3,921 research outputs found

    Fusion of aerial images and sensor data from a ground vehicle for improved semantic mapping

    Get PDF
    This work investigates the use of semantic information to link ground level occupancy maps and aerial images. A ground level semantic map, which shows open ground and indicates the probability of cells being occupied by walls of buildings, is obtained by a mobile robot equipped with an omnidirectional camera, GPS and a laser range finder. This semantic information is used for local and global segmentation of an aerial image. The result is a map where the semantic information has been extended beyond the range of the robot sensors and predicts where the mobile robot can find buildings and potentially driveable ground

    Extracting 3D parametric curves from 2D images of Helical objects

    Get PDF
    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively

    Contour Extraction and Compression-Selected Topics

    Get PDF

    Automatic Main Road Extraction from High Resolution Satellite Imagery

    Get PDF
    Road information is essential for automatic GIS (geographical information system) data acquisition, transportation and urban planning. Automatic road (network) detection from high resolution satellite imagery will hold great potential for significant reduction of database development/updating cost and turnaround time. From so called low level feature detection to high level context supported grouping, so many algorithms and methodologies have been presented for this purpose. There is not any practical system that can fully automatically extract road network from space imagery for the purpose of automatic mapping. This paper presents the methodology of automatic main road detection from high resolution satellite IKONOS imagery. The strategies include multiresolution or image pyramid method, Gaussian blurring and the line finder using 1-dimemsional template correlation filter, line segment grouping and multi-layer result integration. Multi-layer or multi-resolution method for road extraction is a very effective strategy to save processing time and improve robustness. To realize the strategy, the original IKONOS image is compressed into different corresponding image resolution so that an image pyramid is generated; after that the line finder of 1-dimemsional template correlation filter after Gaussian blurring filtering is applied to detect the road centerline. Extracted centerline segments belong to or do not belong to roads. There are two ways to identify the attributes of the segments, the one is using segment grouping to form longer line segments and assign a possibility to the segment depending on the length and other geometric and photometric attribute of the segment, for example the longer segment means bigger possibility of being road. Perceptual-grouping based method is used for road segment linking by a possibility model that takes multi-information into account; here the clues existing in the gaps are considered. Another way to identify the segments is feature detection back-to-higher resolution layer from the image pyramid

    A topological sampling theorem for Robust boundary reconstruction and image segmentation

    Get PDF
    AbstractExisting theories on shape digitization impose strong constraints on admissible shapes, and require error-free data. Consequently, these theories are not applicable to most real-world situations. In this paper, we propose a new approach that overcomes many of these limitations. It assumes that segmentation algorithms represent the detected boundary by a set of points whose deviation from the true contours is bounded. Given these error bounds, we reconstruct boundary connectivity by means of Delaunay triangulation and α-shapes. We prove that this procedure is guaranteed to result in topologically correct image segmentations under certain realistic conditions. Experiments on real and synthetic images demonstrate the good performance of the new method and confirm the predictions of our theory

    Automatic visual inspection of placement of bare dies in multichip modules

    Get PDF
    Multichip Modules are gaining lot of popularity in today\u27s IC technology, as they are good solutions for high density packaging. This thesis presents a method for checking the placement of bare dies on a common substrate of an MCM. This testing is done using Automatic Visual Inspection (AVI), which is better and more reliable, compared to manual inspection. Comparison is the basis in this thesis to detect faults in an MCM. The MCM to be tested is compared with a known good ideal MCM using image processing techniques. The mismatches, if any, between these two images, i.e. image of an MCM which is being tested and image of known good reference MCM, are evaluated to find the exact location and nature of the fault. This AVI is implemented completely in software using C language. Test cases and their results are presented

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    Optical character recognition for checkbox detection

    Full text link
    Optical character recognition is the branch in computer science that involves reading text from paper and translating the images into a format that computers can manipulate. There are a lot of algorithms for finding letters and numbers, however checkboxes are often overlooked and very difficult to detect. To locate and determine if checkboxes are checked or unchecked is a very useful tool to use on forms. It is difficult to detect since there are so many ways a person can mark a checkbox. This thesis will describe a new algorithm for detecting checkboxes; Before checkboxes can be searched, certain preprocessing algorithms need to be performed on the form. The preprocessing steps are used to ensure that the width of the pixels that inscribe characters are one pixel. Not all checkmarks are drawn inside the box. Once a box is found, the coordinates are saved for further analysis
    corecore