6 research outputs found

    Cost estimation of spatial join in spatialhadoop

    Get PDF
    Spatial join is an important operation in geo-spatial applications, since it is frequently used for performing data analysis involving geographical information. Many efforts have been done in the past decades in order to provide efficient algorithms for spatial join and this becomes particularly important as the amount of spatial data to be processed increases. In recent years, the MapReduce approach has become a de-facto standard for processing large amount of data (big-data) and some attempts have been made for extending existing frameworks for the processing of spatial data. In this context, several different MapReduce implementations of spatial join have been defined which mainly differ in the use of a spatial index and in the way this index is built and used. In general, none of these algorithms can be considered better than the others, but the choice might depend on the characteristics of the involved datasets. The aim of this work is to deeply analyse them and define a cost model for ranking them based on the characteristics of the dataset at hand (i.e., selectivity or spatial properties). This cost model has been extensively tested w.r.t. a set of synthetic datasets in order to prove its effectiveness

    Efficient Incremental Data Analysis

    Get PDF
    Many data-intensive applications require real-time analytics over streaming data. In a growing number of domains -- sensor network monitoring, social web applications, clickstream analysis, high-frequency algorithmic trading, and fraud detections to name a few -- applications continuously monitor stream events to promptly react to certain data conditions. These applications demand responsive analytics even when faced with high volume and velocity of incoming changes, large numbers of users, and complex processing requirements. Developing suitable online analytics engine that meets these requirements is challenging. In this thesis, we study techniques for efficient online processing of complex analytical queries, ranging from standard database queries to complex machine learning and digital signal processing workflows. First, we focus on the problem of efficient incremental computation for database queries. We have developed a system, called DBToaster, that compiles declarative queries into high-performance stream processing engines that keep query results (views) fresh at very high update rates. At the heart of our system is a recursive query compilation algorithm that materializes a set of supporting higher-order delta views to achieve a substantially lower view maintenance cost. We study the trade-offs between single-tuple and batch incremental processing in local execution, and we present a novel approach for compiling view maintenance code into data-parallel programs optimized for distributed execution. DBToaster supports millions of complete view refreshes per second for a broad range of queries and outperforms commercial database and stream engines by orders of magnitude. We also study the incremental computation for queries written as iterative linear algebra, which can capture many machine learning and scientific calculations. We have developed a framework, called LINVIEW, for capturing deltas of linear algebra programs and understanding their computational cost. Linear algebra operations tend to cause an avalanche effect where even very local changes to the input matrices spread out and infect all of the intermediate results and the final view, causing incremental view maintenance to lose its performance benefit over re-evaluation. We develop techniques based on matrix factorizations to contain such epidemics of change and make incremental view maintenance of linear algebra practical and usually substantially cheaper than re-evaluation. We show, both analytically and experimentally, the usefulness of these techniques when applied to standard analytics tasks. Our last research question concerns the integration of general-purpose query processors and domain-specific operations to enable deep data exploration in both online and offline analysis. We advocate a deep integration of signal processing operations and general-purpose query processors. We demonstrate that in-situ processing of tempo-relational and signal data through a unified query language empowers users to express end-to-end workflows more succinctly inside one system while at the same time offering orders of magnitude better performance than existing popular data management systems

    A Theoretical and Experimental Comparison of Filter-Based Equijoins in MapReduce

    No full text
    International audienceMapReduce has become an increasingly popular framework for large-scale data processing. However, complex operations such as joins are quite expensive and require sophisticated techniques. In this paper, we review state-of-the-art strategies for joining several relations in a MapReduce environment and study their extension with filter-based approaches. The general objective of filters is to eliminate non-matching data as early as possible in order to reduce the I/O, communication and CPU costs. We examine the impact of systematically adding filters as early as possible in MapReduce join algorithms, both analytically with cost models and practically with evaluations. The study covers binary joins, multi-way joins and recursive joins, and addresses the case of large inputs that gives rise to the most intricate challenges
    corecore