorff 

distance and provides an understanding of the magnitude of the distance between the 

segmentations that cannot be seen in the Dice coefficient. 

Using the Dice coefficient, Hausdorff distance, and AHD in conjunction with visual 

comparison provided an overall understanding of the differences in shape, size, outliers, 

and distance between the two compared segmentations (ground truth and algorithmic) 

while providing values that could easily be compared to previous segmentation projects 

in the literature [21]. 
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2.4 Results 

Results of the majority voting, STAPLE and joint label fusion metrics for segmentations 

created using just a single atlas (only one atlas is registered to the target image) as well as 

multi-atlas are shown in Table 2.1. 

Table 2.1: Mean values of all metrics found from single atlas and multi-atlas 

approaches. Standard deviations given in parenthesis. 

 Mean Dice Mean Hausdorff 
Distance [mm] 

Mean AHD [mm] 

Single-Atlas 0.62 (0.17) 13.64 (7.02) 1.00 (1.03) 

Majority Voting 0.75 (0.12) 11.26 (7.55) 0.48 (0.61) 

STAPLE 0.76 (0.11) 10.36 (5.71) 0.46 (0.41) 

Joint Label Fusion 0.77 (0.10) 10.39 (7.31) 0.30 (0.32) 

For visual inspection, an example of an automated segmentation result in both two-

dimensions (2D) and 3D is shown in Figure 2.4.  
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Figure 2.4: Screenshot from 3D Slicer showing an example automated segmentation 

in three slice views (a axial, b sagittal, c coronal) as well as in a 3D rendered 

temporal bone segment. The automated segmentation and 3D model of the sigmoid 

sinus are shown in blue against the grayscale clinical-CT volume from which it was 

segmented. 

All of the multi-atlas methods outperformed the single-atlas segmentations, which only 

produced a mean Dice of 0.62, a mean Hausdorff distance of 13.64 mm, and a mean 

AHD of 1.00 mm. Majority voting improved on single-atlas with a mean Dice of 0.75 

with a mean AHD of 0.48 mm. STAPLE was found to give a mean Dice score of 0.76 

with a standard deviation of 0.11. Joint label fusion’s resulting mean Dice score was 

slightly higher than STAPLE and provided a mean Dice of 0.77. Joint label fusion 

showed improvements in the average distance of 0.30 mm compared to STAPLE with an 
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average distance of 0.46. As expected when the AHD decreased the Dice coefficient 

increased. 

A comparison of the distances between the nearest points of the automated label fusion 

method results and the ground truth segmentation using absolute distance color maps can 

be seen in Figure 2.5. The colormaps revealed that the largest distance differences 

occurred at the inferior end near the jugular bulb within the jugular foramen where it 

connects to the jugular vein in the neck and the posterior extreme of the transverse 

portion of the sigmoid sinus of the segmented area of the sigmoid sinus. These areas are 

outside of the clinically relevant portion for surgical simulation. The distances were 

likely caused by differences in the size of the portion of the sigmoid sinus segmented 

between each ground truth model and the amount of the sigmoid sinus segmented by the 

algorithm. 

 

Figure 2.5: Colormaps projected on automated segmentation 3D models showing 

absolute distance in millimeters between the algorithm segmentations and the 

ground truth sigmoid sinus. 
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2.5 Discussion 

While the single-atlas approach to automated segmentation can occasionally provide 

comparable metric results to individual multi-atlas segmentations, the average 

performance of the single-atlas applied across the dataset of temporal bone images is 

much lower and the results are less consistent. This is likely due to the difficulty of 

capturing the high degree of variability of the sigmoid sinus anatomy in one example. 

This performance increase from single-atlas to multi-atlas has been seen in previous 

works that segmented other anatomical structures, such as the brain from MRI scans [16], 

[22]. 

The current methods presented for multi-atlas based segmentation of the sigmoid sinus 

provided accurate segmentations from clinical-CT scans which may be used in future 

surgical simulation. The use of joint label fusion, the most successful label fusion 

approach, resulted in a mean Dice coefficient score of 0.77, a mean Hausdorff distance of 

10.39 mm, and a mean AHD of 0.30 mm, along with reasonable visual results. The 

seemingly large mean Hausdorff distance may be attributed to the difference in the 

amount of the extremities segmented by the algorithm from the ground truth 

segmentations, since there were no large portions segmented outside the sigmoid sinus in 

the visual inspection.  

