43,882 research outputs found

    A Critical Review of Temporal Database Management Systems

    Get PDF
    There have been significant research activities in Temporal Databases during the last decade. However, the developments of a semantics of time, a temporal model for efficient database systems and temporal query languages still need much study. Based on the researches of the TDB group [Snodgrass 1987], the review of research about TDBMS in this dissertation mainly emphasises three aspects as follows. 1) The formulation of a semantics of time at the conceptual level. A topology of time and types of time attributes are introduced. A new taxonomy for time attributes is presented: assertion time, event time, and recording time. 2) The development of a model for TDBMS analogous to relational databases. Based on Snodgrass' classification, four kinds of databases: snapshot, rollback, historical and temporal are discussed in depth. But the discussion distinguishes some important differences from the representation of the TDB model: - historical relation for most enterprises is an interval relation, but not a sequence of snapshot slices indexed by valid time. The term "tuple" no longer simply refers to an entity as in traditional relational databases. It refers to different level representations of an object: entity, entity state, observation of entity, and observation of entity state in different types of databases. 3) The design of temporal query languages. We do not present a new temporal query language in this dissertation, but we discuss a Quel-like temporal query language, TQuel, in some depth. TQuel is compared with two other temporal query languages TOSQL and Legol 2.0. We centre the main discussion on TQuel's semantics for tuple calculus. The classification for the relationships between overlapping intervals suggests an approach using temporal logic to classify the derived tuples in tuple calculus. Under such an approach, a new presentation for tuple modification calculus is proposed, not only for interval relations, but also for event relations

    SODA: Generating SQL for Business Users

    Full text link
    The purpose of data warehouses is to enable business analysts to make better decisions. Over the years the technology has matured and data warehouses have become extremely successful. As a consequence, more and more data has been added to the data warehouses and their schemas have become increasingly complex. These systems still work great in order to generate pre-canned reports. However, with their current complexity, they tend to be a poor match for non tech-savvy business analysts who need answers to ad-hoc queries that were not anticipated. This paper describes the design, implementation, and experience of the SODA system (Search over DAta Warehouse). SODA bridges the gap between the business needs of analysts and the technical complexity of current data warehouses. SODA enables a Google-like search experience for data warehouses by taking keyword queries of business users and automatically generating executable SQL. The key idea is to use a graph pattern matching algorithm that uses the metadata model of the data warehouse. Our results with real data from a global player in the financial services industry show that SODA produces queries with high precision and recall, and makes it much easier for business users to interactively explore highly-complex data warehouses.Comment: VLDB201

    Intuitive querying of e-Health data repositories

    Get PDF
    At the centre of the Clinical e-Science Framework (CLEF) project is a repository of well organised, detailed clinical histories, encoded as data that will be available for use in clinical care and in-silico medical experiments. An integral part of the CLEF workbench is a tool to allow biomedical researchers and clinicians to query – in an intuitive way – the repository of patient data. This paper describes the CLEF query editing interface, which makes use of natural language generation techniques in order to alleviate some of the problems generally faced by natural language and graphical query interfaces. The query interface also incorporates an answer renderer that dynamically generates responses in both natural language text and graphics

    Temporal description logic for ontology-based data access

    Get PDF
    Our aim is to investigate ontology-based data access over temporal data with validity time and ontologies capable of temporal conceptual modelling. To this end, we design a temporal description logic, TQL, that extends the standard ontology language OWL2QL, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time
    • …
    corecore