42,232 research outputs found

    Non-adaptive Group Testing on Graphs

    Full text link
    Grebinski and Kucherov (1998) and Alon et al. (2004-2005) study the problem of learning a hidden graph for some especial cases, such as hamiltonian cycle, cliques, stars, and matchings. This problem is motivated by problems in chemical reactions, molecular biology and genome sequencing. In this paper, we present a generalization of this problem. Precisely, we consider a graph G and a subgraph H of G and we assume that G contains exactly one defective subgraph isomorphic to H. The goal is to find the defective subgraph by testing whether an induced subgraph contains an edge of the defective subgraph, with the minimum number of tests. We present an upper bound for the number of tests to find the defective subgraph by using the symmetric and high probability variation of Lov\'asz Local Lemma

    β\beta-Stars or On Extending a Drawing of a Connected Subgraph

    Full text link
    We consider the problem of extending the drawing of a subgraph of a given plane graph to a drawing of the entire graph using straight-line and polyline edges. We define the notion of star complexity of a polygon and show that a drawing ΓH\Gamma_H of an induced connected subgraph HH can be extended with at most min{h/2,β+log2(h)+1}\min\{ h/2, \beta + \log_2(h) + 1\} bends per edge, where β\beta is the largest star complexity of a face of ΓH\Gamma_H and hh is the size of the largest face of HH. This result significantly improves the previously known upper bound of 72V(H)72|V(H)| [5] for the case where HH is connected. We also show that our bound is worst case optimal up to a small additive constant. Additionally, we provide an indication of complexity of the problem of testing whether a star-shaped inner face can be extended to a straight-line drawing of the graph; this is in contrast to the fact that the same problem is solvable in linear time for the case of star-shaped outer face [9] and convex inner face [13].Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    New Results on Quantum Property Testing

    Get PDF
    We present several new examples of speed-ups obtainable by quantum algorithms in the context of property testing. First, motivated by sampling algorithms, we consider probability distributions given in the form of an oracle f:[n][m]f:[n]\to[m]. Here the probability \PP_f(j) of an outcome j[m]j\in[m] is the fraction of its domain that ff maps to jj. We give quantum algorithms for testing whether two such distributions are identical or ϵ\epsilon-far in L1L_1-norm. Recently, Bravyi, Hassidim, and Harrow \cite{BHH10} showed that if \PP_f and \PP_g are both unknown (i.e., given by oracles ff and gg), then this testing can be done in roughly m\sqrt{m} quantum queries to the functions. We consider the case where the second distribution is known, and show that testing can be done with roughly m1/3m^{1/3} quantum queries, which we prove to be essentially optimal. In contrast, it is known that classical testing algorithms need about m2/3m^{2/3} queries in the unknown-unknown case and about m\sqrt{m} queries in the known-unknown case. Based on this result, we also reduce the query complexity of graph isomorphism testers with quantum oracle access. While those examples provide polynomial quantum speed-ups, our third example gives a much larger improvement (constant quantum queries vs polynomial classical queries) for the problem of testing periodicity, based on Shor's algorithm and a modification of a classical lower bound by Lachish and Newman \cite{lachish&newman:periodicity}. This provides an alternative to a recent constant-vs-polynomial speed-up due to Aaronson \cite{aaronson:bqpph}.Comment: 2nd version: updated some references, in particular to Aaronson's Fourier checking proble

    On bounding the bandwidth of graphs with symmetry

    Get PDF
    We derive a new lower bound for the bandwidth of a graph that is based on a new lower bound for the minimum cut problem. Our new semidefinite programming relaxation of the minimum cut problem is obtained by strengthening the known semidefinite programming relaxation for the quadratic assignment problem (or for the graph partition problem) by fixing two vertices in the graph; one on each side of the cut. This fixing results in several smaller subproblems that need to be solved to obtain the new bound. In order to efficiently solve these subproblems we exploit symmetry in the data; that is, both symmetry in the min-cut problem and symmetry in the graphs. To obtain upper bounds for the bandwidth of graphs with symmetry, we develop a heuristic approach based on the well-known reverse Cuthill-McKee algorithm, and that improves significantly its performance on the tested graphs. Our approaches result in the best known lower and upper bounds for the bandwidth of all graphs under consideration, i.e., Hamming graphs, 3-dimensional generalized Hamming graphs, Johnson graphs, and Kneser graphs, with up to 216 vertices
    corecore