79,801 research outputs found

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    Distributed Simulation of Heterogeneous and Real-time Systems

    Get PDF
    This work describes a framework for distributed simulation of cyber-physical systems (CPS). Modern CPS comprise large numbers of heterogeneous components, typically designed in very different tools and languages that are not or not easily composeable. Evaluating such large systems requires tools that integrate all components in a systematic, well-defined manner. This work leverages existing frameworks to facilitate the integration offers validation by simulation. A framework for distributed simulation is the IEEE High-Level Architecture (HLA) compliant tool CERTI, which provides the infrastructure for co-simulation of models in various simulation environments as well as hardware components. We use CERTI in combination with Ptolemy II, an environment for modeling and simulating heterogeneous systems. In particular, we focus on models of a CPS, including the physical dynamics of a plant, the software that controls the plant, and the network that enables the communication between controllers. We describe the Ptolemy extensions for the interaction with HLA and demonstrate the approach on a flight control system simulation

    Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    Full text link
    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584

    Open-architecture Implementation of Fragment Molecular Orbital Method for Peta-scale Computing

    Full text link
    We present our perspective and goals on highperformance computing for nanoscience in accordance with the global trend toward "peta-scale computing." After reviewing our results obtained through the grid-enabled version of the fragment molecular orbital method (FMO) on the grid testbed by the Japanese Grid Project, National Research Grid Initiative (NAREGI), we show that FMO is one of the best candidates for peta-scale applications by predicting its effective performance in peta-scale computers. Finally, we introduce our new project constructing a peta-scale application in an open-architecture implementation of FMO in order to realize both goals of highperformance in peta-scale computers and extendibility to multiphysics simulations.Comment: 6 pages, 9 figures, proceedings of the 2nd IEEE/ACM international workshop on high performance computing for nano-science and technology (HPCNano06

    Distributed Real-Time Emulation of Formally-Defined Patterns for Safe Medical Device Control

    Full text link
    Safety of medical devices and of their interoperation is an unresolved issue causing severe and sometimes deadly accidents for patients with shocking frequency. Formal methods, particularly in support of highly reusable and provably safe patterns which can be instantiated to many device instances can help in this regard. However, this still leaves open the issue of how to pass from their formal specifications in logical time to executable emulations that can interoperate in physical time with other devices and with simulations of patient and/or doctor behaviors. This work presents a specification-based methodology in which virtual emulation environments can be easily developed from formal specifications in Real-Time Maude, and can support interactions with other real devices and with simulation models. This general methodology is explained in detail and is illustrated with two concrete scenarios which are both instances of a common safe formal pattern: one scenario involves the interaction of a provably safe pacemaker with a simulated heart; the other involves the interaction of a safe controller for patient-induced analgesia with a real syringe pump.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Interactive Small-Step Algorithms I: Axiomatization

    Full text link
    In earlier work, the Abstract State Machine Thesis -- that arbitrary algorithms are behaviorally equivalent to abstract state machines -- was established for several classes of algorithms, including ordinary, interactive, small-step algorithms. This was accomplished on the basis of axiomatizations of these classes of algorithms. Here we extend the axiomatization and, in a companion paper, the proof, to cover interactive small-step algorithms that are not necessarily ordinary. This means that the algorithms (1) can complete a step without necessarily waiting for replies to all queries from that step and (2) can use not only the environment's replies but also the order in which the replies were received

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft
    • 

    corecore