7 research outputs found

    A Theoretical Analysis of Why Hybrid Ensembles Work

    Get PDF
    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naĂŻve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles

    An approach for improved students’ performance prediction using homogeneous and heterogeneous ensemble methods

    Get PDF
    Web-based learning technologies of educational institutions store a massive amount of interaction data which can be helpful to predict students’ performance through the aid of machine learning algorithms. With this, various researchers focused on studying ensemble learning methods as it is known to improve the predictive accuracy of traditional classification algorithms. This study proposed an approach for enhancing the performance prediction of different single classification algorithms by using them as base classifiers of homogeneous ensembles (bagging and boosting) and heterogeneous ensembles (voting and stacking). The model utilized various single classifiers such as multilayer perceptron or neural networks (NN), random forest (RF), naïve Bayes (NB), J48, JRip, OneR, logistic regression (LR), k-nearest neighbor (KNN), and support vector machine (SVM) to determine the base classifiers of the ensembles. In addition, the study made use of the University of California Irvine (UCI) open-access student dataset to predict students’ performance. The comparative analysis of the model’s accuracy showed that the best-performing single classifier’s accuracy increased further from 93.10% to 93.68% when used as a base classifier of a voting ensemble method. Moreover, results in this study showed that voting heterogeneous ensemble performed slightly better than bagging and boosting homogeneous ensemble methods

    An approach for improved students’ performance prediction using homogeneous and heterogeneous ensemble methods

    Get PDF
    Web-based learning technologies of educational institutions store a massive amount of interaction data which can be helpful to predict students’ performance through the aid of machine learning algorithms. With this, various researchers focused on studying ensemble learning methods as it is known to improve the predictive accuracy of traditional classification algorithms. This study proposed an approach for enhancing the performance prediction of different single classification algorithms by using them as base classifiers of homogeneous ensembles (bagging and boosting) and heterogeneous ensembles (voting and stacking). The model utilized various single classifiers such as multilayer perceptron or neural networks (NN), random forest (RF), naïve Bayes (NB), J48, JRip, OneR, logistic regression (LR), k-nearest neighbor (KNN), and support vector machine (SVM) to determine the base classifiers of the ensembles. In addition, the study made use of the University of California Irvine (UCI) open-access student dataset to predict students’ performance. The comparative analysis of the model’s accuracy showed that the best-performing single classifier’s accuracy increased further from 93.10% to 93.68% when used as a base classifier of a voting ensemble method. Moreover, results in this study showed that voting heterogeneous ensemble performed slightly better than bagging and boosting homogeneous ensemble methods

    Reservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams

    Full text link
    The last decade has seen a surge of interest in adaptive learning algorithms for data stream classification, with applications ranging from predicting ozone level peaks, learning stock market indicators, to detecting computer security violations. In addition, a number of methods have been developed to detect concept drifts in these streams. Consider a scenario where we have a number of classifiers with diverse learning styles and different drift detectors. Intuitively, the current 'best' (classifier, detector) pair is application dependent and may change as a result of the stream evolution. Our research builds on this observation. We introduce the \mbox{Tornado} framework that implements a reservoir of diverse classifiers, together with a variety of drift detection algorithms. In our framework, all (classifier, detector) pairs proceed, in parallel, to construct models against the evolving data streams. At any point in time, we select the pair which currently yields the best performance. We further incorporate two novel stacking-based drift detection methods, namely the \mbox{FHDDMS} and \mbox{FHDDMS}_{add} approaches. The experimental evaluation confirms that the current 'best' (classifier, detector) pair is not only heavily dependent on the characteristics of the stream, but also that this selection evolves as the stream flows. Further, our \mbox{FHDDMS} variants detect concept drifts accurately in a timely fashion while outperforming the state-of-the-art.Comment: 42 pages, and 14 figure

    Optimization of the Regression Ensemble Size

    Get PDF
    Ensemble learning algorithms such as bagging often generate unnecessarily large models, which consume extra computational resources and may degrade the generalization ability. Pruning can potentially reduce ensemble size as well as improve performance; however, researchers have previously focused more on pruning classifiers rather than regressors. This is because, in general, ensemble pruning is based on two metrics: diversity and accuracy. Many diversity metrics are known for problems dealing with a finite set of classes defined by discrete labels. Therefore, most of the work on ensemble pruning is focused on such problems: classification, clustering, and feature selection. For the regression problem, it is much more difficult to introduce a diversity metric. In fact, the only such metric known to date is a correlation matrix based on regressor predictions. This study seeks to address this gap. First, we introduce the mathematical condition that allows checking whether the regression ensemble includes redundant estimators, i.e., estimators, whose removal improves the ensemble performance. Developing this approach, we propose a new ambiguity-based pruning (AP) algorithm that bases on error-ambiguity decomposition formulated for a regression problem. To check the quality of AP, we compare it with the two methods that directly minimize the error by sequentially including and excluding regressors, as well as with the state-of-art Ordered Aggregation algorithm. Experimental studies confirm that the proposed approach allows reducing the size of the regression ensemble with simultaneous improvement in its performance and surpasses all compared methods

    The role of machine learning in identifying students at-risk and minimizing failure

    Get PDF
    Education is very important for students' future success. The performance of students can be supported by the extra assignments and projects given by the instructors for students with low performance. However, a major problem is that students at-risk cannot be identified early. This situation is being investigated by various researchers using Machine Learning techniques. Machine learning is used in a variety of areas and has also begun to be used to identify students at-risk early and to provide support by instructors. This research paper discusses the performance results found using Machine learning algorithms to identify at-risk students and minimize student failure. The main purpose of this project is to create a hybrid model using the ensemble stacking method and to predict at-risk students using this model. We used machine learning algorithms such as Naive Bayes, Random Forest, Decision Tree, K-Nearest Neighbors, Support Vector Machine, AdaBoost Classifier and Logistic Regression in this project. The performance of each machine learning algorithm presented in the project was measured with various metrics. Thus, the hybrid model by combining algorithms that give the best prediction results is presented in this study. The data set containing the demographic and academic information of the students was used to train and test the model. In addition, a web application developed for the effective use of the hybrid model and for obtaining prediction results is presented in the report. In the proposed method, it has been realized that stratified k-fold cross validation and hyperparameter optimization techniques increased the performance of the models. The hybrid ensemble model was tested with a combination of two different datasets to understand the importance of the data features. In first combination, the accuracy of the hybrid model was obtained as 94.8% by using both demographic and academic data. In the second combination, when only academic data was used, the accuracy of the hybrid model increased to 98.4%. This study focuses on predicting the performance of at-risk students early. Thus, teachers will be able to provide extra assistance to students with low performance

    Machine learning can identify newly diagnosed patients with CLL at high risk of infection

    Get PDF
    Infections have become the major cause of morbidity and mortality among patients with chronic lymphocytic leukemia (CLL) due to immune dysfunction and cytotoxic CLL treatment. Yet, predictive models for infection are missing. In this work, we develop the CLL Treatment-Infection Model (CLL-TIM) that identifies patients at risk of infection or CLL treatment within 2 years of diagnosis as validated on both internal and external cohorts. CLL-TIM is an ensemble algorithm composed of 28 machine learning algorithms based on data from 4,149 patients with CLL. The model is capable of dealing with heterogeneous data, including the high rates of missing data to be expected in the real-world setting, with a precision of 72% and a recall of 75%. To address concerns regarding the use of complex machine learning algorithms in the clinic, for each patient with CLL, CLL-TIM provides explainable predictions through uncertainty estimates and personalized risk factors
    corecore