40 research outputs found

    On implementing dynamically reconfigurable architectures

    Get PDF
    Dynamically reconfigurable architectures have the ability to change their structure at each step of a computation. This dissertation studies various aspects of implementing dynamic reconfiguration, ranging from hardware building blocks and low-level architectures to modeling issues and high-level algorithm design. First we derive conditions under which classes of communication sets can be optimally scheduled on the circuit-switched tree (CST). Then we present a method to configure the CST to perform in constant time all communications scheduled for a step. This results in a constant time implementation of a step of a segmentable bus, a fundamental dynamically reconfigurable structure. We introduce a new bus delay measure (bends-cost) and define the bends-cost LR-Mesh; the LR-Mesh is a widely used reconfigurable model. Unlike the (idealized) LR-Mesh, which ignores bus delay, the bends-cost LR-Mesh uses the number of bends in a bus to estimate its delay. We present an implementation for which the bends-cost is an accurate estimate of the actual delay. We present algorithms to simulate various LR-Mesh configuration classes on the bends-cost LR-Mesh. For semimonotonic configurations, a Θ(N)*Θ(N) bends-cost LR-Mesh with bus delay at most D can simulate a step of the idealized N*N LR-Mesh in O((log N/(log D-log Δ))2) time (where Δ is the delay of an N-element segmentable bus), while employing about the same number of processors. For some special cases this time reduces to O(log N/(log D-log Δ)). If D=Nε, for an arbitrarily small constant ε \u3e 0, then the running times of bends-cost LR-Mesh algorithms are within a constant of their idealized counterparts. We also prove that with a polynomial blowup in the number of processors and D=Nε, the bends-cost LR-Mesh can simulate any step of an idealized LR-Mesh in constant time, thereby establishing that these models have the same power. We present an implementation (in VHDL) of the Enhanced Self Reconfigurable Gate Array (E-SRGA) architecture and perform a cost-benefit study for different dynamic reconfiguration features. This study shows our approach to be feasible

    Efficient Algorithms for a Mesh-Connected Computer with Additional Global Bandwidth

    Full text link
    This thesis shows that adding additional global bandwidths to a mesh-connected computer can greatly improve the performance. The goal of this project is to design algorithms for mesh-connected computers augmented with limited global bandwidth, so that we can further enhance our understanding of the parallel/serial nature of the problems on evolving parallel architectures. We do this by first solving several problems associated with fundamental data movement, then summarize ways to resolve different situations one may observe in data movement in parallel computing. This can help us to understand whether the problem is easily parallelizable on different parallel models. We give efficient algorithms to solve several fundamental problems, which include sorting, counting, fast Fourier transform, finding a minimum spanning tree, finding a convex hull, etc. We show that adding a small amount of global bandwidth makes a practical design that combines aspects of mesh and fully connected models to achieve the benefits of each. Most of the algorithms are optimal. For future work, we believe that algorithms with peak-power constrains can make our model well adapted to the recent architectures in high performance computing.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150001/1/anyujie_1.pd

    Application of HPC in eddy current electromagnetic problem solution

    Get PDF
    As engineering problems are becoming more and more advanced, the size of an average model solved by partial differential equations is rapidly growing and, in order to keep simulation times within reasonable bounds, both faster computers and more efficient software implementations are needed. In the first part of this thesis, the full potential of simulation software has been exploited through high performance parallel computing techniques. In particular, the simulation of induction heating processes is accomplished within reasonable solution times, by implementing different parallel direct solvers for large sparse linear system, in the solution process of a commercial software. The performance of such library on shared memory systems has been remarkably improved by implementing a multithreaded version of MUMPS (MUltifrontal Massively Parallel Solver) library, which have been tested on benchmark matrices arising from typical induction heating process simulations. A new multithreading approach and a low rank approximation technique have been implemented and developed by MUMPS team in Lyon and Toulouse. In the context of a collaboration between MUMPS team and DII-University of Padova, a preliminary version of such functionalities could be tested on induction heating benchmark problems, and a substantial reduction of the computational cost and memory requirements could be achieved. In the second part of this thesis, some examples of design methodology by virtual prototyping have been described. Complex multiphysics simulations involving electromagnetic, circuital, thermal and mechanical problems have been performed by exploiting parallel solvers, as developed in the first part of this thesis. Finally, multiobjective stochastic optimization algorithms have been applied to multiphysics 3D model simulations in search of a set of improved induction heating device configurations

    Realization and Formal Analysis of Asynchronous Pulse Communication Circuits

    Get PDF
    This work presents an approach to constructing asynchronous pulsed communication circuits. These circuits use small delay elements to introduce a gate level sense of time, removing the need for either a clock or handshaking signal to be part of a high-speed communication link. This construction method allows the creation of links with better than normal jitter tolerance, allowing for simple circuit architectures that can easily be made robust to radiation induced soft error. A 5Gbps radiation-hardened link, targeted at use in detector modules at the LHC, will be presented. This application presents a special challenge due to both very high radiation levels (1+MGy life time dose) and the demand for minimum resource (area, power, cable cost) use. The presented link, realized in 130nm technology, is unique in that it has low power (~50mW end to end) and very low area 0.12mm^2 including electrostatic discharge protection, and I/O amplifiers. Due to its asynchronous construction and the gate design style, the link has essentially zero power dissipation when idle, and enters and exits its idle state with no delay. In addition to the construction of the link, this presentation covers the design and analysis methodology that can be used to create other asynchronous communication circuits. The methodology achieves higher performance than conventional static technology but needs only a reasonable design effort using tools and strategies that are only mildly extended versions of those familiar to digital static designers. It is used to construct the serializer, deserializer, and self-test circuitry for the presented link. In this case, a 5Gbps SER/DES and a 2GHz parallel pseudo-random number generator are implemented in 130nm CMOS technology using a gate design style that does not dissipate static power

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Journal of Telecommunications and Information Technology, 2008, nr 1

    Get PDF
    kwartalni
    corecore