626 research outputs found

    From Linear to Branching-Time Temporal Logics: Transfer of Semantics and Definability

    Get PDF
    This paper investigates logical aspects of combining linear orders as semantics for modal and temporal logics, with modalities for possible paths, resulting in a variety of branching time logics over classes of trees. Here we adopt a unified approach to the Priorean, Peircean and Ockhamist semantics for branching time logics, by considering them all as fragments of the latter, obtained as combinations, in various degrees, of languages and semantics for linear time with a modality for possible paths. We then consider a hierarchy of natural classes of trees and bundled trees arising from a given class of linear orders and show that in general they provide different semantics. We also discuss transfer of definability from linear orders to trees and introduce a uniform translation from Priorean to Peircean formulae which transfers definability of properties of linear orders to definability of properties of all paths in tree

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Probability Logic for Harsanyi Type Spaces

    Full text link
    Probability logic has contributed to significant developments in belief types for game-theoretical economics. We present a new probability logic for Harsanyi Type spaces, show its completeness, and prove both a de-nesting property and a unique extension theorem. We then prove that multi-agent interactive epistemology has greater complexity than its single-agent counterpart by showing that if the probability indices of the belief language are restricted to a finite set of rationals and there are finitely many propositional letters, then the canonical space for probabilistic beliefs with one agent is finite while the canonical one with at least two agents has the cardinality of the continuum. Finally, we generalize the three notions of definability in multimodal logics to logics of probabilistic belief and knowledge, namely implicit definability, reducibility, and explicit definability. We find that S5-knowledge can be implicitly defined by probabilistic belief but not reduced to it and hence is not explicitly definable by probabilistic belief

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Counting Incompossibles

    Get PDF
    We often speak as if there are merely possible people—for example, when we make such claims as that most possible people are never going to be born. Yet most metaphysicians deny that anything is both possibly a person and never born. Since our unreflective talk of merely possible people serves to draw non-trivial distinctions, these metaphysicians owe us some paraphrase by which we can draw those distinctions without committing ourselves to there being merely possible people. We show that such paraphrases are unavailable if we limit ourselves to the expressive resources of even highly infinitary first-order modal languages. We then argue that such paraphrases are available in higher-order modal languages only given certain strong assumptions concerning the metaphysics of properties. We then consider alternative paraphrase strategies, and argue that none of them are tenable. If talk of merely possible people cannot be paraphrased, then it must be taken at face value, in which case it is necessary what individuals there are. Therefore, if it is contingent what individuals there are, then the demands of paraphrase place tight constraints on the metaphysics of properties: either (i) it is necessary what properties there are, or (ii) necessarily equivalent properties are identical, and having properties does not entail even possibly being anything at all

    Reactive preferential structures and nonmonotonic consequence

    Get PDF
    We introduce information bearing systems (IBRS) as an abstraction of many logical systems. We define a general semantics for IBRS, and show that IBRS generalize in a natural way preferential semantics and solve open representation problems

    Critical analysis of the Carmo-Jones system of Contrary-to-Duty obligations

    Full text link
    We offer a technical analysis of the contrary to duty system proposed in Carmo-Jones. We offer analysis/simplification/repair of their system and compare it with our own related system
    • 

    corecore