One drawback to joint label fusion is that the method requires much more computation 

time and storage space for registered images than STAPLE or majority voting, which 

performed almost as well as joint label fusion in the current work. STAPLE and majority 

voting are therefore attractive options for segmenting the sigmoid sinus when time and 

storage space is at a premium.  
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By using µCT atlases, detailed, high-resolution models were created that had comparable 

metric scores to other temporal bone structures segmented by previous groups using 

different methods. Other atlas-based approaches for segmenting the structures of the 

temporal bone differ from the one presented herein, as they do not use multiple atlases for 

one segmentation, do not use label fusion methods to better capture variability, do not use 

µCT atlases, and do not target the sigmoid sinus [13], [23]. 

Despite the accurate results produced by the present approach, it is important to note that 

since these are automatically generated models there is risk of error. If used clinically, 

automatically generated segmentations should be reviewed and revised as needed by an 

expert. Even in cases where the automated segmentation requires revision, automation 

significantly reduces the time and labor associated with manual segmentation. 

Finally, while the present study focused on the sigmoid sinus only, other temporal bone 

structures also need to be segmented for simulation purposes. Bony structures such as the 

middle-ear ossicles and cochlear shell can often be segmented using simple methods such 

as thresholding. Thresholding was not a viable option here due to the low contrast of the 

sigmoid sinus on the medial side. Nor is thresholding an option for other structures of the 

temporal bone that exhibit similar segmentation challenges to the sigmoid sinus such as 

the carotid artery, external auditory canal, tegmen, and the digastric ridge. Since 

capturing spatial inter-relationships between temporal bone structures using a few atlases 

is difficult because of the degree of variability, CNNs are utilized in Chapter 3 to segment 

all of these structures simultaneously while improving the portability of the solution. 
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Chapter 3 

3 Automated Segmentation of Temporal Bones Structures 
using Convolutional Neural Networks 

3.1 Introduction 

Segmentation of the following temporal bone structures is important for mastoidectomy 

simulator training: the sigmoid sinus, carotid artery, external auditory canal, tegmen 

outlining the border of the dura mater, and digastric ridge. The sigmoid sinus, external 

auditory canal, and tegmen, along with other temporal bone structures have been 

segmented in previous works [1]-[5]; however, the results could be improved upon in 

terms of speed and accuracy. Accurate segmentations are not only important to improve 

mastoidectomy simulation, but also to use metrics for surgical assessment such as the 

Welling scale, which requires these structures to determine a score [6], [7]. Each of these 

structures present unique challenges for segmentation including dehiscence, differing 

scales, complex boundaries, and patient variation [8]. 

Automated image segmentation has been previously accomplished through a variety of 

methods, the simplest of which is thresholding. While thresholding is effective and quick 

when used for structures with high contrast and sharp edges from their surroundings, it 

has difficulty with more complex structures with poor intensity delineation as are 

common in the temporal bone. A more advanced and effective method that has been used 

in the context of temporal bone structures is atlas-based methods [1]–[3]. While atlas-

based methods are far superior to thresholding for structures with less contrast, they 

require lengthy and difficult image registrations as well as large atlas databases on a 

user’s computer to capture the anatomic variability that can be found in the temporal 



51 

 

bone. A proposed method to address these problems is with a convolutional neural 

network (CNN). CNNs are deep neural networks which use hierarchies to combine 

learned simple patterns to predict larger more complex ones. This ability to infer complex 

patterns as well as their ability to retain some spatial relations from the image makes 

CNNs suited to the task of image classification and segmentation. Multiple CNNs have 

previously been developed for the purpose of segmenting various parts of human 

anatomy from 3D medical image volumes [9]–[13]. 

The present work details the adaptation, evaluation, and comparison of two deep CNN 

architectures for the segmentation of the sigmoid sinus, carotid artery, external auditory 

canal, tegmen, and the digastric ridge from clinical computed tomography (CT) scans of 

cadaveric temporal bones. These structures were selected for their importance to the 

assessment of a finished mastoidectomy with the Welling scale. The networks used, 

DeepMedic and DenseVNet, have been previously shown to be effective for segmenting 

structures of other anatomical regions [12], [13]. 

