182,886 research outputs found

    Development of an in-field tree imaging system : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology at Massey University

    Get PDF
    Quality inventory information is essential for optimal resource utilisation in the forestry industry. In-field tree imaging is a method which has been proposed to improve the preharvest inventor assessment of standing trees. It involves the application of digital imaging technology to this task. The method described generates a three dimensional model of each tree through the capture of two orthogonal images from ground level. The images are captured and analysed using the "TreeScan" in-field tree imaging system. This thesis describes the design, development, and evaluation of the TreeScan system. The thesis can also be used as a technical reference for the system and as such contains appropriate technical and design detail. The TreeScan system consists of a portable computer, a custom designed high resolution scanner with integral microcontroller, a calibration rod, and custom designed processing software. Images of trees are captured using the scanner which contains a CCD line scan camera and a precision scanning mechanism. Captured images are analysed on the portable computer using customised image processing software to estimate real world tree dimensions and shape. The TreeScan system provides quantitative estimates of five tree parameters; height, sweep, stem diameter, branch diameter, and feature separation such as internodal distance. In addition to these estimates a three dimensional model is generated which can be further processed to determine the optimal stem breakdown into logs

    A Communication Monitor for Wireless Sensor Networks Based on Software Defined Radio

    Get PDF
    Link quality estimation of reliability-crucial wireless sensor networks (WSNs) is often limited by the observability and testability of single-chip radio transceivers. The estimation is often based on collection of packer-level statistics, including packet reception rate, or vendor-specific registers, such as CC2420's Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). The speed or accuracy of such metrics limits the performance of reliability mechanisms built in wireless sensor networks. To improve link quality estimation in WSNs, we designed a powerful wireless communication monitor based on Software Defined Radio (SDR). We studied the relations between three implemented link quality metrics and packet reception rate under different channel conditions. Based on a comparison of the metrics' relative advantages, we proposed using a combination of them for fast and accurate estimation of a sensor network link

    Comparison of Gravitational Wave Detector Network Sky Localization Approximations

    Full text link
    Gravitational waves emitted during compact binary coalescences are a promising source for gravitational-wave detector networks. The accuracy with which the location of the source on the sky can be inferred from gravitational wave data is a limiting factor for several potential scientific goals of gravitational-wave astronomy, including multi-messenger observations. Various methods have been used to estimate the ability of a proposed network to localize sources. Here we compare two techniques for predicting the uncertainty of sky localization -- timing triangulation and the Fisher information matrix approximations -- with Bayesian inference on the full, coherent data set. We find that timing triangulation alone tends to over-estimate the uncertainty in sky localization by a median factor of 44 for a set of signals from non-spinning compact object binaries ranging up to a total mass of 20M⊙20 M_\odot, and the over-estimation increases with the mass of the system. We find that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. However, even after corrections, these techniques can yield significantly different results to the full analysis on specific mock signals. Thus, while the approximate techniques may be useful in providing rapid, large scale estimates of network localization capability, the fully coherent Bayesian analysis gives more robust results for individual signals, particularly in the presence of detector noise.Comment: 11 pages, 7 Figure

    Reproducible Econometric Research. A Critical Review of the State of the Art.

    Get PDF
    Recent software developments are reviewed from the vantage point of reproducible econometric research. We argue that the emergence of new tools, particularly in the open-source community, have greatly eased the burden of documenting and archiving both empirical and simulation work in econometrics. Some of these tools are highlighted in the discussion of three small replication exercises.Series: Research Report Series / Department of Statistics and Mathematic
    • 

    corecore