6 research outputs found

    A Tight Algorithm for Strongly Connected Steiner Subgraph On Two Terminals With Demands

    Get PDF
    Given an edge-weighted directed graph G=(V,E)G=(V,E) on nn vertices and a set T={t1,t2,,tp}T=\{t_1, t_2, \ldots, t_p\} of pp terminals, the objective of the \scss (pp-SCSS) problem is to find an edge set HEH\subseteq E of minimum weight such that G[H]G[H] contains an titjt_{i}\rightarrow t_j path for each 1ijp1\leq i\neq j\leq p. In this paper, we investigate the computational complexity of a variant of 22-SCSS where we have demands for the number of paths between each terminal pair. Formally, the \sharinggeneral problem is defined as follows: given an edge-weighted directed graph G=(V,E)G=(V,E) with weight function ω:ER0\omega: E\rightarrow \mathbb{R}^{\geq 0}, two terminal vertices s,ts, t, and integers k1,k2k_1, k_2 ; the objective is to find a set of k1k_1 paths F1,F2,,Fk1F_1, F_2, \ldots, F_{k_1} from sts\leadsto t and k2k_2 paths B1,B2,,Bk2B_1, B_2, \ldots, B_{k_2} from tst\leadsto s such that eEω(e)ϕ(e)\sum_{e\in E} \omega(e)\cdot \phi(e) is minimized, where ϕ(e)=max{{i[k1]:eFi} , {j[k2]:eBj}}\phi(e)= \max \Big\{|\{i\in [k_1] : e\in F_i\}|\ ,\ |\{j\in [k_2] : e\in B_j\}|\Big\}. For each k1k\geq 1, we show the following: The \sharing problem can be solved in nO(k)n^{O(k)} time. A matching lower bound for our algorithm: the \sharing problem does not have an f(k)no(k)f(k)\cdot n^{o(k)} algorithm for any computable function ff, unless the Exponential Time Hypothesis (ETH) fails. Our algorithm for \sharing relies on a structural result regarding an optimal solution followed by using the idea of a "token game" similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the \sharinggeneral problem if min{k1,k2}2\min\{k_1, k_2\}\geq 2. Therefore \sharing is the most general problem one can attempt to solve with our techniques.Comment: To appear in Algorithmica. An extended abstract appeared in IPEC '1

    A tight lower bound for steiner orientation

    Get PDF
    In the STEINER ORIENTATION problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s⇝t path for each terminal pair (s,t)∈T. Arkin and Hassin [DAM’02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2 . From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all k≥1. Pilipczuk and Wahlström [SODA ’16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the STEINER ORIENTATION problem does not admit an f(k)⋅no(k/logk) algorithm for any computable function f. That is, the nO(k) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the STEINER ORIENTATION problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)⋅no(k) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the GRID TILING problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether STEINER ORIENTATION admits the “square-root phenomenon” on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k)⋅nO(k√) for PLANAR STEINER ORIENTATION, or does the lower bound of f(k)⋅no(k) also translate to planar graphs

    Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions)

    Get PDF
    (see paper for full abstract) Given a vertex-weighted directed graph G=(V,E)G=(V,E) and a set T={t1,t2,tk}T=\{t_1, t_2, \ldots t_k\} of kk terminals, the objective of the SCSS problem is to find a vertex set HVH\subseteq V of minimum weight such that G[H]G[H] contains a titjt_{i}\rightarrow t_j path for each iji\neq j. The problem is NP-hard, but Feldman and Ruhl [FOCS '99; SICOMP '06] gave a novel nO(k)n^{O(k)} algorithm for the SCSS problem, where nn is the number of vertices in the graph and kk is the number of terminals. We explore how much easier the problem becomes on planar directed graphs: - Our main algorithmic result is a 2O(k)nO(k)2^{O(k)}\cdot n^{O(\sqrt{k})} algorithm for planar SCSS, which is an improvement of a factor of O(k)O(\sqrt{k}) in the exponent over the algorithm of Feldman and Ruhl. - Our main hardness result is a matching lower bound for our algorithm: we show that planar SCSS does not have an f(k)no(k)f(k)\cdot n^{o(\sqrt{k})} algorithm for any computable function ff, unless the Exponential Time Hypothesis (ETH) fails. The following additional results put our upper and lower bounds in context: - In general graphs, we cannot hope for such a dramatic improvement over the nO(k)n^{O(k)} algorithm of Feldman and Ruhl: assuming ETH, SCSS in general graphs does not have an f(k)no(k/logk)f(k)\cdot n^{o(k/\log k)} algorithm for any computable function ff. - Feldman and Ruhl generalized their nO(k)n^{O(k)} algorithm to the more general Directed Steiner Network (DSN) problem; here the task is to find a subgraph of minimum weight such that for every source sis_i there is a path to the corresponding terminal tit_i. We show that, assuming ETH, there is no f(k)no(k)f(k)\cdot n^{o(k)} time algorithm for DSN on acyclic planar graphs.Comment: To appear in SICOMP. Extended abstract in SODA 2014. This version has a new author (Andreas Emil Feldmann), and the algorithm is faster and considerably simplified as compared to conference versio
    corecore