4 research outputs found

    A Theory of Partitioned Global Address Spaces

    Get PDF
    Partitioned global address space (PGAS) is a parallel programming model for the development of applications on clusters. It provides a global address space partitioned among the cluster nodes, and is supported in programming languages like C, C++, and Fortran by means of APIs. In this paper we provide a formal model for the semantics of single instruction, multiple data programs using PGAS APIs. Our model reflects the main features of popular real-world APIs such as SHMEM, ARMCI, GASNet, GPI, and GASPI. A key feature of PGAS is the support for one-sided communication: a node may directly read and write the memory located at a remote node, without explicit synchronization with the processes running on the remote side. One-sided communication increases performance by decoupling process synchronization from data transfer, but requires the programmer to reason about appropriate synchronizations between reads and writes. As a second contribution, we propose and investigate robustness, a criterion for correct synchronization of PGAS programs. Robustness corresponds to acyclicity of a suitable happens-before relation defined on PGAS computations. The requirement is finer than the classical data race freedom and rules out most false error reports. Our main result is an algorithm for checking robustness of PGAS programs. The algorithm makes use of two insights. Using combinatorial arguments we first show that, if a PGAS program is not robust, then there are computations in a certain normal form that violate happens-before acyclicity. Intuitively, normal-form computations delay remote accesses in an ordered way. We then devise an algorithm that checks for cyclic normal-form computations. Essentially, the algorithm is an emptiness check for a novel automaton model that accepts normal-form computations in streaming fashion. Altogether, we prove the robustness problem is PSpace-complete

    Robustness against Power is PSPACE-complete

    Full text link
    Power is a RISC architecture developed by IBM, Freescale, and several other companies and implemented in a series of POWER processors. The architecture features a relaxed memory model providing very weak guarantees with respect to the ordering and atomicity of memory accesses. Due to these weaknesses, some programs that are correct under sequential consistency (SC) show undesirable effects when run under Power. We call these programs not robust against the Power memory model. Formally, a program is robust if every computation under Power has the same data and control dependencies as some SC computation. Our contribution is a decision procedure for robustness of concurrent programs against the Power memory model. It is based on three ideas. First, we reformulate robustness in terms of the acyclicity of a happens-before relation. Second, we prove that among the computations with cyclic happens-before relation there is one in a certain normal form. Finally, we reduce the existence of such a normal-form computation to a language emptiness problem. Altogether, this yields a PSPACE algorithm for checking robustness against Power. We complement it by a matching lower bound to show PSPACE-completeness

    Locality and Singularity for Store-Atomic Memory Models

    Full text link
    Robustness is a correctness notion for concurrent programs running under relaxed consistency models. The task is to check that the relaxed behavior coincides (up to traces) with sequential consistency (SC). Although computationally simple on paper (robustness has been shown to be PSPACE-complete for TSO, PGAS, and Power), building a practical robustness checker remains a challenge. The problem is that the various relaxations lead to a dramatic number of computations, only few of which violate robustness. In the present paper, we set out to reduce the search space for robustness checkers. We focus on store-atomic consistency models and establish two completeness results. The first result, called locality, states that a non-robust program always contains a violating computation where only one thread delays commands. The second result, called singularity, is even stronger but restricted to programs without lightweight fences. It states that there is a violating computation where a single store is delayed. As an application of the results, we derive a linear-size source-to-source translation of robustness to SC-reachability. It applies to general programs, regardless of the data domain and potentially with an unbounded number of threads and with unbounded buffers. We have implemented the translation and verified, for the first time, PGAS algorithms in a fully automated fashion. For TSO, our analysis outperforms existing tools

    Verifikation Nicht-blockierender Datenstrukturen mit Manueller Speicherverwaltung

