328 research outputs found

    A new foundational crisis in mathematics, is it really happening?

    Full text link
    The article reconsiders the position of the foundations of mathematics after the discovery of HoTT. Discussion that this discovery has generated in the community of mathematicians, philosophers and computer scientists might indicate a new crisis in the foundation of mathematics. By examining the mathematical facts behind HoTT and their relation with the existing foundations, we conclude that the present crisis is not one. We reiterate a pluralist vision of the foundations of mathematics. The article contains a short survey of the mathematical and historical background needed to understand the main tenets of the foundational issues.Comment: Final versio

    Propositions as Types

    Get PDF

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Some axioms for type theories

    Full text link
    The λΠ\lambda\Pi-calculus modulo theory is a logical framework in which many type systems can be expressed as theories. We present such a theory, the theory U\mathcal{U}, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory of U\mathcal{U} corresponding to each of these systems, and prove that, when a proof in U\mathcal{U} uses only symbols of a sub-theory, then it is a proof in that sub-theory

    Some Axioms for Mathematics

    Get PDF
    The ??-calculus modulo theory is a logical framework in which many logical systems can be expressed as theories. We present such a theory, the theory {U}, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory of {U} corresponding to each of these systems, and prove that, when a proof in {U} uses only symbols of a sub-theory, then it is a proof in that sub-theory

    Extensions of nominal terms

    Get PDF
    This thesis studies two major extensions of nominal terms. In particular, we study an extension with -abstraction over nominal unknowns and atoms, and an extension with an arguably better theory of freshness and -equivalence. Nominal terms possess two levels of variable: atoms a represent variable symbols, and unknowns X are `real' variables. As a syntax, they are designed to facilitate metaprogramming; unknowns are used to program on syntax with variable symbols. Originally, the role of nominal terms was interpreted narrowly. That is, they were seen solely as a syntax for representing partially-speci ed abstract syntax with binding. The main motivation of this thesis is to extend nominal terms so that they can be used for metaprogramming on proofs, programs, etc. and not just for metaprogramming on abstract syntax with binding. We therefore extend nominal terms in two signi cant ways: adding -abstraction over nominal unknowns and atoms| facilitating functional programing|and improving the theory of -equivalence that nominal terms possesses. Neither of the two extensions considered are trivial. The capturing substitution action of nominal unknowns implies that our notions of scope, intuited from working with syntax possessing a non-capturing substitution, such as the -calculus, is no longer applicable. As a result, notions of -abstraction and -equivalence must be carefully reconsidered. In particular, the rst research contribution of this thesis is the two-level - calculus, intuitively an intertwined pair of -calculi. As the name suggests, the two-level -calculus has two level of variable, modelled by nominal atoms and unknowns, respectively. Both levels of variable can be -abstracted, and requisite notions of -reduction are provided. The result is an expressive context-calculus. The traditional problems of handling -equivalence and the failure of commutation between instantiation and -reduction in context-calculi are handled through the use of two distinct levels of variable, swappings, and freshness side-conditions on unknowns, i.e. `nominal technology'. The second research contribution of this thesis is permissive nominal terms, an alternative form of nominal term. They retain the `nominal' rst-order avour of nominal terms (in fact, their grammars are almost identical) but forego the use of explicit freshness contexts. Instead, permissive nominal terms label unknowns with a permission sort, where permission sorts are in nite and coin nite sets of atoms. This in nite-coin nite nature means that permissive nominal terms recover two properties|we call them the `always-fresh' and `always-rename' properties that nominal terms lack. We argue that these two properties bring the theory of -equivalence on permissive nominal terms closer to `informal practice'. The reader may consider -abstraction and -equivalence so familiar as to be `solved problems'. The work embodied in this thesis stands testament to the fact that this isn't the case. Considering -abstraction and -equivalence in the context of two levels of variable poses some new and interesting problems and throws light on some deep questions related to scope and binding
    • …
    corecore