3.2 Materials and Methods 

3.2.1 Image Acquisition 

Image acquisition was completed with the same method as Chapter 2. Thirty-eight 

anonymized adult cadaveric temporal bones with normal anatomy that had not been 

previously operated on were used to develop the algorithm. Clinical-CT scans of the 

samples were performed using a Discovery CT750 HD Clinical Scanner with GE’s 

Gemstone CT detector at a resolution of 234μm x 234μm x 625μm and a voltage of 

120kV. Micro-CT (μCT) images used for ground truth creation were obtained from the 
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same samples and scanned with a General Electric (GE) Healthcare eXplore Locus μCT 

scanner at a resolution of 154μm x 154μm x 154μm and a voltage of 80kV. 

The cadaveric specimens were obtained with permission from the body bequeathal 

program at Western University, London, Ontario, Canada in accordance with the 

Anatomy Act of Ontario and Western’s Committee for Cadaveric Use in Research 

(approval number: #19062014). 

3.2.2 Ground Truth Segmentations 

The sigmoid sinus, carotid artery, external auditory canal, tegmen, and digastric ridge 

were segmented from micro-CT images by the lead author (DA) and an expert anatomist 

(KV) using a combination of semi-automated and manual tools in 3D Slicer, an open-

source medical image processing software [14], [15]. The μCT segmentations were 

rigidly registered with their corresponding clinical-CTs of the same sample to transfer the 

high-resolution ground truth segmentations. Consensus interpretation was provided by an 

experienced surgeon (SKA), and the lead author (DA).  

3.2.3 Datasets for CNN Training, Validation, and Testing 

The clinical-CT images were all normalized to intensity values between 0 and 1 prior to 

use in the training, validation, and testing of the networks. To improve accuracy the 

networks were trained, validated, and tested for left and right temporal bone samples 

separately. Both networks used the same samples for training, validation, and testing; 

approximately 70% were used for training, 10% for validation, and 20% for testing. This 

split allowed for enough data to test on despite the small total dataset. The validation set 

was used to monitor for potential overfitting and determine if early stopping was required 
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during the training of the networks. The left temporal bone training set consisted of 14 of 

the clinical-CT images, while the right temporal bone training set contained 12. The 

validation set consisted of two images per side, and the testing was done on four images 

per side. 

3.2.4 Convolutional Neural Networks 

Two deep convolutional neural networks, DeepMedic and DenseVNet, were optimized 

and trained. These networks were selected due to their significantly different design 

approaches as well as being originally developed for different anatomical regions. Both 

networks were implemented using NiftyNet, an open-source CNN platform for medical 

images built on TensorFlow [16]. 

3.2.4.1 DeepMedic 

The first network used for comparison was DeepMedic [13]. DeepMedic is a 3D deep 

CNN originally designed for brain lesion segmentation that uses two resolution pathways 

followed by a conditional random field. During training, rotational augmentation of ±10 

degrees and scaling of ±5% was randomly applied to improve the robustness of the 

network. Window sampling was done with a spatial window size of 57 x 57 x 57 voxels 

for the image and a spatial window size of 9 x 9 x 9 voxels for the labels using a balanced 

method where each label had the same probability of being sampled. The downscaling 

factor for DeepMedic was set to 3. Dice loss was used as the loss function and optimized 

using the Adam method with a learning rate of 0.001 [11], [17]. The training was done on 

clinical-CT images and was run for 10000 iterations. L2 regularization with a decay 

parameter of 0.00001 was applied to mitigate overfitting. 
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3.2.4.2 DenseVNet 

The second network used for comparison was DenseVNet [12]. DenseVNet is a deep, 

fully convolutional neural network initially used for abdominal organ segmentation. 

