4 research outputs found

    Matematiikan joukko-opillisia perusteita

    Get PDF
    Tutkielman aiheena on joidenkin matematiikan peruskÀsitteiden esittÀminen joukkoopin keinoin. Muun muassa jÀrjestetyt parit eli kahden komponentin vektorit ja luonnolliset luvut voidaan kohtalaisen yksinkertaisesti esittÀÀ pelkistettyinÀ joukkoina. Pelkistetyt joukot ovat joukkoja, joiden kaikki jÀsenet, jÀsenten jÀsenet ja niin edespÀin ovat joukkoja. MÀÀritelmÀt ja todistukset esitetÀÀn formalismin hengessÀ matemaattisella symbolikielellÀ. Tarkoitus on varmistua, ettÀ perustelut todella noudattavat tutkielman alussa asetettuja sÀÀntöjÀ ja sopimuksia ja perustuvat tutkielmassa esitettyihin aksioomiin. Aksiomaattisen joukko-opin suhdetta intuitioon perustuvaan naiiviin joukkooppiin pyritÀÀn selvittÀmÀÀn perustelemalla syitÀ eri aksioomien asettamiselle. Monen asetetun aksiooman tarkoitus on mahdollistaa uusien joukkojen muodostaminen tai toisin ilmaisten kertoa, minkÀlaisia joukkoja on olemassa. TÀllaisia aksioomia asetettaessa on oltava varovainen, jottei teoria ajaudu ristiriitaan. Joukkoja on voitava mÀÀritellÀ esimerkiksi ominaisuuden perusteella, jonka tÀyttÀvÀt alkiot valitaan joukon jÀseniksi. Siksi esitetÀÀn separaatioaksiooma, jonka muoto on niin kutsutun Russellin paradoksin vuoksi harkittava tarkoin. Lopuksi tarkastellaan lyhyesti ÀÀrettömiÀ joukkoja ja joukkoina esitettyjen luonnollisten lukujen yhteenlaskua. Yksinkertaisuudestaan huolimatta ÀÀrettömyyden ja yhteenlaskun kÀsitteet osoittautuvat tÀmÀn tutkielman puitteissa liian hankaliksi, kun ne yritetÀÀn esittÀÀ tÀsmÀllisen formaalisesti.Siirretty Doriast

    Leaving mathematics as it is: Wittgenstein’s later philosophy of mathematics

    Get PDF
    Wittgenstein’s later philosophy of mathematics has been widely interpreted to involve Wittgenstein’s making dogmatic requirements of what can and cannot be mathematics, as well as involving Wittgenstein dismissing whole areas (e.g. set theory) as not legitimate mathematics. Given that Wittgenstein promised to ‘leave mathematics as it is’, Wittgenstein is left looking either hypocritical or confused. This thesis will argue that Wittgenstein can be read as true to his promise to ‘leave mathematics as it is’ and that Wittgenstein can be seen to present coherent, careful and non-dogmatic treatments of philosophical problems in relation to mathematics. If Wittgenstein’s conception of philosophy is understood in sufficient detail, then it is possible to lift the appearance of confusion and contradiction in his work on mathematics. Whilst apparently dogmatic and sweeping claims figure in Wittgenstein’s writing, they figure only as pictures to be compared against language-use and not as definitive accounts (which would claim exclusive right to correctness). Wittgenstein emphasises the importance of the applications of mathematics and he feels that our inclination to overlook the connections of mathematics with its applications is a key source of a number of philosophical problems in relation to mathematics. Wittgenstein does not emphasise applications to the exclusion of all else or insist that nothing is mathematics unless it has direct applications. Wittgenstein does question the alleged importance of certain non-applied mathematical systems such as set theory and the logicist systems of Frege and Russell. But his criticism is confined to the aspirations towards philosophical insight that has been attributed to those systems. This is consonant with Wittgenstein’s promises in (PI, §124) to ‘leave mathematics as it is’ and to see ‘leading problems of mathematical logic’ as ‘mathematical problems like any other.’ It is the aim of this thesis to see precisely what Wittgenstein means by these promises and how he goes about keeping them

    Implementation of Bourbaki's Elements of Mathematics in Coq: Part Two; Ordered Sets, Cardinals, Integers

    Get PDF
    We believe that it is possible to put the whole work of Bourbaki into a computer. One of the objectives of the Gaia project concerns homological algebra (theory as well as algorithms); in a first step we want to implement all nine chapters of the book Algebra. But this requires a theory of sets (with axiom of choice, etc.) more powerful than what is provided by Ensembles; we have chosen the work of Carlos Simpson as basis. This reports lists and comments all definitions and theorems of the Chapter ''Ordered Sets, Cardinals, Integers''. Version 3 is based on the Coq ssreflect library. Version 5 implements many properties of ordinal numbers and infinite cardinal numbers. Version 6 includes the Veblen hierarchy of ordinals, the SchĂŒtte function psi, and a bit of theory of models.Version 7 includes rational and real numbers. Versions 8 and 9 include more theorems about ordinal numbers. Version 9 includes Sperner's theorem, and corrects a mistake in the size of one. The code (including some exercises) is available on the Web, under http://www-sop.inria.fr/marelle/gaia .Nous pensons qu’il est possible de mettre dans un ordinateur l’ensemble de l’Ɠuvre de Bourbaki. L’un des objectifs du projet Gaia concerne l’algĂšbre homologique (thĂ©orie et algorithmes); dans une premiĂšre Ă©tape nous voulons implĂ©menter les neuf chapitres du livre AlgĂšbre. Au prĂ©alable, il faut implĂ©menter la thĂ©orie des ensembles. Nous utilisons l’Assistant de Preuve Coq; les choix fondamentaux et axiomes sont ceux proposĂ©s par Carlos Simpson. Ce rapport liste et commente toutes les dĂ©finitions et thĂ©orĂšmes du Chapitre “Ensembles ordonnĂ©s, cardinaux, nombres entiers”. La version 9 de ce document dĂ©crit la bibliothĂšque Ă  la fin de l'annĂ©e 2017. Une partie des exercises a Ă©tĂ© rĂ©solue. Le code est disponible sur le site Web http://www-sop.inria.fr/marelle/gai
    corecore