18,698 research outputs found

    Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization

    Get PDF
    We describe methods for proving upper and lower bounds on infinite-time averages in deterministic dynamical systems and on stationary expectations in stochastic systems. The dynamics and the quantities to be bounded are assumed to be polynomial functions of the state variables. The methods are computer-assisted, using sum-of-squares polynomials to formulate sufficient conditions that can be checked by semidefinite programming. In the deterministic case, we seek tight bounds that apply to particular local attractors. An obstacle to proving such bounds is that they do not hold globally; they are generally violated by trajectories starting outside the local basin of attraction. We describe two closely related ways past this obstacle: one that requires knowing a subset of the basin of attraction, and another that considers the zero-noise limit of the corresponding stochastic system. The bounding methods are illustrated using the van der Pol oscillator. We bound deterministic averages on the attracting limit cycle above and below to within 1%, which requires a lower bound that does not hold for the unstable fixed point at the origin. We obtain similarly tight upper and lower bounds on stochastic expectations for a range of noise amplitudes. Limitations of our methods for certain types of deterministic systems are discussed, along with prospects for improvement.Comment: 25 pages; Added new Section 7.2; Added references; Corrected typos; Submitted to SIAD

    The linearization problem of a binary quadratic problem and its applications

    Full text link
    We provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore-Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. Finally, we present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem

    Quadratic diameter bounds for dual network flow polyhedra

    Full text link
    Both the combinatorial and the circuit diameters of polyhedra are of interest to the theory of linear programming for their intimate connection to a best-case performance of linear programming algorithms. We study the diameters of dual network flow polyhedra associated to bb-flows on directed graphs G=(V,E)G=(V,E) and prove quadratic upper bounds for both of them: the minimum of (V1)E(|V|-1)\cdot |E| and 16V3\frac{1}{6}|V|^3 for the combinatorial diameter, and V(V1)2\frac{|V|\cdot (|V|-1)}{2} for the circuit diameter. The latter strengthens the cubic bound implied by a result in [De Loera, Hemmecke, Lee; 2014]. Previously, bounds on these diameters have only been known for bipartite graphs. The situation is much more involved for general graphs. In particular, we construct a family of dual network flow polyhedra with members that violate the circuit diameter bound for bipartite graphs by an arbitrary additive constant. Further, it provides examples of circuit diameter 43V4\frac{4}{3}|V| - 4

    A refined error analysis for fixed-degree polynomial optimization over the simplex

    Full text link
    We consider the problem of minimizing a fixed-degree polynomial over the standard simplex. This problem is well known to be NP-hard, since it contains the maximum stable set problem in combinatorial optimization as a special case. In this paper, we revisit a known upper bound obtained by taking the minimum value on a regular grid, and a known lower bound based on P\'olya's representation theorem. More precisely, we consider the difference between these two bounds and we provide upper bounds for this difference in terms of the range of function values. Our results refine the known upper bounds in the quadratic and cubic cases, and they asymptotically refine the known upper bound in the general case.Comment: 13 page

    Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation

    Get PDF
    We consider the problem of certifying an inequality of the form f(x)0f(x)\geq 0, xK\forall x\in K, where ff is a multivariate transcendental function, and KK is a compact semialgebraic set. We introduce a certification method, combining semialgebraic optimization and max-plus approximation. We assume that ff is given by a syntaxic tree, the constituents of which involve semialgebraic operations as well as some transcendental functions like cos\cos, sin\sin, exp\exp, etc. We bound some of these constituents by suprema or infima of quadratic forms (max-plus approximation method, initially introduced in optimal control), leading to semialgebraic optimization problems which we solve by semidefinite relaxations. The max-plus approximation is iteratively refined and combined with branch and bound techniques to reduce the relaxation gap. Illustrative examples of application of this algorithm are provided, explaining how we solved tight inequalities issued from the Flyspeck project (one of the main purposes of which is to certify numerical inequalities used in the proof of the Kepler conjecture by Thomas Hales).Comment: 7 pages, 3 figures, 3 tables, Appears in the Proceedings of the European Control Conference ECC'13, July 17-19, 2013, Zurich, pp. 2244--2250, copyright EUCA 201

    Semidefinite approximation for mixed binary quadratically constrained quadratic programs

    Full text link
    Motivated by applications in wireless communications, this paper develops semidefinite programming (SDP) relaxation techniques for some mixed binary quadratically constrained quadratic programs (MBQCQP) and analyzes their approximation performance. We consider both a minimization and a maximization model of this problem. For the minimization model, the objective is to find a minimum norm vector in NN-dimensional real or complex Euclidean space, such that MM concave quadratic constraints and a cardinality constraint are satisfied with both binary and continuous variables. {\color{blue}By employing a special randomized rounding procedure, we show that the ratio between the norm of the optimal solution of the minimization model and its SDP relaxation is upper bounded by \cO(Q^2(M-Q+1)+M^2) in the real case and by \cO(M(M-Q+1)) in the complex case.} For the maximization model, the goal is to find a maximum norm vector subject to a set of quadratic constraints and a cardinality constraint with both binary and continuous variables. We show that in this case the approximation ratio is bounded from below by \cO(\epsilon/\ln(M)) for both the real and the complex cases. Moreover, this ratio is tight up to a constant factor
    corecore