Rotational and scaling augmentations of ±10 degrees and ±5 % were applied throughout 

the training. Window sampling was done with a spatial window size of 128 x 128 x 128 

voxels for the image and 128 x 128 x 128 voxels for the labels and used the balanced 

sampling method. Dice loss was also used as the loss function and was optimized again 

using Adam. The training was run on the clinical-CT for 10000 iterations. L2 

regularization with a decay of 0.00001 was used for the same purpose described above. 

3.2.5 Post-Processing 

The output from the two networks was automatically post-processed using largest 

connected component island removal for all structures and morphological closing for the 

tegmen. Both operations were implemented using the Insight Toolkit (ITK) [18]. 

3.2.5.1 Largest Connected Component 

After the networks produced the segmentations, island removal was performed to 

eliminate noise and disconnected portions. Noise is often created in the output of the 

networks due to misclassifications and presents as small clusters of incorrectly marked 

voxels. Since each structure is a single connected object, each label value had every 

component discarded except the largest. The largest connected component operation is 

very quick to apply and has been used as a final step in previous medical image 

segmentation applications [19]. Applying the largest connected component operation 

resulted in labels with no scattered noise. 
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3.2.5.2 Morphological Closing 

Since the tegmen is less than 2 mm thick yet covers a relatively large surface area, it is 

common to get small holes in the tegmen’s surface. To counteract this, after the largest 

connected component is applied the tegmen segmentation is finalized with a 

morphological closing operation with a spherical kernel with a diameter of approximately 

5 mm (10 x 10 x 4 voxels at the clinical-CT resolution). 

3.2.6 Evaluation and Metrics 

Evaluation was completed with the use of quantitative metrics as well as visual 

inspection. Metrics were obtained by comparing the automated segmentation results to 

the ground truth manual segmentations created by the authors. The time required to 

produce a segmentation from a clinical-CT (time to segment) was also recorded. 

The quantitative metrics used were the Dice coefficient, volumetric similarity, Hausdorff 

distance, and average Hausdorff distance (AHD). The Dice coefficient determines the 

overlap between two segmentations and is commonly used to evaluate medical image 

segmentations. The volumetric similarity metric provides a non-overlap-based 

comparison of the absolute volumes of two segmentations. The Hausdorff distance gives 

a value for the maximum distance from the automated to the ground truth segmentation, 

however it is extremely sensitive to both noise and cases where an algorithm segments 

more of the structure than was performed manually. While the largest connected 

component operation can mostly address the former, the latter would still present in the 

Hausdorff distance metric. Finally, the AHD metric provides a less sensitive approach to 

distance measurement and gives a mean of the Hausdorff distances for each point in the 

segmentation [20]. 
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3.3 Results 

The results of the DeepMedic network when run on the test set are shown in Table 3.1. 

The trained DeepMedic network took approximately 1-2 minutes to create a 

segmentation from a test set clinical-CT when using a modern GPU for inference 

(estimated using a GTX1080Ti). 

Table 3.1: Quantitative metrics for DeepMedic segmentation results. Means are 

given with standard deviations in parentheses. 

 Dice Volumetric 
Similarity 

Hausdorff 
Distance [mm] 

AHD [mm] 
 

Sigmoid Sinus 0.72 (0.02) 0.91 (0.12) 18.81 (7.38) 0.74 (0.38) 

Carotid Artery 0.20 (0.21) 0.22 (0.23) 40.90 (11.74) 7.76 (4.18) 

External 
Auditory Canal 

0.60 (0.02) 0.80 (0.16) 8.32 (1.96) 1.12 (0.57) 

Tegmen 0.41 (0.12) 0.66 (0.21) 42.92 (18.60) 4.63 (2.19) 

Digastric Ridge 0.02 (0.03) 0.12 (0.09) 47.00 (2.36) 10.79 (5.12) 

All the metrics from the comparison of the DeepMedic segmentations to ground truth 

show reasonable values for the overlap, volume similarity, and distance metrics of the 

sigmoid sinus and external auditory canal but poor quantitative results were found for the 

carotid artery, tegmen, and digastric ridge. A visual example of the results from 

DeepMedic with 2D slices and a 3D rendering is shown in Figure 3.1. 
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Figure 3.1: Screenshot from 3D Slicer of DeepMedic segmentation of a sample in 

three slice views (a axial, b sagittal, c coronal) and the structure segmentations 

rendered in 3D in the top right panel. 

