1,249 research outputs found

    Lattice Boltzmann Methods for thermal flows: continuum limit and applications to compressible Rayleigh-Taylor systems

    Get PDF
    We compute the continuum thermo-hydrodynamical limit of a new formulation of lattice kinetic equations for thermal compressible flows, recently proposed in [Sbragaglia et al., J. Fluid Mech. 628 299 (2009)]. We show that the hydrodynamical manifold is given by the correct compressible Fourier- Navier-Stokes equations for a perfect fluid. We validate the numerical algorithm by means of exact results for transition to convection in Rayleigh-B\'enard compressible systems and against direct comparison with finite-difference schemes. The method is stable and reliable up to temperature jumps between top and bottom walls of the order of 50% the averaged bulk temperature. We use this method to study Rayleigh-Taylor instability for compressible stratified flows and we determine the growth of the mixing layer at changing Atwood numbers up to At ~ 0.4. We highlight the role played by the adiabatic gradient in stopping the mixing layer growth in presence of high stratification and we quantify the asymmetric growth rate for spikes and bubbles for two dimensional Rayleigh- Taylor systems with resolution up to Lx \times Lz = 1664 \times 4400 and with Rayleigh numbers up to Ra ~ 2 \times 10^10.Comment: 26 pages, 13 figure

    Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids

    Full text link
    We present results from numerical simulations of Rayleigh-Taylor turbulence, performed using a recently proposed lattice Boltzmann method able to describe consistently a thermal compressible flow subject to an external forcing. The method allowed us to study the system both in the nearly-Boussinesq and strongly compressible regimes. Moreover, we show that when the stratification is important, the presence of the adiabatic gradient causes the arrest of the mixing process.Comment: 15 pages, 11 figures. Proceedings of II Conference on Turbulent Mixing and Beyond (TMB-2009

    A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach

    Get PDF
    The pressure-driven displacement of two immiscible fluids in an inclined channel in the presence of viscosity and density gradients is investigated using a multiphase lattice Boltzmann approach. The effects of viscosity ratio, Atwood number, Froude number, capillary number, and channel inclination are investigated through flow structures, front velocities, and fluid displacement rates. Our results indicate that increasing viscosity ratio between the fluids decreases the displacement rate. We observe that increasing the viscosity ratio has a non-monotonic effect on the velocity of the leading front; however, the velocity of the trailing edge decreases with increasing the viscosity ratio. The displacement rate of the thin-layers formed at the later times of the displacement process increases with increasing the angle of inclination because of the increase in the intensity of the interfacial instabilities. Our results also predict the front velocity of the lock-exchange flow of two immiscible fluids in the exchange flow dominated regime. A linear stability analysis has also been conducted in a three-layer system, and the results are consistent with those obtained by our lattice Boltzmann simulations

    Lattice Boltzmann - Langevin simulations of binary mixtures

    Full text link
    We report a hybrid numerical method for the solution of the model H fluctuating hydrodynamic equations for binary mixtures. The momentum conservation equations with Landau-Lifshitz stresses are solved using the fluctuating lattice Boltzmann equation while the order parameter conservation equation with Langevin fluxes are solved using the stochastic method of lines. Two methods, based on finite difference and finite volume, are proposed for spatial discretisation of the order parameter equation. Special care is taken to ensure that the fluctuation-dissipation theorem is maintained at the lattice level in both cases. The methods are benchmarked by comparing static and dynamic correlations and excellent agreement is found between analytical and numerical results. The Galilean invariance of the model is tested and found to be satisfactory. Thermally induced capillary fluctuations of the interface are captured accurately, indicating that the model can be used to study nonlinear fluctuations

    Multi-component lattice-Boltzmann model with interparticle interaction

    Full text link
    A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confirmed numerically.Comment: 18 pages, compressed and uuencoded postscript fil