    Get PDF
    Verification of concurrent data structures is one of the most challenging tasks in software verification. The topic has received considerable attention over the course of the last decade. Nevertheless, human-driven techniques remain cumbersome and notoriously difficult while automated approaches suffer from limited applicability. This is particularly true in the absence of garbage collection. The intricacy of non-blocking manual memory management (manual memory reclamation) paired with the complexity of concurrent data structures has so far made automated verification prohibitive. We tackle the challenge of automated verification of non-blocking data structures which manually manage their memory. To that end, we contribute several insights that greatly simplify the verification task. The guiding theme of those simplifications are semantic reductions. We show that the verification of a data structure's complicated target semantics can be conducted in a simpler and smaller semantics which is more amenable to automatic techniques. Some of our reductions rely on good conduct properties of the data structure. The properties we use are derived from practice, for instance, by exploiting common programming patterns. Furthermore, we also show how to automatically check for those properties under the smaller semantics. The main contributions are: (i) A compositional verification approach that verifies the memory management and the data structure separately. (ii) A notion of weak ownership that applies when memory is reclaimed and reused, bridging the gap between garbage collection and manual memory management (iii) A notion of pointer races and harmful ABAs the absence of which ensures that the memory management does not influence the data structure, i.e., it behaves as if executed under garbage collection. Notably, we show that a check for pointer races and harmful ABAs only needs to consider executions where at most a single address is reused. (iv) A notion of strong pointer races the absence of which entails the absence of ordinary pointer races and harmful ABAs. We devise a highly-efficient type check for strong pointer races. After a successful type check, the actual verification can be performed under garbage collection using an off-the-shelf verifier. (v) Experimental evaluations of the aforementioned contributions. We are the first to fully automatically verify practical non-blocking data structures with manual memory management.Verifikation nebenläufiger Datenstrukturen ist eine der herausforderndsten Aufgaben der Programmverifikation. Trotz vieler Beiträge zu diesem Thema, bleiben die existierenden manuellen Techniken mühsam und kompliziert in der Anwendung. Auch automatisierte Verifikationsverfahren sind nur eingeschränkt anwendbar. Diese Schwächen sind besonders ausgeprägt, wenn sich Programme nicht auf einen Garbage-Collector verlassen. Die Komplexität manueller Speicherverwaltung gepaart mit komplexen nicht-blockierenden Datenstrukturen macht die automatisierte Programmverifikation derzeit unmöglich. Diese Arbeit betrachtet die automatisierte Verifikation nicht-blockierender Datenstrukturen, welche ihren Speicher manuell verwalten. Dazu werden Konzepte vorgestellt, die die Verifikation stark vereinfachen. Das Leitmotiv dabei ist die semantische Reduktion, welche die Verifikation in einer leichteren Semantik erlaubt, ohne die eigentliche komplexere Semantik zu betrachten. Einige dieser Reduktion beruhen auf einem Wohlverhalten des zu verifizierenden Programms. Dabei wird das Wohlverhalten mit Bezug auf praxisnahe Eigenschaften definiert, wie sie z.B. von gängigen Programmiermustern vorgegeben werden. Ferner wird gezeigt, dass die Wohlverhaltenseigenschaften ebenfalls unter der einfacheren Semantik nachgewiesen werden können. Die Hauptresultate der vorliegenden Arbeit sind die Folgenden: (i) Ein kompositioneller Verifikationsansatz, welcher Speicherverwaltung und Datenstruktur getrennt verifiziert. (ii) Ein Begriff des Weak-Ownership, welcher selbst dann Anwendung findet, wenn Speicher wiederverwendet wird. (iii) Ein Begriff des Pointer-Race und des Harmful-ABA, deren Abwesenheit garantiert, dass die Speicherverwaltung keinen Einfluss auf die Datenstruktur ausübt und somit unter der Annahme von Garbage-Collection verifiziert werden kann. Bemerkenswerterweise genügt es diese Abwesenheit unter Reallokation nur einer fixex Speicherzelle zu prüfen. (iv) Ein Begriff des Strong-Pointer-Race, dessen Abwesenheit sowohl Pointer-Races als auch Harmful-ABA ausschließt. Um ein Programm auf Strong-Pointer-Races zu prüfen, präsentieren wir ein Typsystem. Ein erfolgreicher Typcheck erlaubt die tatsächlich zu überprüfende Eigenschaft unter der Annahme eines Garbage-Collectors nachzuweisen. (v) Experimentelle Evaluationen. Die vorgestellten Techniken sind die Ersten, die nicht-blockierende Datenstrukturen mit gängigen Speicherverwaltungen vollständig automatisch verifizieren können
    corecore