Visual inspection revealed that the DeepMedic implementation had issues segmenting 

many of the structures. The segmentation of the carotid artery had mistakenly filled many 

of the mastoid air cells; the tegmen had several holes in the surface; and the digastric 

ridge had been over segmented past its boundaries. Results for the sigmoid sinus and 

external auditory canal were better but still had issues in areas of low contrast with 

surrounding areas. 

The metrics computed for the DenseVNet network are shown in Table 3.2. The trained 

DenseVNet also generally took approximately 1-2 minutes to generate a segmentation 

from a testing set clinical-CT. 
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Table 3.2: Quantitative metrics for DenseVNet segmentation results. Means are 

given with standard deviations in parentheses. 

 Dice Volumetric 
Similarity 

Hausdorff 
distance [mm] 

AHD [mm] 

Sigmoid Sinus 0.85 (0.04) 0.96 (0.03) 11.41 (2.92) 0.37 (0.33) 

Carotid Artery 0.77 (0.05) 0.94 (0.04) 3.97 (1.52) 0.19 (0.03) 

External 
Auditory Canal 

0.79 (0.06) 0.95 (0.04) 4.29 (0.37) 0.20 (0.11) 

Tegmen 0.53 (0.14) 0.92 (0.07) 20.74 (6.19) 1.45 (0.15) 

Digastric Ridge 0.51 (0.09) 0.56 (0.19) 3.76 (1.33) 1.67 (2.28) 

The quantitative results of DenseVNet show high accuracy in overlap, similarity, and 

distance for all structures except the digastric ridge which had worse metrics than the 

other structures. 

A visual example of the results from the DenseVNet with 2D slices as well and a 3D 

rendering is shown in Figure 3.2. 
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Figure 3.2: Screenshot from 3D Slicer of DenseVNet segmentation of a sample in 

three slice views (a axial, b sagittal, c coronal) and the structure segmentations 

rendered in 3D in the top right panel. 

Visual inspection for the DenseVNet outputs revealed mostly high accuracy, clean 

segmentations except for the presence of occasional holes in the tegmen and inconsistent 

quality for the digastric ridge. 

3.4 Discussion 

The DenseVNet CNN produced far more accurate and consistent results across all 

structures in the test set overall when compared to the DeepMedic implementation. While 

the outputs from DenseVNet produced clean segmentations, DeepMedic had problems 

differentiating air cells in the mastoid from structures especially in the case of the carotid 
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artery. DeepMedic also had greater trouble with areas of low contrast. These issues 

resulted in significant noise in heavily pneumatized areas as well as overflowing 

segmentations in areas with poor contrast borders, making many of the test result 

segmentations unusable. DeepMedic was able to produce reasonably accurate 

segmentations of the sigmoid sinus and external auditory canal but was far outperformed 

by DenseVNet on all structures including the two mentioned. DeepMedic had an average 

Dice score of 0.39 across all structures compared to 0.69 with DenseVNet. 

All temporal bone structures except for the digastric ridge had high accuracy results when 

using the DenseVNet. The digastric ridge is a uniquely challenging structure to segment 

due to its small size, lack of intensity delineation at its ends, proximity to the highly 

pneumatized portion of the mastoid, and its variability between samples. Furthermore, its 

small volume relative to other structures makes even small visual differences result in 

much lower Dice and volumetric similarity scores [20]. Improvements could be made 

with more data for training as well as potentially using a separate specific network with a 

region of interest cropped around the digastric ridge area, however this would increase 

the amount of manual intervention required. 

Compared to previous works in the field of temporal bone image segmentation, the 

DenseVNet implementation was found to be an improvement over atlas and multi-atlas 

based methods for segmentation of the sigmoid sinus and external auditory canal. The 

multi-atlas based approach presented in Allen et. al [1] for segmenting the sigmoid sinus 

produced a mean Dice of 0.77 compared to a mean Dice of 0.85 in the present study. 

Powell et. al [3] reported a volumetric similarity of 0.75 for the sigmoid sulcus and 0.83 

for the external auditory canal, and 0.82 for the tegmen when lefts and rights were 
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averaged together. The DenseVNet produced a mean volumetric similarity of 0.96 for the 

sigmoid sinus, 0.95 for the external auditory canal, and 0.92 for the tegmen. 