    Viscous coupling based lattice Boltzmann model for binary mixtures

    Get PDF
    A new lattice Boltzmann model for binary mixtures, which can naturally include both the two-fluid approach and the single-fluid approach, is developed. The model is derived from the continuous kinetic model proposed by Hamel, which independently takes into account self-collisions and cross collisions. The original kinetic model is discussed in order to appreciate that cross collisions realize an internal coupling force, proportional to the diffusion velocity, and an additional coupling effect in the effective stress tensor, proportional to the deformation of the barycentric velocity field. For this reason, Hamel’s model is the natural forerunner of all linearized models based on the two-fluid approach and allows us to describe binary mixtures at different limiting regimes consistently. A discrete lattice Boltzmann model, which recovers the original Hamel’s model with second-order accuracy in both time and space, is proposed. This discrete model can analyze ordinary diffusion, pressure diffusion, and forced diffusion

    Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling

    Get PDF
    AbstractA new lattice Boltzmann model for simulating ideal mixtures has been developed by means of the multiple-relaxation-time (MRT) approach. When compared with the previous single-relaxation-time (SRT) formulation of the same model, based on the continuous kinetic theory, the new model offers the possibility to independently tune the mutual diffusivity and the effects of cross collisions on the effective stress tensor. The additional degrees of freedom, due to the increased set of relaxation time constants used for modeling the cross collisions, allow us to match the experimental data on macroscopic transport coefficients. Two different integration rules, i.e. the forward Euler and the modified mid-point integration rule, were used in order to numerically integrate the developed model. Unfortunately the simpler forward Euler integration rule violates the mass conservation and there is no way to fix the problem by changing the definition of the macroscopic velocity. On the other hand, a small correction has been purposely designed for compensating this error by means of the mid-point integration rule. Some numerical simulations are reported for proving the effectiveness of the proposed corrective factor. For the considered application, the asymptotic analysis, recently suggested as an effective tool for analyzing the macroscopic equations corresponding to the lattice Boltzmann schemes, offers a remarkable advantage in comparison with the classical Chapman–Enskog technique, because it easily deals with leading terms in the distribution functions, which are no more Maxwellian

    Mesoscale fluid simulation with the Lattice Boltzmann method

    Get PDF
    PhDThis thesis describes investigations of several complex fluid effects., including hydrodynamic spinodal decomposition, viscous instability. and self-assembly of a cubic surfactant phase, by simulating them with a lattice Boltzmann computational model. The introduction describes what is meant by the term "complex fluid", and why such fluids are both important and difficult to understand. A key feature of complex fluids is that their behaviour spans length and time scales. The lattice Boltzmann method is presented as a modelling technique which sits at a "mesoscale" level intermediate between coarse-grained and fine-grained detail, and which is therefore ideal for modelling certain classes of complex fluids. The following chapters describe simulations which have been performed using this technique, in two and three dimensions. Chapter 2 presents an investigation into the separation of a mixture of two fluids. This process is found to involve several physical mechanisms at different stages. The simulated behaviour is found to be in good agreement with existing theory, and a curious effect, due to multiple competing mechanisms, is observed, in agreement with experiments and other simulations. Chapter 3 describes an improvement to lattice Boltzmann models of Hele-Shaw flow, along with simulations which quantitatively demonstrate improvements in both accuracy and numerical stability. The Saffman-Taylor hydrodynamic instability is demonstrated using this model. Chapter 4 contains the details and results of the TeraGyroid experiment, which involved extremely large-scale simulations to investigate the dynamical behaviour of a self-assembling structure. The first finite- size-effect- free dynamical simulations of such a system are presented. It is found that several different mechanisms are responsible for the assembly; the existence of chiral domains is demonstrated, along with an examination of domain growth during self-assembly. Appendix A describes some aspects of the implementation of the lattice Boltzmann codes used in this thesis; appendix B describes some of the Grid computing techniques which were necessary for the simulations of chapter 4. Chapter 5 summarises the work, and makes suggestions for further research and improvement.Huntsman Corporation Queen Mary University Schlumberger Cambridge Researc
    corecore