While the majority of the segmentation results presented in the current paper were 

accurate, there is always a risk of error when using algorithmically generated models. 

Depending on the application, segmentations should be reviewed and potentially edited 

by an expert. However, while automated segmentations may occasionally require 

revisions, they still improve the process of segmentation considerably by reducing the 

amount of expert time and labor required. 

The dataset used in this study was limited in size and because all data came from the 

same clinical-CT scanner. Future work may benefit from collecting data from different 

scanners and institutions which may improve the robustness, generalization, and potential 

accuracy of the automated networks. 
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Chapter 4 

4 Conclusions and Future Directions 

4.1 Conclusions 

This work detailed the development and testing of methods for automatically segmenting 

structures of the temporal bone for the purpose of generating accurate, patient-specific 

models from medical images for mastoidectomy simulation.  

In Chapter 2, a novel multi-atlas based approach for segmenting the sigmoid sinus from 

clinical computed tomography (CT) images was described where multiple micro-CT 

atlases were registered to target clinical-CT images and then combined with label fusion 

methods. Developing an automated segmentation of the sigmoid sinus was a difficult task 

due to its variability [1], [2] and low contrast on the medial side. Three label fusion 

methods were compared to single-atlas techniques and it was found that the label fusion 

methods greatly improved quantitative and qualitative accuracy and consistency. Joint 

label fusion produced the best results which when compared to ground truth manual 

segmentations, with a Dice coefficient value of 0.77, a Hausdorff distance of 10.39 mm, 

and an average Hausdorff distance of 0.30 mm which is less than two voxels. Visual 

inspection revealed that the segmentations were accurate and high-resolution. 

In Chapter 3, an accurate CNN-based approach for segmenting five of the temporal bone 

structures required for mastoidectomy simulation was developed. The five structures 

were the sigmoid sinus, carotid artery, external auditory canal, tegmen, and the digastric 

ridge, which had not been segmented automatically in previous works. The DenseVNet 

implementation produced superior results when compared to the implementation of 



65 

 

DeepMedic. While DeepMedic struggled to segment many of the structures mostly due to 

false positives, DenseVNet produced accurate quantitative metric results when compared 

to the ground truth segmentations. DenseVNet had mean values averaged across all test 

samples and structures of 0.69 for Dice, 0.87 volumetric similarity, 8.83 mm Hausdorff 

distance, and 0.77 mm average Hausdorff distance. The segmentation algorithm had a 

time to segmentation of approximately one to two minutes for a temporal bone image. 

When previously segmented structures were compared to previous works, the DenseVNet 

implementation had more accurate results. 

4.2 Future Directions 

Automated segmentation algorithms for medical imaging are constantly improving. As 

new and improved methods and architectures for learning how to segment anatomy are 

released, they should be assessed for their effectiveness in the temporal bone. 

The automated algorithm described here would benefit from the addition of more relevant 

structures in the temporal bone such as the ossicles, cochlea, internal auditory canal, etc. 

This would further improve the 3D models available in a simulator for visualization and 

trainee assessment. 

Increasing the amount and variety of temporal bone imaging data would improve the 

robustness and accuracy of the software when used at other institutions with different 

imaging protocols. Furthermore, adding diseased or abnormal anatomy to the dataset 

used for development would allow for automated segmentation of these special cases. 

Many of the tools specific to the automated segmentation of temporal bone structures 

previously described in the literature are not available to the public either for download or 
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in open-source format. Making the trained models and code open-source and accessible 

to other groups would help to translate the research findings into real-life clinical use. In 

addition to making the algorithm code open-source, implementing an easy-to-use 

graphical user interface (GUI) for all major platforms would increase accessibility among 

users with less technological experience. This could be done either as a standalone 

program or as an extension within a freely available medical image processing platform 

such as 3D Slicer [3], [4]. Finally, integrating this segmentation software directly into a 

mastoidectomy simulator such as CardinalSim [5] along with automated assessment 

using the Welling scale [6] would allow for surgical simulation with assessment all 

within one application. 
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